R. Al-Tohamy er al., “A critical review on the treatment of dye-containing
wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental — safety,” Ecotoxicology and Environmental Safery, vol. 231. Academic Press, Feb. 01, 2022. doi:
10, 1016/j.ecoenyv.2021.113160,
D. A. Yaseen and M. Scholz, “Shallow pond systems planted with Lemna minor
treating azo dyes,” Ecol Eng. vol. 94, pp. 295-305, Sep. 2016, doi:
10,1016/j.ecoleng.2016.05,08 1.
A. H. Mijinyawa, G. Durga, and A. Mishra, “A sustainable process for adsorptive removal of methylene blue onto a food grade mucilage: kinetics, thermodynamics,
and equilibrium evaluation,” Int J Phytoremediation, vol. 21, no. 11, pp. 1122-
1129, Sep. 2019, doi: 10.1080/152265 14.2019, 1606785.
P. O. Oladoye, T. O. Ajiboye, E. O. Omotola, and O. J. Oyewola, “Methylene blue dye: Toxicity and potential elimination technology from wastewater,” Results in Engineering, — vol. 16. Elsevier B.V, Dee. Ol, 2022. doi:
10. 1016/j.rineng.2022. 100678.
I. Khan er al., “Review on Methylene Blue: Its Properties, Uses, Toxicity and Photodegradation,” Water (Switzerland), vol. 14, no. 2. MDPI, Jan. 01, 2022. doi:
10.3390/w 14020242.
N. Hoc Thang, D. Sy Khang, T. Duy Hai, D. Thi Nga, and P. Dinh Tuan,
“Methylene blue adsorption mechanism of activated carbon synthesised from
cashew nut shells,” RSC Adv, vol. 11, no. 43, pp. 26563-26570, Jul. 2021, doi:
10.1039/đ1ra04672a.
V. Bharti ef al., “Biodegradation of methylene blue dye in a batch and continuous mode using biochar as packing media,” Environ Res, vol. 171, pp. 356-364, Apr.
2019, doi: 10.1016/j-envres.2019.01.051.
X. Shao et al., “Cellulose based cation-exchange fiber as filtration material for the rapid removal of methylene blue from wastewater,” Cellulose, vol. 28, no. 14, pp.
9355-9367, Sep. 2021, doi: 10.1007/s 10570-02 1-04103-2.
“Reduction of Methylene Blue by Using Direct Continuous Ozone,” Journal of
Environment and Earth Science, Apr. 2020, doi: 10.7176/jees/10-4-07.
[10]
(11)
[12]
[13]
[14]
[15]
[16]
[17]
[18]
47
B. Vaferi, M. Bahmani, P. Keshavarz, and D. Mowla, “Experimental and theoretical analysis of the UV/H:O: advanced oxidation processes treating aromatic
hydrocarbons and MTBE from contaminated synthetic wastewaters,” J Enyiron Chem Eng, vol. 2, no. 3, pp. 1252-1260, 2014, doi: 10.1016/).jece.2014.05.016.
S. Dagher ef al., “Photocatalytic removal of methylene blue using titania- and silica- coated magnetic nanoparticles,” Mater Res Express, vol. 5, no. 6, Jun. 2018, doi:
10.1088/2053-1591/aacad4.
W. Fu ef a/, “When bimetallic oxides and their complexes meet Fenton-like process,” Journal of Hazardous Materials, vol. 424. Elsevier B.V., Feb. 15, 2022.
doi: 10. 1016/j. jhazmat.202 1.127419,
K. Zhou, B. Mousavi, Z. Luo, S. Phatanasri, S. Chaemchuen, and F. Verpoort,
“Characterization and properties of Zn/Co zeolitic imidazolate frameworks vs. ZIF- 8 and ZIF-67,” J Mater Chem A Mater, vol. 5, no. 3, pp. 952-957, 2017, doi:
10.1039/C6TAO7860E.
B. Chen, Z. Yang, Y. Zhu, and Y. Xia, “Zeolitic imidazolate framework materials:
Recent progress in synthesis and applications,” Journal of Materials Chemisiry A,
vol. 2, no. 40. Royal Society of Chemistry, pp. 16811-16831, Oct. 28, 2014. doi:
10.1039/c4ta02984d.
G. Zhong, D. Liu, and J. Zhang, “The application of ZIF-67 and its derivatives:
Adsorption, separation, electrochemistry and catalysts,” Journal of Materials Chemistry A, vol. 6, no. 5. Royal Society of Chemistry, pp. 1887-1899, 2018. doi:
10.1039/c7ta08268a.
Q. Hu ef al, “Fabrication of Fe-doped cobalt zeolitic imidazolate framework derived from Co(OH): for degradation of tetracycline via peroxymonosulfate activation.” Sep Purif Technel, vol. 259, Mar. = 2021, — doi:
10.1016/1.seppur.2020.I 18059.
L. E. Mphuthi, E. Erasmus, and E. H. G. Langner, “Metal Exchange of ZIF-8 and
ZIF-67 Nanoparticles with Fe(II) for Enhanced Photocatalytic Performance,” ACS Omega, vol. 6, no. 47 pp. 31632-31645, Nov. 2021, doi:
10,102 1/acsomega.1c04142,
H. G. Đặng, T. A. T. Lê, B. H. Tran, T. B. N. Phạm, and N. T. T. Hồ, “Nghiên cứu
hoạt tính xúc tác phân hủy congo red của vật liệu Cu/ZIF-67 với sự hiện điện của
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
4§
hydrogen peroxide,” Can Tho University Journal of Science, vol. 59, no. ETMD, pp.
90-98, May 2023, doi: 10.22144/ctu.jvn.2023.033.
R. Zein, J. Satrio Purnomo, P. Ramadhani, Safni, M. F. Alif, and C. N. Putri,
“Enhancing sorption capacity of methylene blue dye using solid waste of lemongrass biosorbent by modification method,” Arabian Journal of Chemistry, vol.
16, no. 2, Feb. 2023, doi: 10.1016/j.arabjc.2022.104480.
S. S. Hemdan, “The Shift in the Behavior of Methylene Blue Toward the Sensitivity
of Medium: Solvatochromism, Solvent Parameters, Regression Analysis and
Investigation of Cosolvent on the Acidity Constants,” J Fluoresc, vol. 33, no. 6, pp.
2489-2502, Noy, 2023, doi: 10,1007/s10895-023-03234-y,
B. M. Adesanmi, Y.-T. Hung, H. Paul, and €. Huhnke, “Comparison of dye wastewater treatment methods: A review..” Civil and Enviromental Engineering, 2022, doi: 10.528 1/zenodo.6331586.
F. Tisa, A. A, Abdul Raman, and W, M. A. Wan Daud, “Applicability of Muidized bed reactor in recalcitrant compound degradation through advanced oxidation processes: A review,” Journal of Environmental Management, vol. 146. Academic Press, pp. 260-275, Dec. 15, 2014. doi; 10.1016/),jenvman,2014.07,032,
S. Krishnan, H. Rawindran, C. M. Sinnathambi, and J. W. Lim, “Comparison of various advanced oxidation processes used in remediation of industrial wastewater
laden with recalcitrant pollutants,” in JOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, Jun. 2017. doi: 10.1088/1757-
899X/206/1/012089.
U. Ushani et ai., “Sulfate radicals-based advanced oxidation technology in various environmental remediation: A. state-of-the-art review,” Chemical Engineering Journal, vol. 402. Elsevier B.V., Dec. 15, 2020. doi: 10.1016/j.cej.2020. 126232.
D. Manos, K. Miserli, and I. Konstantinou, “Perovskite and spinel catalysts for sulfate radical-based advanced oxidation of organic pollutants in water and
wastewater systems,” Catalysts, vol. 10, no. 11. MDPI, pp. 1-44, Nov. 01, 2020.
doi: 10.3390/catal10111299.
S. Guo, L. Zhang, M. Chen, F. Ahmad, H. Fida, and H. Zhang, “Heterogeneous Activation of Peroxymonosulfate by a Spinel CoAlzOx Catalyst for the Degradation
[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]
(35)
49
of Organic Pollutants,” Catalysts, vol. 12, no. 8, Aug. 2022, doi:
10.3390/catal 12080847.
J. Hu et al., “Efficient degradation of tetracycline by ultraviolet-based activation of peroxymonosulfate and persulfate,” Water Science and Technology, vol. 79, no. 5, pp. 911-920, 2019, doi: 10.2166/wst.2019.034.
G. Liu er al., “Enhanced thermal activation of peroxymonosulfate by activated carbon for efficient removal of perfluorooctanoic acid,’ Chemical Engineering
Journal, vol. 399, Nov. 2020, doi: 10.1016/1.cej.2020.125722.
C. Qi, X. Liu, C. Lin, H. Zhang, X. Li, and J. Ma, “Activation of peroxymonosulfate by microwave irradiation for degradation of organic contaminants,” Chemical
Engineering Journal, vol. 315, pp. 201-209, 2017, doi: 10. 1016/j.cej.2017.01.012.
S. Bhattacharjee, M. S. lang, H. J. Kwon, and W. S. Ahn, “Zeolitic Imidazolate Frameworks: Synthesis, Functionalization, and Catalytic/Adsorption Applications,”
Catalysis Surveys from Asia, vol. 18, no. 4. Springer New York LLC, pp. 101-127,
Dec. 01, 2014. doi: 10.1007/s10563-014-9169-8.
Y. Xiao, A. N. Hong, D. Hu, Y. Wang, X. Bu, and P. Feng, “Solvent-Free Synthesis of Zeolitic Imidazolate Frameworks and the Catalytic Properties of Their Carbon
Materials,” Chemistry - A European Journal, vol. 25, no. 71, pp. 16358-16365, Dec. 2019, doi: 10.1002/chem.201903888.
X. Zhang et al, “A historical overview of the activation and porosity of metal- organic frameworks,” Chemical Society Reviews, vol. 49, no. 20. Royal Society of Chemistry, pp. 7406-7427, Oct. 21, 2020. doi: 10.1039/d0cs00997k.
Y. Xue et al., “Mechanistic insights into selective adsorption and separation of multi-component anionic dyes using magnetic zeolite imidazolate framework-67 composites,” J Mol Lig, vol. 296, Dec. 2019, doi: 10.1016/).mollig.2019.111990.
J. Ethiraj, S. Palla, and H. Reinsch, “Insights into high pressure gas adsorption propertics of ZIF-67: Experimental and thcorctical studies,” Microporous and
Mesoporous Materials, vol. 294, Mar. 2020, doi:
10.1016/j.micromeso.2019. 109867.
A. Zhou, R. M. Guo, J. Zhou, Y. Dou, Y. Chen, and J. R. Li, “Pd@ZIF-67 Derived Recyclable Pd-Based Catalysts with Hierarchical Pores for High-Performance Heck
[36]
[37]
[38]
[39]
[40]
[41]
[42]
[43]
SO
Reaction,” ACS Sustain Chem Eng, vol. 6, no. 2, pp. 2103-2111, Feb. 2018, doi:
10.102 1/acssuschemeng.7b03525.
Y. Dou, J. Zhou, F. Yang, M. J. Zhao, Z. Nie, and J. R. Li, “Hierarchically structured layered-double-hydroxide @zeolitic-imidazolate-framework derivatives for high-performance electrochemical energy storage,” J Mater Chem A Mater, vol.
4, no. 32, pp. 12526-12534, 2016, doi: 10.1039/c6ta0476%c.
D. Matatagui, A. Sainz-Vidal, I. Gracia, E. Figueras, €. Cané, and J. Saniger,
“Improving Sensitivity of a Chemoresistive Hydrogen Sensor by Combining ZIF-8 and ZIF-67 Nanocrystals.’ MDPI AG, Aug. 2017, p. 462. doi:
10,3390/proceedings 1040462.
J. Zhang, Y. Tan, and W. J. Song, “Zeolitic imidazolate frameworks for use in electrochemical and optical chemical sensing and biosensing: a review,”
Microchimica Acta, vol. 187, no. 4. Springer, Apr. 01, 2020. doi: 10.1007/s00604- 020-4173-3.
J. Qin, S. Wang, and X. Wang, “Visible-light reduction CO: with dodecahedral
zeolitic imidazolate framework ZIF-67 as an efficient co-catalyst,” App! Caral B,
vol. 209, pp. 476-482, 2017, doi: 10.1016/1.apcatb.2017.03.018.
N. T. T. Tu et al., “Microwave-assisted synthesis and simultaneous electrochemical
determination of dopamine and paracetamol using ZIF-67-modified electrode.” J Mater Sci, vol. 54, no. 17, pp. 11654-11670, Sep. 2019, doi: 10.1007/s10853-019- 03709-z.
K. Sumida, K. Liang, J. Reboul, I. A. Ibarra, S. Furukawa, and P. Falcaro, “Sol-Gel Processing of Metal-Organic Frameworks,” Chemistry of Materials, vol. 29, no. 7.
American Chemical Society, pp. 2626-2645, Apr. Il, 2017. doi:
10.102 1/acs.chemmater.6b03934.
C. Duan, Y. Yu, and H. Hu, “Recent progress on synthesis of ZIF-67-based materials and their application to heterogencous catalysis,” Green Energy and
Environment, vol. 7, no. 1. KeAi Publishing Communications Ltd., pp. 3-15, Feb.
01, 2022. doi: 10.1016/j.gee.2020.12.023.
Z. Pouramini er al., “Effect of Metal Atom in Zeolitic Imidazolate Frameworks (ZIF-8 & 67) for Removal of Dyes and Antibiotics from Wastewater: A Review,”
Catalysts, vol. 13, no. 1. MDPI, Jan. 01, 2023. doi: 10.3390/catall 3010155.
[44]
[45]
[46]
[47]
[48]
[49]
[50]
[5H
Sl
J. Ethiraj, S. Palla, and H. Reinsch, “Insights into high pressure gas adsorption properties of ZIF-67: Experimental and theoretical studies,” Microperous and
Mesoporous Materials, vol. 294, Mar. 2020, doi:
10.1016/j.micromeso.2019, 109867.
M. Weihai ef al., “Co/C broad band electromagnetic wave absorption composite derived from preferred precursor ZIF-67: preparation and performance,” Journal of Materials Science; Materials in Electronics, vol. 31, no. 8, pp. 6418-6434, Apr.
2020, doi: 10. 1007/s LO854-020-03 198-w.
L. Tuong Kieu, D. Hoang Van, L. Nguyen Le My, and T. Nguyen Thi Anh,
“Synthesis of ZIF-67- Effect of solvent on the structure,” Vietnam Journal of Catalysis and Adsorption, vol. 10, no. 1, pp. 98-103, Nov. 2021, doi:
10.513 16/jca.2021.016.
B. R. Pimentel, A. Parulkar, E. K. Zhou, N. A. Brunelli, and R. P. Lively, “Zeolitic imidazolate frameworks: Next-generation materials for energy-efficient gas separations,” ChemSusChem, vol. 7, no. 12. Wiley-VCH Verlag, pp. 3202-3240, 2014. doi: 10.1002/cssc.201402647.
K. Y. A. Lin and H. A. Chang, “Zeolitic Imidazole Framework-67 (ZIF-67) as a heterogeneous catalyst to activate peroxymonosulfate for degradation of Rhodamine B in water,” J Taiwan Inst Chem Eng, vol. 53, pp. 40-45, Aug. 2015, doi:
10, 1016/).jtice,2015.02.027,
M. Chen, N. Wang, X. Wang, Y. Zhou, and L. Zhu, “Enhanced degradation of tetrabromobisphenol A by magnetic Fe:O;@ZIF-67 composites as a heterogeneous
Fenton-like catalyst,” Chemical Engineering Journal, vol. 413, lun. 2021, doi:
10.1016/}.ce}.2020.127539.
Ð. H. Giao, P. V. Toản, P. Q. Yên, T. K. Anh, and V. T. Phúc, “Téng hợp va nghiên
cứu hoạt tính xúc tác phân hủy rhodamine B của vật liệu ZIF-67 đưới sự hiện diện
của peroxymonosulfate,” Can Tho University Journal of Science, vol. Tập 55, Số 3,
p. 1, 2019, doi: 10.22144/ctu.jvn.2019.059.
P. Quoc Yen, L. Thi Anh Thu, P. Van Toan, H. Ngoc Tn Tan, and D. Huynh Giao,
“Synthesis of Ag/ZIF-67 as a Heterogeneous Catalyst for Methyl Orange Degradation in Presence of H 202,” 2019. [Online]. Available: http://ijses.com/
[52]
[53]
[54]
[55]
[56]
[57]
[58]
[59]
[60]
[61]
T. H. V. Luong, T. H. T. Nguyen, B. V. Nguyen, N. K. Nguyen, T. Q. C. Nguyen,
and G. H. Dang, “Efficient degradation of methyl orange and methylene blue in aqueous solution using a novel Fenton-like catalyst of CuCo-ZIFs,` Green
Processing and Synthesis, vol. LÍ, no. 1, pp. 71-83, Jan. 2022, doi: 10.1515/gps- 2022-0006.
T. B. N. Pham, B. H. Tran, N. T. T. Hồ, and H. G. Đặng, “Nghién cứu sử dụng vật
liệu Cu/ZIF làm xúc tác xử lý malachite green với sự có mặt của hydrogen
peroxide,” Can The University Journal of Science, vol. 59, no. ETMD, pp. 81-89, May 2023, doi: 10.22144/ctu.jvn.2023.032.
X. Wu, D. Sun, H. Ma, C. Ma, X. Zhang, and J. Hao, “Activation of
peroxymonosulfate by magnetic CuFe204@ZIF-67 composite catalyst for the study
on the degradation of methylene blue,” Colloids Surf A Physicochem Eng Asp, vol.
637, Mar. 2022, doi: 10.1016/j.colsurfa.2022.128278.
W. Zhang et al, “Insight into the Novel Z-scheme ZIF67/WO3; Heterostructure for Improved Photocatalytic Degradation of Methylene Blue under visible light,” J Inorg Organomet Polym Mater, 2022, dot: 10.21203/rs.3.rs-15§3007/v1.
M. Dong, G. Zhang, and G, Ma, “Co:0s@ZIF-67 core-shell heterogeneous catalyst for degradation of dye contaminants,” Inorg Chem Commun, vol. 158, Dec. 2023, doi: 10. 1016/j.inoche.2023.111418.
J. Pan, L. Che, T. Wei, Y. Cong, and S. W. Lv, “Introduction of ZIF-67 shell in NiCo204 nanocage to enhance peroxymonosulfate activation based on nonradical pathway for effective removal of organic contaminant,” App! Surf Sci, vol. 637, Noy, 2023, doi: 10.1016/j.apsuse.2023, 157997,
L. Tong, Z. Li, Y. Ma, and L, Zhao, “Synthesis of CeO2-loaded composite catalysts of ZIF-67 for activation of persulfate degradation of Congo red dye,” Colloids Surf A Physicochem Eng Asp, vol. 685, Mar. 2024, dot: 10.1016/).colsurfa.2024. 133189.
Pham Luận, “Phương pháp phân tích pho phân tr,” NXB Đại hoc quốc gia Hà Nội,
2006.
Nguyễn Năng Dinh, “Cac phương pháp phân tích vật liệu." NX# Dai học quốc gia
Ha Ni, 2016.
P. T. C. Lượng, L. G. Hy, T. C. Hiền, and N. K. D. Mai, “Nguyên cứu khả năng xử lí ion Pb(H) va Cu(II) trong dung dich bing than sinh hoc điều chế từ min cua,” Tạp
[62]
[63]
[64]
[65]
[66]
[67]
[68]
[69]
53
chi Khoa hoc, vol. 18, no. 12 p. 2162, Dec. 2021, doi:
10.54607/hemue.js.18.12.3218(2021).
W. Hou, Y. Huang, and X. Liu, “Highly Efficient and Recyclable ZIF-67 Catalyst for the Degradation of Tetracycline,” Catal Letters, vol. 150, no. 10, pp. 3017-3022, Oct. 2020, doi: 10.1007/s10562-020-03210-2.
F. M. de Oliveira, P. A. R. de Sousa, E. I. de Melo, and L. M. Coelho, “Evaluation of the adsorption process using low cost agroindustry residue for the removal of
methylene blue dye,” Orbital, vol. 12, no. 2, pp. 76-86, 2020, doi:
10.17807/orbital.v 12i2.1422.
X. Zhang, Y. Liu, Y. Jiao, Q. Gao, X. Yan, and Y. Yang, “Facile construction of
Fe@ zeolite imidazolate Framework-67 to selectively remove uranyl ions from aqueous solution,” J Taiwan Inst Chem Eng, vol. 91, pp. 309-315, Oct. 2018, doi:
10.1016/).jtice.2018.05.033.
S. Ravishankar, A. R. Balu, K. Usharani, S. Balamurugan, D. Prabha, and V. S.
Nagarethinam, “Optical and magnetic properties of PbS thin films doped with Fe”!
ions.” Optik (Stuttg), vol. 134. pp. 121-127 Apr. 2017, doi:
10,1016/j.ijleo,2017,01,010,
S. M. Kabbur, D. Y. Nadargi, R. C. Kambale, U. R. Ghodake, and S. S.
Suryavanshi, “Microstructure and magnetic interactions of Co** substituted NiCuZn
ferrites,” J Magn Magn Mater, vol. S51? lan 2021, dor:
10.1016/j.jmmm.2020. 167376.
S. Waclawek, H. V. Lutze, V. K. Sharma, R. Xiao, and D. D. Dionysiou, “Revisit the alkaline activation of peroxydisulfate and peroxymonosulfate,” Current Opinion in Chemical Engineering, vol. 37. Elsevier Lid, Sep. O1, 2022. doi:
10.1016/j.coche.2022. 100854.
H. Zhang, L. chao Nengzi, Y. Liu, Y. Gao, and X. Cheng, “Efficient removal of organic pollutant by activation of persulfate with magnetic Co:O/CoFcaO:
composite,” Arabian Journal of Chemistry, vol. 13, no. 5, pp. 5332-5344, May 2020, doi: 10. 1016/j.arabjc.2020.03.012.
K. Zhang, D. Sun, C. Ma, G. Wang, X. Dong, and X. Zhang, “Activation of peroxymonosulfate by CoFeaO: loaded on metal-organic framework for the
$4
degradation of organic dye,” Chemosphere, vol. 241, Feb. 2020, doi:
10.1016/j.chemosphere.2019.125021.
55
| _ZIF-š7 (Thash) berẻ
Counts š3
ằ + ằ “ k3 a ằ
2Ihsts (Coepind Twolbete/Thets) VI =1 54000
Hình B-I: Gian đồ nhiễu xạ tia X của ZIF-67 tong hợp
oe ee
10atats
Couns t
bs al
1 FeQzir-e7 ia
Toray _—~———~——————m—————————— A ne eee
ằ = ằ oe “ ô ớt
2Theta (Coupled TwoTheta/Theta) WL=1.54000
Hình B-2: Gian đồ nhiễu xạ tia X của Ee-ZIF-67(1%) Phụ lục C. Kết quả đo EDX của Fe-ZIF-67(1%)
%rtrg~ sesresere
Wo œ8) soit+c£
É%2324%6.'€ 8074: AI Ol e1 3139/09 JVEYY36206)
Nâ#t rÁcMk4/ ô+
vem
€ ClO} 1‹^e©-19991200A
M NV wet 14s*299%17(Đ6M
Ú ME bale ina
§ feS2 Seance) co AM
fe fe (-šm-11201123)/4
Ce Co i-Às19021230 AM
Centers | Woget Axrkh
ce ;á/) “au
ne BR ms
oc 2.08 1M
1 9% on
tex ô2 as cee 312 241
Trae 600
€axrrert | Ð AT TT...
Fi 3-83 263 ctu Osea 0.000 TT
Hình C-1. Kết qua đo EDX của mẫu Fe-ZIF-67(1%) lần 1
1gscrrưs prccrssesg
Nee mm se m4
#rtcwy9*g cotton Al sesex anmiyned (Normal sec
Mervner of recetere ô7
.._..
€ CSÐl tere row
M *zr+wed bea ibe) 120C AM
© 122 Là n12721200AV
% "RD 3‡avi9921200AM
re Pe Làm }?1700AV
CA behets ine ay
NEW cx 6x 3235 at xa nu
oT La ti02 se om az
tee on ou
con an ti
Tote 100 QC
Com rect:
rr — ee el)
Hinh C-2. Két qua do EDX của mau Fe-ZIF-67(1%) lần 2
Sgecrun procecting
Nee pres ai
Procemrg option : Mi Owners sale (Morral seo
Mewke of terstons + 6
trưđ vo
© G213 Dwele
M Met tefred 30sx2911700AM
© 221 1-se-10221222AA
S feS? 1-hxvr199312(€ 6M
Pe Pe 19^12221102/04 Co Ce 1*37221222AM
Cerees | WegreN AxescX
ca ~& was
wK mos uM
OK gu! on
HÀ. 043 on
fet ice ou con os ;*
Ted #4 198.00
Comment
es — pe TOT
ô
Hình C-3. Kết quả do EDX của mẫu Fe-ZIF-67(1%) lần 3
$§
Phụ lục D. Phố FTIR của vật liệu Fe-ZIF-67(1%)
110
Te, ~f/ ơ"~—_ ae ~ "xó a Í \ al || 1Í“
rl yy 1, a whl if
3 2359.48 cm-1 w@l„ T1 Th |_|
12978.52 cm-1 1752.01 tm, Mu fem:
xằ115b 4948.12 cm-1 |
Ỉ 1 J
% 90 518.67 cm- |
452.225 cm-1
80-
70° 4 l 4 * 4 4 |
4000 3000 2000 1000 400
Wavenumber [cm-1]
[Comments] —EE —
Sample name = 2
a [Detailed Information)
rd Creation date 4/21/2024 8:45 AM
poi ae HCMUE Date modified 4/21/2024 8:45 AM
Data array type Linear data array
Horizontal axis Wavenumber [cm-1]
- Vertical axi T
[Measurement Information] Sut a a one
, ATR PRO ONE Data points 3736
Accessory S/N C177061809
Incident angle 45 deg
Measurement Date 4/21/2024 8:44 AM
Light Source Standard
Detector TGS Accumulation 16
Resolution 4cm-1
Zero Filling On
Apodization Cosine Gain Auto (32)
Aperture Auto (7.1 mm)
Scanning Speed Auto (2 mmisec)
Filter Auto (10000 Hz)
s9
Phụ lục E. Kết quả khảo sát ảnh hưởng của tỉ lệ pha tạp nguyên tố iron trong
cầu trúc ZIF-67
Thời gian C/Cu
(Phút) ZIF-67 Fe-ZIF-67(19%) Fe-ZIF-67(5%) Fe-ZIF-67(10%)
-30 | | | l
0 0.976 0,985 0,988 0.976 2 0,252 0,198 0,334 0,405 4 0,128 0,073 0,184 0.219 6 0,102 0,045 0,129 0,149
8 0,085 0,037 0,110 0,126 10 0,078 0,031 0,095 0,116 12 0,077 0,023 0,091 0,107
Phụ lục F. Kết quả khảo sát ảnh hưởng của pH dung dịch
Thời gian A Hệ số pha
pH : -—_— C/Ca x
(Phút) Lani Lân2 Lân3 loãng -30 0,596 0,586 0,589 ẽ 12,5
0 0,581 0/573 0,583 0,981+0,020 12,5
2 1,901 1/93 1875 0,78240,042 3
4 1,532 1,583 1,568 0,640+40,041 3
? 6 1305 1,317 1313 0,53740,018 3
8 1.078 1,079 1.096 0.444+0.016 3
10 0,906 0.898 0,881 0.366+0,011 3
12 0.706 0.734 0/713 0.292+0.021 3
-30 0,591 0.5§1 0.585 1 12,5
0 0.585 0576 0,579 0.988+0.009 12.5
‘ 2 1.781 1704 1751 0.242+0.009 |
+ 0.843 0.865 0,847 0,117+0,007 |
6,4
10
0.51 0,405 0,362 0,356 0,594 0,573 1,448
0,546
0.342 0,284 0,258 0,198 0,580 0.575 1,122 0,452 0,355 0,289 0,253 0,194 0,583 0,580 1,092 1,077 0,806 0,723 0,671 0,597
0.516 0,422 0.392 0.388 0,591 0,587
1,472
0,538 0,330 0,270 0.232 0,162 0.591 0.584
1.141 0,483 0,343 0,276 0,242 0,184 0,593
0,592
1,087 1,201 0.804 0,713 0.672 0.642
60
0.526 0.439 0.368 0.352 0,589 0.587
1,431 0.543 0.346
0.276 0.217 0.177 0.589 0.575 1,156 0.473 0.323
0,29 0,223 0.184 0,590 0.585
1.04?
1.091 0,858 0,798 0.724 0.667
0,07040,003 0.057+0.006 0.051+0.007 0,04940,008
]
0,98540.044 0,198+0.007 0,073+0.001 0.04540.003 0.03740.002 0.03 140.007 0.023+0.006
|
0.985+0.020 0.156+0.004 0.064+0.004 0.052+0.021 0.039+0.004 0.032+0.006 0.02540.003
|
0.995+0.008 0.295+0.020 0.15440.021 0.11240.010 0.101+0.016 0.094+0.010 0.086+0.011
61
Phụ lục G. Kết qua khảo sát ảnh hưởng của nồng độ methylene blue ban đầu
Nông độ
(mg-L”)
40
Thời gian (Phút)
-30 0
tằ
% SA +
b2
% œ +
10 12
Lần 1
0,594
0.573 1.448 0.546 0.342 0.284 0.258 0,198 0.724 0,721
1,179 1,028 0,840
0,728
0,722 0,665 0,886 0,875
1,759 1.882 1,755 1,661 1,652 1,638
A
Lan2 Lan3
0,591
0,587 1,472 0,538 0.330 0.270 0.232 0.162 0,729 0,721
1,147 1,041 0,877 0,733 0,726 0,708 0,872 0.867 1,808 1,922 1,761 1.684 1,667 1,625
0,589 0.587 1,431 0,543 0.346 0.276 0.217 0.177 0/734 0,729 1,124 1,094 0,914
0,787
0,712 0,664 0,879 0,872 1,691
1,906 1,792 1.701 1,679 1,645
C/Co
l
0,985+40,044 0,19840,007 0,073+0,001 0,045+0,003 0.037+0.002 0.031+0,007 0,023+0,006
|
0,99340,009 0,253+0,019 0,116+0,008 0,096+0,009
0,082+0,008
0,079+40,003 0.074+0,007
|
0.991+0,009 0,320+0,030 0.174+0.008 0.162+0,006 0,154+0,007 0,152+0,005 0,15040,002
Hé so pha loang
l
|
Nnn “4
N
12,5 12,5
Phụ lục H. Kết quả khảo sát ảnh hưởng của hàm lượng xúc tác
Hàm lượng
xúc tác
(mg-L")
25
50
75
Thoi gian
0
t2
10 12 -30
0
_. Lani
(Phút)
0,591 17H11 1,623
1,520 1,427 1,403 1,316 0.596 0.594 2.833 1,384 1,024 0,709
0,526 0,476 0,594
0,573 1,448 0.546 0.342 0.284 0.258 0.198 0,595 0,594
A
Lan 2
0,595 1,749 1,618 1,547 1,421 1,397 1,329 0,598 0,594 2,759 1,356 0,923 0,627 0,509 0,452 0,591
0,587
1,472 0,538
0,33 0.27 0,232 0,162 0,588 0,581
Lần 3
0,591 1,727
1,602
1,529
1411
1.394 1,352 0.596 0.592 2.886 1,443 0,977 0,628 0,544 0,458 0,589
0,587 1,431 0,543 0,346 0.276 0.217 0.177 0,590 0,583
C/Co
I
0,94340,018 0,880+0,015 0,835+0,011
0,77340,012 0,761+40,011 0.725+0.027
|
0,995+0,002 0.385+0.009 0.189+0,006 0,13240,007 0,088+0,007 0,07 140,003 0,06240,002
|
0,98440,018 0,19840,003
0,07344,764 -10'
0,045+0,001 0.037+0.001 0,03 140,003 0,023+0,002
I
0,99240,005
Hệ số pha
loãng
12.5
1235 12.5
to
aon +
10
12
Phụ luc I. Kết qua khảo sát ảnh hưởng của nồng độ PMS
Thời gian (Phút)
-30 0
2
r2
[PMS].
(mg-L')
200 % = &
225
250
0.579 0,426 0.382 0.363 0,345 0,332
Lan 1
0,586 0,571
1,094 0,978 0,917 0,834 0,803 0,734
0,589 0,571
1,819 0.778 0.583 0.567 0,435 0,431 0,594 0,573
63
0,518 0,367 0,328 0,303 0,269 0,251
A
Lần 2
0,595 0,576
1,095 0,982 0,928 0,836 0,818 0,694 0,591 0,585
1,824 0.797 0.596 0.540 0,505 0,496 0,591 0.587
0.559 0.377
0.31 0,297 0,289 0,255
0,075+0,004 0,052+0,004 0,046+0,005 0,043+0,005 0,040+0,005 0,037+0,006
Lần 3
0,581 0,568
1,096 1,052 0,957 0,846 0,811
0,767
0,588 0.575 1,856 0.710 0.588 0,474 0,443 0,443 0,589 0,587
C/Co
|
0,972+0,012 0.,300+0,009 0.137+0,018 0,128+0,010
0,11540,005
0,111+0,003
0,1004£0,016 1
0,978+0,027 0.251+0,008 0.104+0,015 0,080+0,002 0,07 140,016 0,06220,013 0,062+0,012
]
0,984+0,045
b2
nm un GN