TAI LIEU THAM KHAO

Một phần của tài liệu Khóa luận tốt nghiệp Sư phạm Hóa học: Tổng hợp và đánh giá hoạt tính xúc tác phân hủy Methylene Blue của vật liệu Zif-67 pha tạp Iron (Trang 58 - 76)

R. Al-Tohamy er al., “A critical review on the treatment of dye-containing

wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental — safety,” Ecotoxicology and Environmental Safery, vol. 231. Academic Press, Feb. 01, 2022. doi:

10, 1016/j.ecoenyv.2021.113160,

D. A. Yaseen and M. Scholz, “Shallow pond systems planted with Lemna minor

treating azo dyes,” Ecol Eng. vol. 94, pp. 295-305, Sep. 2016, doi:

10,1016/j.ecoleng.2016.05,08 1.

A. H. Mijinyawa, G. Durga, and A. Mishra, “A sustainable process for adsorptive removal of methylene blue onto a food grade mucilage: kinetics, thermodynamics,

and equilibrium evaluation,” Int J Phytoremediation, vol. 21, no. 11, pp. 1122-

1129, Sep. 2019, doi: 10.1080/152265 14.2019, 1606785.

P. O. Oladoye, T. O. Ajiboye, E. O. Omotola, and O. J. Oyewola, “Methylene blue dye: Toxicity and potential elimination technology from wastewater,” Results in Engineering, — vol. 16. Elsevier B.V, Dee. Ol, 2022. doi:

10. 1016/j.rineng.2022. 100678.

I. Khan er al., “Review on Methylene Blue: Its Properties, Uses, Toxicity and Photodegradation,” Water (Switzerland), vol. 14, no. 2. MDPI, Jan. 01, 2022. doi:

10.3390/w 14020242.

N. Hoc Thang, D. Sy Khang, T. Duy Hai, D. Thi Nga, and P. Dinh Tuan,

“Methylene blue adsorption mechanism of activated carbon synthesised from

cashew nut shells,” RSC Adv, vol. 11, no. 43, pp. 26563-26570, Jul. 2021, doi:

10.1039/đ1ra04672a.

V. Bharti ef al., “Biodegradation of methylene blue dye in a batch and continuous mode using biochar as packing media,” Environ Res, vol. 171, pp. 356-364, Apr.

2019, doi: 10.1016/j-envres.2019.01.051.

X. Shao et al., “Cellulose based cation-exchange fiber as filtration material for the rapid removal of methylene blue from wastewater,” Cellulose, vol. 28, no. 14, pp.

9355-9367, Sep. 2021, doi: 10.1007/s 10570-02 1-04103-2.

“Reduction of Methylene Blue by Using Direct Continuous Ozone,” Journal of

Environment and Earth Science, Apr. 2020, doi: 10.7176/jees/10-4-07.

[10]

(11)

[12]

[13]

[14]

[15]

[16]

[17]

[18]

47

B. Vaferi, M. Bahmani, P. Keshavarz, and D. Mowla, “Experimental and theoretical analysis of the UV/H:O: advanced oxidation processes treating aromatic

hydrocarbons and MTBE from contaminated synthetic wastewaters,” J Enyiron Chem Eng, vol. 2, no. 3, pp. 1252-1260, 2014, doi: 10.1016/).jece.2014.05.016.

S. Dagher ef al., “Photocatalytic removal of methylene blue using titania- and silica- coated magnetic nanoparticles,” Mater Res Express, vol. 5, no. 6, Jun. 2018, doi:

10.1088/2053-1591/aacad4.

W. Fu ef a/, “When bimetallic oxides and their complexes meet Fenton-like process,” Journal of Hazardous Materials, vol. 424. Elsevier B.V., Feb. 15, 2022.

doi: 10. 1016/j. jhazmat.202 1.127419,

K. Zhou, B. Mousavi, Z. Luo, S. Phatanasri, S. Chaemchuen, and F. Verpoort,

“Characterization and properties of Zn/Co zeolitic imidazolate frameworks vs. ZIF- 8 and ZIF-67,” J Mater Chem A Mater, vol. 5, no. 3, pp. 952-957, 2017, doi:

10.1039/C6TAO7860E.

B. Chen, Z. Yang, Y. Zhu, and Y. Xia, “Zeolitic imidazolate framework materials:

Recent progress in synthesis and applications,” Journal of Materials Chemisiry A,

vol. 2, no. 40. Royal Society of Chemistry, pp. 16811-16831, Oct. 28, 2014. doi:

10.1039/c4ta02984d.

G. Zhong, D. Liu, and J. Zhang, “The application of ZIF-67 and its derivatives:

Adsorption, separation, electrochemistry and catalysts,” Journal of Materials Chemistry A, vol. 6, no. 5. Royal Society of Chemistry, pp. 1887-1899, 2018. doi:

10.1039/c7ta08268a.

Q. Hu ef al, “Fabrication of Fe-doped cobalt zeolitic imidazolate framework derived from Co(OH): for degradation of tetracycline via peroxymonosulfate activation.” Sep Purif Technel, vol. 259, Mar. = 2021, — doi:

10.1016/1.seppur.2020.I 18059.

L. E. Mphuthi, E. Erasmus, and E. H. G. Langner, “Metal Exchange of ZIF-8 and

ZIF-67 Nanoparticles with Fe(II) for Enhanced Photocatalytic Performance,” ACS Omega, vol. 6, no. 47 pp. 31632-31645, Nov. 2021, doi:

10,102 1/acsomega.1c04142,

H. G. Đặng, T. A. T. Lê, B. H. Tran, T. B. N. Phạm, and N. T. T. Hồ, “Nghiên cứu

hoạt tính xúc tác phân hủy congo red của vật liệu Cu/ZIF-67 với sự hiện điện của

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

hydrogen peroxide,” Can Tho University Journal of Science, vol. 59, no. ETMD, pp.

90-98, May 2023, doi: 10.22144/ctu.jvn.2023.033.

R. Zein, J. Satrio Purnomo, P. Ramadhani, Safni, M. F. Alif, and C. N. Putri,

“Enhancing sorption capacity of methylene blue dye using solid waste of lemongrass biosorbent by modification method,” Arabian Journal of Chemistry, vol.

16, no. 2, Feb. 2023, doi: 10.1016/j.arabjc.2022.104480.

S. S. Hemdan, “The Shift in the Behavior of Methylene Blue Toward the Sensitivity

of Medium: Solvatochromism, Solvent Parameters, Regression Analysis and

Investigation of Cosolvent on the Acidity Constants,” J Fluoresc, vol. 33, no. 6, pp.

2489-2502, Noy, 2023, doi: 10,1007/s10895-023-03234-y,

B. M. Adesanmi, Y.-T. Hung, H. Paul, and €. Huhnke, “Comparison of dye wastewater treatment methods: A review..” Civil and Enviromental Engineering, 2022, doi: 10.528 1/zenodo.6331586.

F. Tisa, A. A, Abdul Raman, and W, M. A. Wan Daud, “Applicability of Muidized bed reactor in recalcitrant compound degradation through advanced oxidation processes: A review,” Journal of Environmental Management, vol. 146. Academic Press, pp. 260-275, Dec. 15, 2014. doi; 10.1016/),jenvman,2014.07,032,

S. Krishnan, H. Rawindran, C. M. Sinnathambi, and J. W. Lim, “Comparison of various advanced oxidation processes used in remediation of industrial wastewater

laden with recalcitrant pollutants,” in JOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, Jun. 2017. doi: 10.1088/1757-

899X/206/1/012089.

U. Ushani et ai., “Sulfate radicals-based advanced oxidation technology in various environmental remediation: A. state-of-the-art review,” Chemical Engineering Journal, vol. 402. Elsevier B.V., Dec. 15, 2020. doi: 10.1016/j.cej.2020. 126232.

D. Manos, K. Miserli, and I. Konstantinou, “Perovskite and spinel catalysts for sulfate radical-based advanced oxidation of organic pollutants in water and

wastewater systems,” Catalysts, vol. 10, no. 11. MDPI, pp. 1-44, Nov. 01, 2020.

doi: 10.3390/catal10111299.

S. Guo, L. Zhang, M. Chen, F. Ahmad, H. Fida, and H. Zhang, “Heterogeneous Activation of Peroxymonosulfate by a Spinel CoAlzOx Catalyst for the Degradation

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

(35)

49

of Organic Pollutants,” Catalysts, vol. 12, no. 8, Aug. 2022, doi:

10.3390/catal 12080847.

J. Hu et al., “Efficient degradation of tetracycline by ultraviolet-based activation of peroxymonosulfate and persulfate,” Water Science and Technology, vol. 79, no. 5, pp. 911-920, 2019, doi: 10.2166/wst.2019.034.

G. Liu er al., “Enhanced thermal activation of peroxymonosulfate by activated carbon for efficient removal of perfluorooctanoic acid,’ Chemical Engineering

Journal, vol. 399, Nov. 2020, doi: 10.1016/1.cej.2020.125722.

C. Qi, X. Liu, C. Lin, H. Zhang, X. Li, and J. Ma, “Activation of peroxymonosulfate by microwave irradiation for degradation of organic contaminants,” Chemical

Engineering Journal, vol. 315, pp. 201-209, 2017, doi: 10. 1016/j.cej.2017.01.012.

S. Bhattacharjee, M. S. lang, H. J. Kwon, and W. S. Ahn, “Zeolitic Imidazolate Frameworks: Synthesis, Functionalization, and Catalytic/Adsorption Applications,”

Catalysis Surveys from Asia, vol. 18, no. 4. Springer New York LLC, pp. 101-127,

Dec. 01, 2014. doi: 10.1007/s10563-014-9169-8.

Y. Xiao, A. N. Hong, D. Hu, Y. Wang, X. Bu, and P. Feng, “Solvent-Free Synthesis of Zeolitic Imidazolate Frameworks and the Catalytic Properties of Their Carbon

Materials,” Chemistry - A European Journal, vol. 25, no. 71, pp. 16358-16365, Dec. 2019, doi: 10.1002/chem.201903888.

X. Zhang et al, “A historical overview of the activation and porosity of metal- organic frameworks,” Chemical Society Reviews, vol. 49, no. 20. Royal Society of Chemistry, pp. 7406-7427, Oct. 21, 2020. doi: 10.1039/d0cs00997k.

Y. Xue et al., “Mechanistic insights into selective adsorption and separation of multi-component anionic dyes using magnetic zeolite imidazolate framework-67 composites,” J Mol Lig, vol. 296, Dec. 2019, doi: 10.1016/).mollig.2019.111990.

J. Ethiraj, S. Palla, and H. Reinsch, “Insights into high pressure gas adsorption propertics of ZIF-67: Experimental and thcorctical studies,” Microporous and

Mesoporous Materials, vol. 294, Mar. 2020, doi:

10.1016/j.micromeso.2019. 109867.

A. Zhou, R. M. Guo, J. Zhou, Y. Dou, Y. Chen, and J. R. Li, “Pd@ZIF-67 Derived Recyclable Pd-Based Catalysts with Hierarchical Pores for High-Performance Heck

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

SO

Reaction,” ACS Sustain Chem Eng, vol. 6, no. 2, pp. 2103-2111, Feb. 2018, doi:

10.102 1/acssuschemeng.7b03525.

Y. Dou, J. Zhou, F. Yang, M. J. Zhao, Z. Nie, and J. R. Li, “Hierarchically structured layered-double-hydroxide @zeolitic-imidazolate-framework derivatives for high-performance electrochemical energy storage,” J Mater Chem A Mater, vol.

4, no. 32, pp. 12526-12534, 2016, doi: 10.1039/c6ta0476%c.

D. Matatagui, A. Sainz-Vidal, I. Gracia, E. Figueras, €. Cané, and J. Saniger,

“Improving Sensitivity of a Chemoresistive Hydrogen Sensor by Combining ZIF-8 and ZIF-67 Nanocrystals.’ MDPI AG, Aug. 2017, p. 462. doi:

10,3390/proceedings 1040462.

J. Zhang, Y. Tan, and W. J. Song, “Zeolitic imidazolate frameworks for use in electrochemical and optical chemical sensing and biosensing: a review,”

Microchimica Acta, vol. 187, no. 4. Springer, Apr. 01, 2020. doi: 10.1007/s00604- 020-4173-3.

J. Qin, S. Wang, and X. Wang, “Visible-light reduction CO: with dodecahedral

zeolitic imidazolate framework ZIF-67 as an efficient co-catalyst,” App! Caral B,

vol. 209, pp. 476-482, 2017, doi: 10.1016/1.apcatb.2017.03.018.

N. T. T. Tu et al., “Microwave-assisted synthesis and simultaneous electrochemical

determination of dopamine and paracetamol using ZIF-67-modified electrode.” J Mater Sci, vol. 54, no. 17, pp. 11654-11670, Sep. 2019, doi: 10.1007/s10853-019- 03709-z.

K. Sumida, K. Liang, J. Reboul, I. A. Ibarra, S. Furukawa, and P. Falcaro, “Sol-Gel Processing of Metal-Organic Frameworks,” Chemistry of Materials, vol. 29, no. 7.

American Chemical Society, pp. 2626-2645, Apr. Il, 2017. doi:

10.102 1/acs.chemmater.6b03934.

C. Duan, Y. Yu, and H. Hu, “Recent progress on synthesis of ZIF-67-based materials and their application to heterogencous catalysis,” Green Energy and

Environment, vol. 7, no. 1. KeAi Publishing Communications Ltd., pp. 3-15, Feb.

01, 2022. doi: 10.1016/j.gee.2020.12.023.

Z. Pouramini er al., “Effect of Metal Atom in Zeolitic Imidazolate Frameworks (ZIF-8 & 67) for Removal of Dyes and Antibiotics from Wastewater: A Review,”

Catalysts, vol. 13, no. 1. MDPI, Jan. 01, 2023. doi: 10.3390/catall 3010155.

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[5H

Sl

J. Ethiraj, S. Palla, and H. Reinsch, “Insights into high pressure gas adsorption properties of ZIF-67: Experimental and theoretical studies,” Microperous and

Mesoporous Materials, vol. 294, Mar. 2020, doi:

10.1016/j.micromeso.2019, 109867.

M. Weihai ef al., “Co/C broad band electromagnetic wave absorption composite derived from preferred precursor ZIF-67: preparation and performance,” Journal of Materials Science; Materials in Electronics, vol. 31, no. 8, pp. 6418-6434, Apr.

2020, doi: 10. 1007/s LO854-020-03 198-w.

L. Tuong Kieu, D. Hoang Van, L. Nguyen Le My, and T. Nguyen Thi Anh,

“Synthesis of ZIF-67- Effect of solvent on the structure,” Vietnam Journal of Catalysis and Adsorption, vol. 10, no. 1, pp. 98-103, Nov. 2021, doi:

10.513 16/jca.2021.016.

B. R. Pimentel, A. Parulkar, E. K. Zhou, N. A. Brunelli, and R. P. Lively, “Zeolitic imidazolate frameworks: Next-generation materials for energy-efficient gas separations,” ChemSusChem, vol. 7, no. 12. Wiley-VCH Verlag, pp. 3202-3240, 2014. doi: 10.1002/cssc.201402647.

K. Y. A. Lin and H. A. Chang, “Zeolitic Imidazole Framework-67 (ZIF-67) as a heterogeneous catalyst to activate peroxymonosulfate for degradation of Rhodamine B in water,” J Taiwan Inst Chem Eng, vol. 53, pp. 40-45, Aug. 2015, doi:

10, 1016/).jtice,2015.02.027,

M. Chen, N. Wang, X. Wang, Y. Zhou, and L. Zhu, “Enhanced degradation of tetrabromobisphenol A by magnetic Fe:O;@ZIF-67 composites as a heterogeneous

Fenton-like catalyst,” Chemical Engineering Journal, vol. 413, lun. 2021, doi:

10.1016/}.ce}.2020.127539.

Ð. H. Giao, P. V. Toản, P. Q. Yên, T. K. Anh, and V. T. Phúc, “Téng hợp va nghiên

cứu hoạt tính xúc tác phân hủy rhodamine B của vật liệu ZIF-67 đưới sự hiện diện

của peroxymonosulfate,” Can Tho University Journal of Science, vol. Tập 55, Số 3,

p. 1, 2019, doi: 10.22144/ctu.jvn.2019.059.

P. Quoc Yen, L. Thi Anh Thu, P. Van Toan, H. Ngoc Tn Tan, and D. Huynh Giao,

“Synthesis of Ag/ZIF-67 as a Heterogeneous Catalyst for Methyl Orange Degradation in Presence of H 202,” 2019. [Online]. Available: http://ijses.com/

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

T. H. V. Luong, T. H. T. Nguyen, B. V. Nguyen, N. K. Nguyen, T. Q. C. Nguyen,

and G. H. Dang, “Efficient degradation of methyl orange and methylene blue in aqueous solution using a novel Fenton-like catalyst of CuCo-ZIFs,` Green

Processing and Synthesis, vol. LÍ, no. 1, pp. 71-83, Jan. 2022, doi: 10.1515/gps- 2022-0006.

T. B. N. Pham, B. H. Tran, N. T. T. Hồ, and H. G. Đặng, “Nghién cứu sử dụng vật

liệu Cu/ZIF làm xúc tác xử lý malachite green với sự có mặt của hydrogen

peroxide,” Can The University Journal of Science, vol. 59, no. ETMD, pp. 81-89, May 2023, doi: 10.22144/ctu.jvn.2023.032.

X. Wu, D. Sun, H. Ma, C. Ma, X. Zhang, and J. Hao, “Activation of

peroxymonosulfate by magnetic CuFe204@ZIF-67 composite catalyst for the study

on the degradation of methylene blue,” Colloids Surf A Physicochem Eng Asp, vol.

637, Mar. 2022, doi: 10.1016/j.colsurfa.2022.128278.

W. Zhang et al, “Insight into the Novel Z-scheme ZIF67/WO3; Heterostructure for Improved Photocatalytic Degradation of Methylene Blue under visible light,” J Inorg Organomet Polym Mater, 2022, dot: 10.21203/rs.3.rs-15§3007/v1.

M. Dong, G. Zhang, and G, Ma, “Co:0s@ZIF-67 core-shell heterogeneous catalyst for degradation of dye contaminants,” Inorg Chem Commun, vol. 158, Dec. 2023, doi: 10. 1016/j.inoche.2023.111418.

J. Pan, L. Che, T. Wei, Y. Cong, and S. W. Lv, “Introduction of ZIF-67 shell in NiCo204 nanocage to enhance peroxymonosulfate activation based on nonradical pathway for effective removal of organic contaminant,” App! Surf Sci, vol. 637, Noy, 2023, doi: 10.1016/j.apsuse.2023, 157997,

L. Tong, Z. Li, Y. Ma, and L, Zhao, “Synthesis of CeO2-loaded composite catalysts of ZIF-67 for activation of persulfate degradation of Congo red dye,” Colloids Surf A Physicochem Eng Asp, vol. 685, Mar. 2024, dot: 10.1016/).colsurfa.2024. 133189.

Pham Luận, “Phương pháp phân tích pho phân tr,” NXB Đại hoc quốc gia Hà Nội,

2006.

Nguyễn Năng Dinh, “Cac phương pháp phân tích vật liệu." NX# Dai học quốc gia

Ha Ni, 2016.

P. T. C. Lượng, L. G. Hy, T. C. Hiền, and N. K. D. Mai, “Nguyên cứu khả năng xử lí ion Pb(H) va Cu(II) trong dung dich bing than sinh hoc điều chế từ min cua,” Tạp

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

53

chi Khoa hoc, vol. 18, no. 12 p. 2162, Dec. 2021, doi:

10.54607/hemue.js.18.12.3218(2021).

W. Hou, Y. Huang, and X. Liu, “Highly Efficient and Recyclable ZIF-67 Catalyst for the Degradation of Tetracycline,” Catal Letters, vol. 150, no. 10, pp. 3017-3022, Oct. 2020, doi: 10.1007/s10562-020-03210-2.

F. M. de Oliveira, P. A. R. de Sousa, E. I. de Melo, and L. M. Coelho, “Evaluation of the adsorption process using low cost agroindustry residue for the removal of

methylene blue dye,” Orbital, vol. 12, no. 2, pp. 76-86, 2020, doi:

10.17807/orbital.v 12i2.1422.

X. Zhang, Y. Liu, Y. Jiao, Q. Gao, X. Yan, and Y. Yang, “Facile construction of

Fe@ zeolite imidazolate Framework-67 to selectively remove uranyl ions from aqueous solution,” J Taiwan Inst Chem Eng, vol. 91, pp. 309-315, Oct. 2018, doi:

10.1016/).jtice.2018.05.033.

S. Ravishankar, A. R. Balu, K. Usharani, S. Balamurugan, D. Prabha, and V. S.

Nagarethinam, “Optical and magnetic properties of PbS thin films doped with Fe”!

ions.” Optik (Stuttg), vol. 134. pp. 121-127 Apr. 2017, doi:

10,1016/j.ijleo,2017,01,010,

S. M. Kabbur, D. Y. Nadargi, R. C. Kambale, U. R. Ghodake, and S. S.

Suryavanshi, “Microstructure and magnetic interactions of Co** substituted NiCuZn

ferrites,” J Magn Magn Mater, vol. S51? lan 2021, dor:

10.1016/j.jmmm.2020. 167376.

S. Waclawek, H. V. Lutze, V. K. Sharma, R. Xiao, and D. D. Dionysiou, “Revisit the alkaline activation of peroxydisulfate and peroxymonosulfate,” Current Opinion in Chemical Engineering, vol. 37. Elsevier Lid, Sep. O1, 2022. doi:

10.1016/j.coche.2022. 100854.

H. Zhang, L. chao Nengzi, Y. Liu, Y. Gao, and X. Cheng, “Efficient removal of organic pollutant by activation of persulfate with magnetic Co:O/CoFcaO:

composite,” Arabian Journal of Chemistry, vol. 13, no. 5, pp. 5332-5344, May 2020, doi: 10. 1016/j.arabjc.2020.03.012.

K. Zhang, D. Sun, C. Ma, G. Wang, X. Dong, and X. Zhang, “Activation of peroxymonosulfate by CoFeaO: loaded on metal-organic framework for the

$4

degradation of organic dye,” Chemosphere, vol. 241, Feb. 2020, doi:

10.1016/j.chemosphere.2019.125021.

55

| _ZIF-š7 (Thash) berẻ

Counts š3

ằ + ằ “ k3 a ằ

2Ihsts (Coepind Twolbete/Thets) VI =1 54000

Hình B-I: Gian đồ nhiễu xạ tia X của ZIF-67 tong hợp

oe ee

10atats

Couns t

bs al

1 FeQzir-e7 ia

Toray _—~———~——————m—————————— A ne eee

ằ = ằ oe “ ô ớt

2Theta (Coupled TwoTheta/Theta) WL=1.54000

Hình B-2: Gian đồ nhiễu xạ tia X của Ee-ZIF-67(1%) Phụ lục C. Kết quả đo EDX của Fe-ZIF-67(1%)

%rtrg~ sesresere

Wo œ8) soit+c£

É%2324%6.'€ 8074: AI Ol e1 3139/09 JVEYY36206)

Nâ#t rÁcMk4/ ô+

vem

€ ClO} 1‹^e©-19991200A

M NV wet 14s*299%17(Đ6M

Ú ME bale ina

§ feS2 Seance) co AM

fe fe (-šm-11201123)/4

Ce Co i-Às19021230 AM

Centers | Woget Axrkh

ce ;á/) “au

ne BR ms

oc 2.08 1M

1 9% on

tex ô2 as cee 312 241

Trae 600

€axrrert | Ð AT TT...

Fi 3-83 263 ctu Osea 0.000 TT

Hình C-1. Kết qua đo EDX của mẫu Fe-ZIF-67(1%) lần 1

1gscrrưs prccrssesg

Nee mm se m4

#rtcwy9*g cotton Al sesex anmiyned (Normal sec

Mervner of recetere ô7

.._..

€ CSÐl tere row

M *zr+wed bea ibe) 120C AM

© 122 Là n12721200AV

% "RD 3‡avi9921200AM

re Pe Làm }?1700AV

CA behets ine ay

NEW cx 6x 3235 at xa nu

oT La ti02 se om az

tee on ou

con an ti

Tote 100 QC

Com rect:

rr — ee el)

Hinh C-2. Két qua do EDX của mau Fe-ZIF-67(1%) lần 2

Sgecrun procecting

Nee pres ai

Procemrg option : Mi Owners sale (Morral seo

Mewke of terstons + 6

trưđ vo

© G213 Dwele

M Met tefred 30sx2911700AM

© 221 1-se-10221222AA

S feS? 1-hxvr199312(€ 6M

Pe Pe 19^12221102/04 Co Ce 1*37221222AM

Cerees | WegreN AxescX

ca ~& was

wK mos uM

OK gu! on

HÀ. 043 on

fet ice ou con os ;*

Ted #4 198.00

Comment

es — pe TOT

ô

Hình C-3. Kết quả do EDX của mẫu Fe-ZIF-67(1%) lần 3

Phụ lục D. Phố FTIR của vật liệu Fe-ZIF-67(1%)

110

Te, ~f/ ơ"~—_ ae ~ "xó a Í \ al || 1Í“

rl yy 1, a whl if

3 2359.48 cm-1 w@l„ T1 Th |_|

12978.52 cm-1 1752.01 tm, Mu fem:

xằ115b 4948.12 cm-1 |

Ỉ 1 J

% 90 518.67 cm- |

452.225 cm-1

80-

70° 4 l 4 * 4 4 |

4000 3000 2000 1000 400

Wavenumber [cm-1]

[Comments] —EE —

Sample name = 2

a [Detailed Information)

rd Creation date 4/21/2024 8:45 AM

poi ae HCMUE Date modified 4/21/2024 8:45 AM

Data array type Linear data array

Horizontal axis Wavenumber [cm-1]

- Vertical axi T

[Measurement Information] Sut a a one

, ATR PRO ONE Data points 3736

Accessory S/N C177061809

Incident angle 45 deg

Measurement Date 4/21/2024 8:44 AM

Light Source Standard

Detector TGS Accumulation 16

Resolution 4cm-1

Zero Filling On

Apodization Cosine Gain Auto (32)

Aperture Auto (7.1 mm)

Scanning Speed Auto (2 mmisec)

Filter Auto (10000 Hz)

s9

Phụ lục E. Kết quả khảo sát ảnh hưởng của tỉ lệ pha tạp nguyên tố iron trong

cầu trúc ZIF-67

Thời gian C/Cu

(Phút) ZIF-67 Fe-ZIF-67(19%) Fe-ZIF-67(5%) Fe-ZIF-67(10%)

-30 | | | l

0 0.976 0,985 0,988 0.976 2 0,252 0,198 0,334 0,405 4 0,128 0,073 0,184 0.219 6 0,102 0,045 0,129 0,149

8 0,085 0,037 0,110 0,126 10 0,078 0,031 0,095 0,116 12 0,077 0,023 0,091 0,107

Phụ lục F. Kết quả khảo sát ảnh hưởng của pH dung dịch

Thời gian A Hệ số pha

pH : -—_— C/Ca x

(Phút) Lani Lân2 Lân3 loãng -30 0,596 0,586 0,589 ẽ 12,5

0 0,581 0/573 0,583 0,981+0,020 12,5

2 1,901 1/93 1875 0,78240,042 3

4 1,532 1,583 1,568 0,640+40,041 3

? 6 1305 1,317 1313 0,53740,018 3

8 1.078 1,079 1.096 0.444+0.016 3

10 0,906 0.898 0,881 0.366+0,011 3

12 0.706 0.734 0/713 0.292+0.021 3

-30 0,591 0.5§1 0.585 1 12,5

0 0.585 0576 0,579 0.988+0.009 12.5

‘ 2 1.781 1704 1751 0.242+0.009 |

+ 0.843 0.865 0,847 0,117+0,007 |

6,4

10

0.51 0,405 0,362 0,356 0,594 0,573 1,448

0,546

0.342 0,284 0,258 0,198 0,580 0.575 1,122 0,452 0,355 0,289 0,253 0,194 0,583 0,580 1,092 1,077 0,806 0,723 0,671 0,597

0.516 0,422 0.392 0.388 0,591 0,587

1,472

0,538 0,330 0,270 0.232 0,162 0.591 0.584

1.141 0,483 0,343 0,276 0,242 0,184 0,593

0,592

1,087 1,201 0.804 0,713 0.672 0.642

60

0.526 0.439 0.368 0.352 0,589 0.587

1,431 0.543 0.346

0.276 0.217 0.177 0.589 0.575 1,156 0.473 0.323

0,29 0,223 0.184 0,590 0.585

1.04?

1.091 0,858 0,798 0.724 0.667

0,07040,003 0.057+0.006 0.051+0.007 0,04940,008

]

0,98540.044 0,198+0.007 0,073+0.001 0.04540.003 0.03740.002 0.03 140.007 0.023+0.006

|

0.985+0.020 0.156+0.004 0.064+0.004 0.052+0.021 0.039+0.004 0.032+0.006 0.02540.003

|

0.995+0.008 0.295+0.020 0.15440.021 0.11240.010 0.101+0.016 0.094+0.010 0.086+0.011

61

Phụ lục G. Kết qua khảo sát ảnh hưởng của nồng độ methylene blue ban đầu

Nông độ

(mg-L”)

40

Thời gian (Phút)

-30 0

tằ

% SA +

b2

% œ +

10 12

Lần 1

0,594

0.573 1.448 0.546 0.342 0.284 0.258 0,198 0.724 0,721

1,179 1,028 0,840

0,728

0,722 0,665 0,886 0,875

1,759 1.882 1,755 1,661 1,652 1,638

A

Lan2 Lan3

0,591

0,587 1,472 0,538 0.330 0.270 0.232 0.162 0,729 0,721

1,147 1,041 0,877 0,733 0,726 0,708 0,872 0.867 1,808 1,922 1,761 1.684 1,667 1,625

0,589 0.587 1,431 0,543 0.346 0.276 0.217 0.177 0/734 0,729 1,124 1,094 0,914

0,787

0,712 0,664 0,879 0,872 1,691

1,906 1,792 1.701 1,679 1,645

C/Co

l

0,985+40,044 0,19840,007 0,073+0,001 0,045+0,003 0.037+0.002 0.031+0,007 0,023+0,006

|

0,99340,009 0,253+0,019 0,116+0,008 0,096+0,009

0,082+0,008

0,079+40,003 0.074+0,007

|

0.991+0,009 0,320+0,030 0.174+0.008 0.162+0,006 0,154+0,007 0,152+0,005 0,15040,002

Hé so pha loang

l

|

Nnn “4

N

12,5 12,5

Phụ lục H. Kết quả khảo sát ảnh hưởng của hàm lượng xúc tác

Hàm lượng

xúc tác

(mg-L")

25

50

75

Thoi gian

0

t2

10 12 -30

0

_. Lani

(Phút)

0,591 17H11 1,623

1,520 1,427 1,403 1,316 0.596 0.594 2.833 1,384 1,024 0,709

0,526 0,476 0,594

0,573 1,448 0.546 0.342 0.284 0.258 0.198 0,595 0,594

A

Lan 2

0,595 1,749 1,618 1,547 1,421 1,397 1,329 0,598 0,594 2,759 1,356 0,923 0,627 0,509 0,452 0,591

0,587

1,472 0,538

0,33 0.27 0,232 0,162 0,588 0,581

Lần 3

0,591 1,727

1,602

1,529

1411

1.394 1,352 0.596 0.592 2.886 1,443 0,977 0,628 0,544 0,458 0,589

0,587 1,431 0,543 0,346 0.276 0.217 0.177 0,590 0,583

C/Co

I

0,94340,018 0,880+0,015 0,835+0,011

0,77340,012 0,761+40,011 0.725+0.027

|

0,995+0,002 0.385+0.009 0.189+0,006 0,13240,007 0,088+0,007 0,07 140,003 0,06240,002

|

0,98440,018 0,19840,003

0,07344,764 -10'

0,045+0,001 0.037+0.001 0,03 140,003 0,023+0,002

I

0,99240,005

Hệ số pha

loãng

12.5

1235 12.5

to

aon +

10

12

Phụ luc I. Kết qua khảo sát ảnh hưởng của nồng độ PMS

Thời gian (Phút)

-30 0

2

r2

[PMS].

(mg-L')

200 % = &

225

250

0.579 0,426 0.382 0.363 0,345 0,332

Lan 1

0,586 0,571

1,094 0,978 0,917 0,834 0,803 0,734

0,589 0,571

1,819 0.778 0.583 0.567 0,435 0,431 0,594 0,573

63

0,518 0,367 0,328 0,303 0,269 0,251

A

Lần 2

0,595 0,576

1,095 0,982 0,928 0,836 0,818 0,694 0,591 0,585

1,824 0.797 0.596 0.540 0,505 0,496 0,591 0.587

0.559 0.377

0.31 0,297 0,289 0,255

0,075+0,004 0,052+0,004 0,046+0,005 0,043+0,005 0,040+0,005 0,037+0,006

Lần 3

0,581 0,568

1,096 1,052 0,957 0,846 0,811

0,767

0,588 0.575 1,856 0.710 0.588 0,474 0,443 0,443 0,589 0,587

C/Co

|

0,972+0,012 0.,300+0,009 0.137+0,018 0,128+0,010

0,11540,005

0,111+0,003

0,1004£0,016 1

0,978+0,027 0.251+0,008 0.104+0,015 0,080+0,002 0,07 140,016 0,06220,013 0,062+0,012

]

0,984+0,045

b2

nm un GN

Một phần của tài liệu Khóa luận tốt nghiệp Sư phạm Hóa học: Tổng hợp và đánh giá hoạt tính xúc tác phân hủy Methylene Blue của vật liệu Zif-67 pha tạp Iron (Trang 58 - 76)

Tải bản đầy đủ (PDF)

(76 trang)