CHƯƠNG 2 : SỢIQUANG
2.4. Một số loại sợiquang mới
Nhìn chung khi xem xét các yếu tố sợi quang liên quan đến khả năng của hệ thống thông tin quang, cần phải đề cập tới ba yếu tố cơ bản nhất là suy hao, tán sắc, và hiệu ứng phi tuyến xảy ra trong sợi. Tuy nhiên, đối với các hệ thống khác nhau thì mức độ ảnh hưởng củacác yếu tố này cũng khác nhau. Ví dụ:
•Ðối với cáchệ thống cự ly ngắn, dung lượng thấp thì yếu tố chủyếu cần quan tâm là suy hao.
• Ðối với các hệ thống tốc độ cao, cự ly tương đối lớn thì yếu tố chủ yếucần quan tâm là suy hao và tán sắc.
•Ðối với các hệ thống cự ly dài và dung lượng rất lớn thì ngoài hai yếu tố trên cần phải xem xét đến cả cáchiệu ứng phi tuyến.
Sợi quang đang được sử dụng rộng rãi hiện nay trong các hệ thống hiện nay là sợi đơn mode SMF-28, G.652. Các đặc tính truyền dẫn của sợi quang này đã được mô tả trong phần 2.4. Các đường cong mô tả tán sắc và suy hao của sợiđơn mode cho thấy rằng suy hao của sợi đạt giá trị nhỏ nhất ở vùng bước sóng 1500 nm nhưng tán sắc có giá trị thấp nhất (bằng không) lại ở bước sóng 1300 nm.
Nếu cả hai yếu tố suy hao và tán sắc đềuđạtgiá trị tối ưu thì sẽ cóđược tuyến thông tin đơn kênh cự ly truyền dẫn rất xa và tốc độ bit rất lớn. Để đạt được điều này, người ta điều chỉnh các tham số cơ bản của sợi nhằm dịch chuyển tán sắc tối thiểu tới cửa sổ có suy hao nhỏ nhất (cửa sổ 1550 nm). Tán sắc trong sợi đơn mode chủ yếu là tán sắc vật liệu và tán sắc ống dẫn sóng. Tán sắc vật liệu của sợi tiêu chuẩn làm từ SiO2 thường có giá trị bằng 0 ps/km.nm tại bước sóng 1270 nm, nhưng nếu pha thêm một số tạp chất như GeO2 và P2O5 vào lõi sợi thì giá trị tán sắc vật liệu sẽ dịch chuyển về các bước sóng lớn hơn 1270 nm, nhưng lại làm tăng suy hao sợi. Như vậy, sẽ rất khó thay đổi được tán sắc vật liệu cơ bản.
Tuy nhiên, lại hoàn toàn có thể thay đổi tán sắc dẫn sóng bằng cách sử đổi mặt cắt chỉ số chiết suất phân bặc đơn giản ở lõi sợi thành mặt cắt chỉ số chiết suất phức tạp hơn để cho ra được giá trị tán sắc mong muốn. Sợi quang dịch chuyển tán sắc (DSF, G.653) có tán bằng tổng bằng không tại bước sóng gần 1550 nm được chếtạo theo nguyên lý nói trên. Hình 2.25 minh hoạ mặt cắt chỉ số chiết suấtcủa sợi quang DSF - G.653.
Hình 2.25. Các mặt các chỉ số chiết suất
(a) Sợi đơn mode thông thường (SMF-28, G.652) (b) Sợi tán sắc dịch chuyển (DSF, G.653)
Sợi quang DSF-G.653 chỉ phù hợp cho các hệ thống đơn kênh hoạt động ở bước sóng 1550 nm. Các hệ thống ghép kênh theo bước sóng quang (WDM) bên cạnh hai yếu tố suy hao và tán sắc, còn chịu ảnh hưởng của các hiệu ứng phi tuyến. Các loại sợi quang mới cũng đã được phát triển để làm giảm ảnh hưởng của các hiệu úng này. Dưới đây chúng ta sẽ tập trung xem xét các đặc tính nổi bật của các loạisợi quang mới này.
Sợi quang dịch chuyển tán sắc khác không (NZ-DSF) G.655. Mặc dù sợi quang dịch chuyển tán sắc (DSF) đã giải quyết triệt để các ảnh hưởng do tán sắc màu gây ra ở cửa sổ bước sóng 1550 nm. Tuy nhiên, nó lại không thích hợp để dùng trong hệ thống WDM do sựthiệt thòi nghiêm trọng về công suất do hiệu ứng trộn bốn bước sóng và các sự phi tuyến khác gây ra.Sự thiệt thòi này sẽđược loại bỏ nếu có một ít tán sắc màu hiện diện trong sợi do sự tương tác của các sóng khác nhau khi lan truyền với vận tốc nhóm khác nhau. Ðiều này đã dẫn đến sự phát triển của các loại sợi dịch chuyển tán sắc khác không (NZ - DSF). Các loại sợi này có tán sắc màu khoảng từ 1 đến 6 ps/nm.km hoặc là - 1 đến -6 ps/nm.km ở cửa sổ 1550 nm.
Ðiều này cắt giảm ảnh hưởng củacác hiệu ứng phi tuyến trong khi vẫn giữa nguyên các ưu điểm của sợi DSF. Loại sợi mới này đang được xây dựng trong các công trình ở các tuyến dài ở Bắc Mỹ. Chẳng hạn, sợi quang LS của Corning có bước sóng tán sắc không ở bước sóng 1560 nm và tán sắc màu nhỏ khoảng 0.092 (λ - 1560) ps/nm.km ở
cửa sổ bước sóng 1550 nm và sợi TrueWave của công nghệ Lucent Technologies. Bởi vì tất cả các sợi NZ - DSF được chế tạo có giá trị tán sắc khác không rấtnhỏ ở dải C nhưng vẫn có giá trị không ngoài dải C, nằm trong dải L hoặc dải S. Trong những trường hợp này, một phần lớn của dải băng xungquanh bước sóng tán sắc sẽ không dùng dohiệu ứng trộn bốnbước sóng. Sợi TeraLight của Alcatel là một loại sợi NZ - DSF có tán sắc không ở dải bên dướibước sóng 1440 nm và vì vậy được sử dụng ởcả 3 dải. Tán sắc màu ngoài việc phải có giá trị nhỏ, còn phải có độ dốc nhỏ (đối với bước sóng). Ðộ dốc nhỏ làm giảm độ trải rộng xung do tán sắc màu tích lũy giữa các kênh khác nhau trong một hệ thống WDM. Nếu độ trải rộng nhỏ, tức là tán sắc màu tích lũy trên các kênh khác nhau gầnnhư là đồng nhất, có thể bù tán sắc màu tích lũy trên tất cả các kênh bằng một bộ bù tán sắc màu duy nhất. Phương pháp này sẽ rẻ hơn khi sử dụng bộ bù tán sắc màu trên mỗi kênh. Ðộ dốc tán sắc màu của các loại sợi TrueWave, TrueWave RS (độ dốc giảm) và LEAF (sẽ đề cập dưới đây) được minh họa ở hình 2.26. Sợi TrueWave RS của Lucent được chế tạo có giá trị độ dốc tán sắc màu nhỏ hơn khoảng 0.05 ps/nm.km2 so với các loại sợi NZ - DSF khác có độ dốc trong khoảng 0.07 ÷ 0.4 ps/nm.km2.
Hình 2.26. Độ nghiên tán sắc của sợi TrueWave, sợi TrueWave RS và LEAF
Sợi quang diện tích hiệu dụng lõi lớn:
Ảnh hưởng của sự phi tuyến có thể giảm được khi chế tạo loại sợi quang có diện tích lõi hiệu dụng lớn. Như đã thấy rằng các sợi quang dịch chuyển tán sắc khác không có giá trị tán sắc màu bé trong khoảng 1550 nm để tối thiểu sự ảnh hưởng của tán sắc màu, nhưng không may, các loại sợi này lại có diện tích hiệu dụng lõi nhỏ hơn. Gần đây, sợi
NZ – DSF có diện tích hiệu dụng lõi lớn - trên 70 μm , đã được Corning (LEAF) và Lucent (TrueWave XL) phát triển. Diện tích này lớn hơn nhiều so với 50μm2của sợi NZ - DSF bình thường và nhỏ hơn 85μm2 của sợi SMF. Do vậy, các loại sợi này đạt được sự thỏa hiệp tốt hơn giữa tán sắc màu và sự phi tuyến hơn là các sợi NZ - DSF bình thường. Tuy nhiên, khuyết điểm của các loại sợi này là có độ dốc tán sắc màu lớn hơn, khoảng 0.11 ps/nm.km2 so với 0.07 ps/nm.km2đối với loại sợi NZ - DSF khác và khoảng 0.05 ps/nm.km2 đối với loại sợi giảm độ dốc. Diện tích lõi hiệu dụng lớn cũng làm giảm hiệu quảcủa việc khuếch đại phân bố Raman.
Mặt cắt chiết suất khúc xạ tiêu biểu của sợi LEAF được trình bày ở hình 2.27. Vùng lõi gồm ba phần. Phần sát bên trong nhất, chiết suất thay đổi theo dạng tam giác. Phần vành khuyên (ở giữa) có chiết suất bằng với chiết suất lớp vỏ. Phần ngoài cùng của lớp lõi tiếp theo có hình vành khuyên có chiết suất cao hơn. Phần giữa của lõi là phần có chiết suất thấp hơn, không gây tiêu hao công suất và vì vậy, công suất được phân bố trên diện tích lớn hơn. Ðiều này làm giảm tổn hao năng lượng trong lõi và làm tăng diện tích hiệu dụng của sợi. Hình 2.28 mô tả phân bốnăng lượng trong lõi của sợi DSF và LEAF.
Hình 2.27. (a) NZ-DSF bình thường. (b) LEAF
Hình 2.28. Sự phân bố công suất trong lõi của sợi DSF và LEAF. Công suất trong sợi
Các sợi quang tán sắc âm và dương:
Một số sợi quang được thiết kế để có cả tán sắc màu dương và âm trong dải 1550 nm. Tán sắc màu của sợi có tán sắc màu dương và âm trong dải 1550 nm được trình bày trong hình 2.29. Sợi có tán sắc màu dương được sử dụng cho các hệ thống trên đất liền, còn sợi tán sắc màu âm được sử dụng cho các hệ thống dưới biển. (Ðối với việc bù tán sắc màu thì ngược lại: sợi quang có tán sắc màu âm được sử dụng trên đất liền, sợi có tán sắc màu dương dùng chocác hệ thống ngầm dưới biển). Cả tán sắc màu âm và dương đều gây ra giãn xung và độ giãn xung này phụthuộc vào độ lớn tán sắc màu mà không phụ thuộc vào dấu của nó (khi không có mặt củasự chirp và các sự phi tuyến). Vì vậy, tại sao lại cần các loại sợi quang có tán sắc màu khác dấu nhau, tán sắc màu dương cho hệ thống đất liền và tán sắc màu âm cho các hệ thống dưới biển. Ðể hiểu sự tán động này, chúng ta cần hiểu các hiện tượng phi tuyến khác: tính bất ổn điều chế (Modulation Instability).
Ðiều này có thể giải thích như sau [3]: Khi bị chirp dương sườn sau của xung bị dịch đến tần số f < f0 và sườn trước của xung bị dịch đến tần số f > f0. Ðiều này có nghĩa là phổ của tín hiệu bị giãn ra trong quá trình truyền dẫn. Khi tán sắc màu là dương thành phần tần số cao (f > f0) sẽ lan truyềnchậm hơn thành phần tần số thấp (f < f0) nên xung bị co lại (nguyên lý của truyềndẫn soliton). SPM làm cho các xung chirp dương.
Ở các mức côngsuất cao, sự tác độngqua lại giữa hai hiện tượng này - tán sắc màu và chirp do SPM - dẫn đến gãy (breakup) xung rộng tương đối (trong khoảng thời gian 100 ps, tương ứng xấp xỉ với tốc độ truyền dẫn 10 Gbps) thành các luồng xung ngắn (khoảng vài pico giây). Hiện tượng này gọi là hiện tượng không ổn định điều chế và dẫn đến tăng đáng kể tỉ lệ bit lỗi. Sự không ổn định điều chế chỉ xảy ra trong sợi quang tán sắc màu dương và vì vậy, có thể tránh bằng cách sử dụng sợi có tán sắc màu âm. Các ảnh hưởng của nó đối với sợi quang tán sắc màu dương có thể được tối thiểu khi dùng các mức công suất thấp hơn.
Các hệ thống WDM không thể hoạt động quanh bước sóng tán sắc không của sợi quang do ảnh hưởng nghiêm trọng của hiệu ứng trộn bốn bước sóng. Ðối với sợi quang dịch chuyển tán sắc dương, bước sóng tán sắc không nằm dưới dải bước sóng 1550 nm và không nằm trong dải L. Do đó, các hệ thống sử dụng sợi quang tán sắc màu dương có thể nâng cấp để có thể sử dụng dải L (xem hình 2.29). Tính nâng cấp là một đặc tính quan trọng của hệ thống đất liền. Do đó, sợi quang tán sắc màu dương thì thích hợp cho hệ thống đất liền, và mức công suất được điều khiểnđể sự bất ổn điều chế là không đáng kể. Tuy nhiên, đối với các tuyến dưới biển, việc sử dụng các mức công suất lớn hơn thì rất
quan trọng do khoảng cách tuyến dài. Những tuyến này không có khả năng nâng cấp bằng bất cứ phương pháp nào, do nó được thả dưới đáy đại dương, vì vậy sử dụng dải L đối với những sợi này thì không có khả năng. Do vậy, sợi quang tán sắc màu âm được dùng cho các tuyến dưới biển.
Vì sợi tánsắc màu âm dùng cho các tuyến dưới biển, tán sắc màu có thể được bù bằng cách dùng sợi quang đơn mốt chuẩn (SMF) có tán sắc màu dương, nghĩa là việc thay đổituần tự các đoạn sợi quang SMF có tán sắc màu dương và tán sắc màu âm có thể giữ cho tán sắc màu tổng cộng thấp. Ðiều này thích hợp để sử dụng sợi quang bù tán sắc do chúng có độ nhạy hơn đối với các hiệu ứng phi tuyến bởi vì diện tích hiệu dụng lõi của nó thấp.
Chú ý rằng tất cả các sợi quang đã xem xét có độ dốc tán sắc màu dương, tức là tán sắc màu tăng khi bước sóng tăng. Ðiều này chủ yếu là độ dốc tán sắc vật liệu của sợi quang silica là dương và thường hơn hẳn độ dốc tán sắc âm của tán sắc ống dẫn sóng (xem hình 2.29). Sợi quang có độ dốc tán sắc màu âm thì hữu dụng trong việc bù độ dốc tán sắc màu. Trong khi có khả năng chế tạo sợi quang tán sắc màu âm (trong dải 1550 nm) với độ dốc âm, thì không có khả năng chế tạo sợi có tán sắc màu dương với độ dốc âm. Hình 2.29 tóm tắt tán sắc màu trong dảiC và độ dốc tán sắc màu của tất cả các loại đã thảoluận.