Cấu trúc của laser DFB được biểu diễn trên hình 3.28.a. Quá trình cộng hưởng và chọn lọctần số xảy ra trong laser DFB được thực hiện nhờ cấu trúc cách tử Bragg đặt ở bên cạnh, dọc theo vùng tích cực của laser. Sóng ánh sánh phát xạ trong laser lan truyền dọc theo vùng tích cực và phản xạ tại mỗi đoạn dốc của cách tử. Điều kiện để sự phản xạ và cộng hưởng cóthể xảy ra làbước sóng ánh sáng phảithỏa điều kiện Bragg [1]:
λB = 2.Λ.neff (3.22)
Trong đó, Λ là chu kỳ của cách tử Bragg, neff = n.sinθ với n là chiết suất của cách tử, θ là góc phản xạ của ánh sáng (hình 3.28.b) Các photon ánh sáng do hiện tượng phát xạ kích thích tạo ra trong vùng tích cực phản xạ nhiều lần tại cách tử (khác với laser FP chỉ phản xạ tại hai mặt phản xạcủa hốc cộng hưởng). Tạimỗi đoạn dốc của cách tử, một phần năng lượng ánh sáng bị phản xạ. Tổng hợp năng lượng ánh sáng phản xạ tại mỗi đoạn cách tử này trong laser làm cho phần lớn ánh sáng trong laser đượcphản xạ có bước sóng thỏa điều kiện Bragg. Kết quả là, laser DFB chỉ phát xạ ra ánh sáng có bước sóng λB thỏa điều kiện Bragg (khác với laser FP có nhiều bước sóng ánh sáng thỏa điều kiện phản xạ trong hốc cộng hưởng). Vì vậy, DFB laser chỉ phát ra một mode sóng có độ rộng phổ rất hẹp so với laser FP. Với đặc điểm như vậy, laser DFB đã và đang được sử dụng trong các hệthống thông tin quang có cự ly truyền dẫn dài và tốcđộ bit truyền cao.
Hình 3.28. (a) Cấu trúc của laser DFB; (b). Phản xạ tại cách tử Bragg