1. Trang chủ
  2. » Luận Văn - Báo Cáo

Điểm bất động của các ánh xạ co kiểu geraghty trong không gian mêtric riêng

41 13 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Điểm Bất Động Của Các Ánh Xạ Co Kiểu Geraghty Trong Không Gian Mêtric Riêng
Tác giả Nguyễn Thị Hằng
Người hướng dẫn PGS. TS. Trần Văn Ân
Trường học Trường Đại học Vinh
Chuyên ngành Toán Giải tích
Thể loại luận văn thạc sỹ
Năm xuất bản 2017
Thành phố Nghệ An
Định dạng
Số trang 41
Dung lượng 421,92 KB

Nội dung

❇é ●✐➳♦ ❞ô❝ ✈➭ ➜➭♦ t➵♦ ❚r➢ê♥❣ ➜➵✐ ❤ä❝ ❱✐♥❤ ◆❣✉②Ơ♥ ❚❤Þ ❍➺♥❣ ➜✐Ĩ♠ ❜✃t ➤é♥❣ ❝đ❛ ❝➳❝ ➳♥❤ ①➵ ❝♦ ❦✐Ó✉ ●❡r❛❣❤t② tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣ ▲✉❐♥ ✈➝♥ ❚❤➵❝ sü ❚♦➳♥ ❤ä❝ ◆❣❤Ö ❆♥ ✲ ✷✵✶✼ ❇é ●✐➳♦ ❞ơ❝ ✈➭ ➜➭♦ t➵♦ ❚r➢ê♥❣ ➜➵✐ ❤ä❝ ❱✐♥❤ ◆❣✉②Ơ♥ ❚❤Þ ❍➺♥❣ ➜✐Ĩ♠ ❜✃t ➤é♥❣ ❝đ❛ ❝➳❝ ➳♥❤ ①➵ ❝♦ ❦✐Ĩ✉ ●❡r❛❣❤t② tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣ ▲✉❐♥ ✈➝♥ ❚❤➵❝ sü ❚♦➳♥ ❤ä❝ ❈❤✉②➟♥ ♥❣➭♥❤✿ ❚♦➳♥ ●✐➯✐ tÝ❝❤ ▼➲ sè✿ ✻✵✳✹✻✳✵✶✳✵✷ ❈➳♥ ❜é ❤➢í♥❣ ❞➱♥ ❦❤♦❛ ❤ä❝ P●❙✳ ❚❙✳ ❚r➬♥ ❱➝♥ ➣♥ ◆❣❤Ö ❆♥ ✲ ✷✵✶✼ ▲ê✐ ❝➯♠ ➡♥ ▲✉❐♥ ✈➝♥ ♥➭② ➤➢ỵ❝ t❤ù❝ ❤✐Ư♥ t➵✐ ❚r➢ê♥❣ ➜➵✐ ❤ä❝ ❱✐♥❤ ❞➢í✐ sù ❤➢í♥❣ ❞➱♥ ❝đ❛ t❤➬② ❣✐➳♦✱ P●❙✳❚❙✳ ❚r➬♥ ❱➝♥ ➣♥✳ ❚➠✐ ①✐♥ ❜➭② tá sù ❜✐Õt ➡♥ s➞✉ s➽❝ tí✐ ❚❤➬② ❣✐➳♦ P●❙✳❚❙✳ ❚r➬♥ ❱➝♥ ➣♥✱ ♥❣➢ê✐ ➤➲ t❐♥ t×♥❤ ❤➢í♥❣ ❞➱♥✱ ❣✐ó♣ ➤ì✱ ❝❤Ø ❜➯♦ t➠✐ tr♦♥❣ q✉➳ tr×♥❤ ❤ä❝ t❐♣ ✈➭ t❤ù❝ ❤✐Ư♥ ❧✉❐♥ ✈➝♥✳ ◆❤➞♥ ❞Þ♣ ♥➭② t➠✐ ①✐♥ ❝❤➞♥ t❤➭♥❤ ❝➳♠ ➡♥ ❇❛♥ ❣✐➳♠ ❤✐Ö✉ ❚r➢ê♥❣ ➜➵✐ ❤ä❝ ❱✐♥❤✱ P❤ß♥❣ ➜➭♦ t➵♦ s❛✉ ➜➵✐ ❤ä❝ tr➢ê♥❣ ➜➵✐ ❤ä❝ ❱✐♥❤✱ ❇❛♥ ❧➲♥❤ ➤➵♦ ❱✐Ö♥ ❙➢ ♣❤➵♠ ❚ù ♥❤✐➟♥✲❚r➢ê♥❣ ➜➵✐ ❤ä❝ ❱✐♥❤ ➤➲ t➵♦ ➤✐Ị✉ ❦✐Ư♥ t❤✉❐♥ ❧ỵ✐ ❝❤♦ t➠✐ tr♦♥❣ s✉èt t❤ê✐ ❣✐❛♥ ❤ä❝ t❐♣ ✈➭ t❤ù❝ ❤✐Ö♥ ❧✉❐♥ ✈➝♥✳ ❚➠✐ ①✐♥ tr➞♥ trä♥❣ ❝➯♠ ➡♥ ❝➳❝ t❤➬②✱ ❝➠ ❣✐➳♦ tr♦♥❣ t➠t ●✐➯✐ tÝ❝❤ t❤✉é❝ ❱✐Ö♥ ❙➢ ♣❤➵♠ ❚ù ♥❤✐➟♥✲❚r➢ê♥❣ ➜➵✐ ❤ä❝ ❱✐♥❤✱ ➤➲ ❣✐➯♥❣ ❞➵② ❣✐ó♣ ➤ì t➠✐ tr♦♥❣ q✉➳ tr×♥❤ ❤ä❝ t❐♣✳ ❈✉è✐ ❝ï♥❣✱ t➠✐ ố ẹ ị ữ t❤➞♥ ❝ị♥❣ ♥❤➢ ❜➵♥ ❜❒ ➤➲ ❣✐ó♣ ➤ì✱ ➤é♥❣ ✈✐➟♥ t➠✐ tr♦♥❣ s✉èt t❤ê✐ ❣✐❛♥ ❤ä❝ t❐♣ ✈➭ ♥❣❤✐➟♥ ❝ø✉✳ ✐✐ ▼ô❝ ▲ô❝ ❚r❛♥❣ ▼ô❝ ❧ô❝ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✐✐ ▲ê✐ ♥ã✐ ➤➬✉ ❈❤➢➡♥❣ ■✳ ➜✐Ĩ♠ ❜✃t ➤é♥❣ ❝đ❛ ❝➳❝ ➳♥❤ ①➵ ❝♦ ❦✐Ĩ✉ ●❡r❛❣❤t② tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣ ✶✳✶✳ ✶ ➜✐Ó♠ ❜✃t ➤é♥❣ ❝đ❛ ❝➳❝ ➳♥❤ ①➵ ❝♦ ❦✐Ĩ✉ ●❡r❛❣❤t② tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶ ✶✳✷✳ ➜✐Ĩ♠ ❜✃t ➤é♥❣ ❝đ❛ ❝➳❝ ➳♥❤ ①➵ ❝♦ ❦✐Ĩ✉ ●❡r❛❣❤t②✲❈✐r✐❝ tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ❈❤➢➡♥❣ ■■✳ ✽ ➜✐Ó♠ ❜✃t ➤é♥❣ ✈➭ ➤✐Ó♠ ❜✃t ➤é♥❣ ❜é ➤➠✐ ❝đ❛ ❝➳❝ ➳♥❤ ①➵ ❝♦ ❦✐Ĩ✉ ●❡r❛❣❤t② s✉② ré♥❣ tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣ ✶✺ ✷✳✶✳ ➜✐Ó♠ ❜✃t ➤é♥❣ ❝đ❛ ❝➳❝ ➳♥❤ ①➵ ❝♦ ❦✐Ĩ✉ ●❡r❛❣❤t② s✉② ré♥❣ tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✺ ✷✳✷✳ ➜✐Ó♠ ❜✃t ➤é♥❣ ❜é ➤➠✐ ❝đ❛ ❝➳❝ ➳♥❤ ①➵ ❝♦ ❦✐Ĩ✉ ●❡r❛❣❤t② s✉② ré♥❣ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣ ✷✹ ❑Õt ❧✉❐♥ ✸✷ ❚➭✐ ❧✐Ö✉ t❤❛♠ ❦❤➯♦ ✸✸ ✐ ▼ë ➤➬✉ ❚r♦♥❣ ❣✐➯✐ tÝ❝❤ ❤➭♠ ♣❤✐ t✉②Õ♥✱ ▲ý t❤✉②Õt ➤✐Ó♠ ❜✃t ➤é♥❣ ➤❛♥❣ ♥❣➭② ợ q t ứ ì ó ó ♥❤✐Ị✉ ø♥❣ ❞ơ♥❣ ❦❤➠♥❣ ❝❤Ø tr♦♥❣ ♠ét sè ❝❤✉②➟♥ ♥❣➭♥❤ ❝đ❛ t♦➳♥ ❤ä❝✱ ❝➳❝ ♥❣➭♥❤ ❦ü t❤✉❐t ♠➭ ❝ß♥ tr♦♥❣ ❝➳❝ ♥❣➭♥❤ ✈Ò ❦✐♥❤ tÕ✳ ▼ét sè ❦Õt q✉➯ ✈Ò tå♥ t➵✐ ➤✐Ĩ♠ ❜✃t ➤é♥❣ ♥ỉ✐ t✐Õ♥❣ ➤➲ ①✉✃t ❤✐Ư♥ tõ ➤➬✉ t❤Õ ❦Ø ❳❳✱ tr♦♥❣ ➤ã ♣❤➯✐ ❦Ó ➤Õ♥ ♥❣✉②➟♥ ❧Ý ➤✐Ó♠ ❜✃t ➤é♥❣ ❇r♦✉✇❡r ✭✶✾✶✷✮ ✈➭ ♥❣✉②➟♥ ❧Ý ➳♥❤ ①➵ ❝♦ ❇❛♥❛❝❤ ✭✶✾✷✷✮✳ ◆❣✉②➟♥ ❧ý ➳♥❤ ①➵ ❝♦ ❇❛♥❛❝❤ ❧➭ ♠ét tr♦♥❣ ♥❤÷♥❣ ❦Õt q✉➯ ❝➡ së tr♦♥❣ ❣✐➯✐ tÝ❝❤ ♣❤✐ t✉②Õ♥ ✈➭ ❧ý t❤✉②Õt ➤✐Ó♠ ❜✃t ➤é♥❣ ✈➭ ♥ã ❝ã ♥❤✐Ị✉ ø♥❣ ❞ơ♥❣ tr♦♥❣ ❝➳❝ ♥❣➭♥❤ t♦➳♥ ❤ä❝ ✈➭ tr♦♥❣ ♥❤✐Ị✉ ♥❣➭♥❤ ❦❤♦❛ ❤ä❝ ø♥❣ ❞ơ♥❣✳ ◆❤✐Ị✉ ❦Õt q✉➯ t✐➟✉ ❜✐Ĩ✉ t❤❡♦ ❤➢í♥❣ ♠ë ré♥❣ ◆❣✉②➟♥ ❧ý ➳♥❤ ①➵ ❝♦ ❇❛♥❛❝❤ tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ ➤➬② ➤ñ ➤➢ỵ❝ ❣✐í✐ t❤✐Ư✉ ❜ë✐ ❝➳❝ ♥❤➭ t♦➳♥ ❤ä❝ ❝ã t❤Ĩ ❦Ó ➤Õ♥ ♥❤➢✿ ▼✳ ❊❞❡❧st❡✐♥✱ ❚✳ ❙✉③✉❦✐✱ ❉✳ ❲✳ ❇♦②❞✱ ❙✳ ❲✳ ❲♦♥❣✱ ▼✳ ●❡r❛❣❤t②✱ ❘✳ ❑❛♥♥❛♥✱ ❙✳ ❘❡✐❝❤✱ ●✳ ❊✳ ❍❛r❞②✱ ❚✳ ❉✳ ❘♦❣❡rs✱ ▲✳ ❇✳ ❈✐r✐✬❝✱✳✳✳ ◆➝♠ ✶✾✼✸✱ ▼✳ ●❡r❛❣❤t② ✭❬✶✷❪✮ ➤➲ ➤➢❛ r❛ ❦Õt q✉➯ s❛✉ ➤➞② ♠➭ ♥ã ❧➭ ♠ét ♠ë (X, d) ❧➭ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ ➤➬② ➤ñ✱ f : X → X ✳ ●✐➯ sö r➺♥❣ tå♥ t➵✐ ❤➭♠ β : [0, +∞) → [0, 1) t❤á❛ ♠➲♥ ➤✐Ị✉ ❦✐Ư♥ ✧♥Õ✉ β(tn ) → 1✱ t❤× tn → 0✧ s❛♦ ❝❤♦ ré♥❣ ❝đ❛ ◆❣✉②➟♥ ❧ý ➳♥❤ ①➵ ❝♦ ❇❛♥❛❝❤✿ ❈❤♦ d(f (x), f (y)) ≤ β(d(x, y))d(x, y), f ❝ã ➤✐Ó♠ ❜✃t ➤é♥❣ ❞✉② ♥❤✃t n {f (x)} ❤é✐ tơ ✈Ị z ❦❤✐ n → ∞✳ ❑❤✐ ➤ã✱ z ∈X ✈í✐ ♠ä✐ x, y ∈ X ✈➭ ✈í✐ ♠ä✐ x∈X ❞➲② P✐❝❛r❞ ❚❤❡♦ ♠ét ❤➢í♥❣ ♥❣❤✐➟♥ ❝ø✉ ❦❤➳❝✱ ❝➳❝ ♥❤➭ t♦➳♥ ❤ä❝ tr♦♥❣ ❧Ü♥❤ ✈ù❝ ♥➭② ➤➲ t×♠ ❝➳❝❤ ♠ë ré♥❣✱ ①➞② ❞ù♥❣ ❝➳❝ ❦❤➠♥❣ ❣✐❛♥ ♠í✐ tỉ♥❣ q✉➳t ❤➡♥ ❦❤➳✐ ♥✐Ư♠ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝✱ s❛✉ ➤ã ♥❣❤✐➟♥ ❝ø✉ ❝➳❝ ➤Þ♥❤ ❧ý ➳♥❤ ①➵ ❝♦ ✈➭ ❝➳❝ ø♥❣ ❞ơ♥❣ ❝đ❛ ♥ã tr➟♥ ❝➳❝ ❧í♣ ❦❤➠♥❣ ❣✐❛♥ ♠í✐ ♥➭②✳ ◆➝♠ ✶✾✾✹✱ tr♦♥❣ ❞ù ➳♥ ♥❣❤✐➟♥ ứ ề ể tị ữ t ❞÷ ❧✐Ư✉ tr➟♥ ♠➵♥❣ ♠➳② tÝ♥❤ ❙✳ ●✳ ▼❛tt❤❡✇s ➤➲ ❣✐í✐ t❤✐Ư✉ ❦❤➳✐ ♥✐Ư♠ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣ ✭❬✶✹❪✮ ✈➭ t ợ ột tổ qt ủ ị ý ể ❜✃t ➤é♥❣ ❇❛♥❛❝❤ ❝❤♦ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣✳ ◆➝♠ ✷✵✶✵✱ ■✳ ❆❧t✉♥ ✈➭ ❝é♥❣ sù ➤➲ ➤➢❛ r❛ ♠ét sè ♣❤✐➟♥ ❜➯♥ tỉ♥❣ q✉➳t ❝đ❛ ➤Þ♥❤ ❧ý ➤✐Ĩ♠ ❜✃t ➤é♥❣ ❝đ❛ ▼❛tt❤❡✇s ✭❬✺❪✮✳ ▼ơ❝ ➤Ý❝❤ ❝đ❛ ❧✉❐♥ ✈➝♥ ♥➭② ❧➭ t×♠ ❤✐Ĩ✉ ❝➳❝ ❦Õt q✉➯ ✈Ị ➤✐Ĩ♠ ❜✃t ➤é♥❣ ❝đ❛ ❝➳❝ ➳♥❤ ①➵ t❤á❛ ♠➲♥ ➤✐Ị✉ ❦✐Ư♥ ❝♦ ●❡r❛❣❤t② ✈➭ ❝➳❝ ♠ë ré♥❣ ❝ñ❛ ♥ã tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣✳ ❚×♠ ❤✐Ĩ✉ ✈➭ tr×♥❤ ❜➭② ♠ét ❝➳❝❤ ❝ã ❤Ư t❤è♥❣✱ ❝❤✐ t✐Õt ❝➳❝ ❦Õt q✉➯ ✈Ị ➤✐Ĩ♠ ❜✃t ➤é♥❣✱ ➤✐Ĩ♠ ❜✃t ➤é♥❣ ❜é ➤➠✐ ❝đ❛ ❝➳❝ ➳♥❤ ①➵ ❝♦ ❦✐Ĩ✉ ●❡r❛❣❤t② tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣✱ ❝❤♦ ❝➳❝ ✈Ý ❞ô ♠✐♥❤ ❤ä❛❀ ❝❤ø♥❣ ♠✐♥❤ ❝❤✐ t✐Õt ❝➳❝ ➤Þ♥❤ ❧ý✱ ❤Ư q✉➯ tr♦♥❣ ❝➳❝ t➭✐ ❧✐Ö✉ t❤❛♠ ❦❤➯♦ ❝❤➢❛ ❝❤ø♥❣ ♠✐♥❤ ❤♦➷❝ ❝❤ø♥❣ ♠✐♥❤ ❝ß♥ ✈➽♥ t➽t✳ ✐✐ ❈❤➢➡♥❣ ✶ ✈í✐ ♥❤❛♥ ➤Ị ➜✐Ĩ♠ ❜✃t ➤é♥❣ ❝đ❛ ❝➳❝ ➳♥❤ ①➵ ❝♦ ❦✐Ó✉ ●❡r❛❣❤t② tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣✳ ❚r♦♥❣ ❝❤➢➡♥❣ ♥➭②✱ ♠ơ❝ ✶ ❝❤ó♥❣ t➠✐ ❣✐í✐ t❤✐Ư✉ q✉❛ ♠ét sè ❦✐Õ♥ t❤ø❝ ❧➭♠ ❝➡ së ❝❤♦ ✈✐Ư❝ tr×♥❤ ❜➭② ❧✉❐♥ ✈➝♥✱ ❜❛♦ ❣å♠ ♠ét sè ➤Þ♥❤ ❧ý ➤✐Ĩ♠ ❜✃t ➤é♥❣ ❝đ❛ ❝➳❝ ➳♥❤ ①➵ ❝♦ ❦✐Ó✉ ●❡r❛❣❤t② tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣ ➤➬② ➤đ✳ ▼ơ❝ ✷ ❝❤ó♥❣ t➠✐ tr×♥❤ ❜➭② ♠ét sè ➤Þ♥❤ ❧ý ➤✐Ĩ♠ ❜✃t ➤é♥❣ ❝đ❛ ❝➳❝ ➳♥❤ ①➵ ❝♦ ❦✐Ĩ✉ ●❡r❛❣❤t②✲❈✐r✐❝ t❤á❛ ♠➲♥ ➤✐Ị✉ ❦✐Ư♥ ❝♦ ❦✐Ĩ✉ ●❡r❛❣❤t② tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣✳ ❈❤ø♥❣ ♠✐♥❤ ❝❤✐ t✐Õt ✈Ò ị ý ó r ò trì ột sè ❤Ư q✉➯ ✈➭ ❝➳❝ ✈Ý ❞ơ ♠✐♥❤ ❤♦➵✳ ❈❤➢➡♥❣ ✷ ✈í✐ ♥❤❛♥ ➤Ị ➜✐Ĩ♠ ❜✃t ➤é♥❣ ✈➭ ➤✐Ĩ♠ ❜✃t ➤é♥❣ ❜é ➤➠✐ ❝đ❛ ❝➳❝ ➳♥❤ ①➵ ❝♦ ❦✐Ĩ✉ ●❡r❛❣❤t② s✉② ré♥❣ tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣✳ ❚r♦♥❣ ❝❤➢➡♥❣ ♥➭②✱ ụ ú t trì ột số ị ý ✈Ị ➤✐Ĩ♠ ❜✃t ➤é♥❣ ❝đ❛ ❝➳❝ ➳♥❤ ①➵ t❤á❛ ♠➲♥ ➤✐Ị✉ ❦✐Ư♥ ❝♦ ❦✐Ĩ✉ ●❡r❛❣❤t② tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣ ✈➭ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣ t❤ø tù ✈➭ ❝➳❝ ❤Ö q✉➯ ❝đ❛ ❝❤ó♥❣✳ ❈❤ø♥❣ ♠✐♥❤ ❝❤✐ t✐Õt ❝➳❝ ❦Õt q✉➯ ➤ã ✈➭ tr×♥❤ ❜➭② ♠ét sè ✈Ý ❞ơ ♠✐♥❤ ❤♦➵✳ ụ ú t trì ột số ị ý ➤✐Ó♠ ❜✃t ➤é♥❣ ❜é ➤➠✐ ❝➳❝ ➳♥❤ ①➵ ❝♦ ❦✐Ó✉ ●❡r❛❣❤t② s✉② ré♥❣ tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣ 0✲➤➬② ➤ñ t❤ø tù✱ ❣✐í✐ t❤✐Ư✉ ♠ét sè ♥❤❐♥ ①Ðt ✈Ị ➤✐Ĩ♠ ❜✃t ➤é♥❣ ❝ñ❛ ❝➳❝ ➳♥❤ ①➵ ❝♦ ❇❛♥❛❝❤ s✉② ré♥❣ ✈➭ tr×♥❤ ❜➭② ♠ét sè ❤Ư q✉➯ ❝đ❛ ❝❤ó♥❣ ✈➭ ❝➳❝ ✈Ý ❞ơ ♠✐♥❤ ❤ä❛✳ ◆❣❤Ư ❆♥✱ ♥❣➭② ✸✵ t❤➳♥❣ ✵✼ ♥➝♠ ✷✵✶✼ ◆❣✉②Ơ♥ ❚❤Þ ❍➺♥❣ ✐✐✐ ❝❤➢➡♥❣ ✶ ➜✐Ĩ♠ ❜✃t ➤é♥❣ ❝đ❛ ❝➳❝ ➳♥❤ ①➵ ❝♦ ❦✐Ĩ✉ ●❡r❛❣❤t② tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣ ❈➳❝ ❦❤➳✐ ♥✐Ö♠ ❝➡ ❜➯♥ ✶✳✶ P❤➬♥ ♥➭② ❝❤ó♥❣ t➠✐ ❣✐í✐ t❤✐Ư✉ q✉❛ ♠ét sè ❦✐Õ♥ t❤ø❝ ❧➭♠ ❝➡ së ❝❤♦ ✈✐Ư❝ tr×♥❤ ❜➭② ❝đ❛ ❧✉❐♥ ✈➝♥✳ ❇❛♦ ❣å♠ ❝➳❝ ♥é✐ ❞✉♥❣✿ ♠➟tr✐❝✱ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝✱ ♠➟tr✐❝ r✐➟♥❣✱ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣✱ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣ ➤➬② ➤đ✱ ➤✐Ĩ♠ ❜✃t ➤é♥❣ tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ ➤➬② ➤đ✱ ➤✐Ĩ♠ ❜✃t ➤é♥❣ tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣ ➤➬② ủ rì ột số ị ý ể t ộ ❝đ❛ ❝➳❝ ➳♥❤ ①➵ ❝♦ ❦✐Ĩ✉ ●❡r❛❣❤t② tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣ ➤➬② ➤đ✱ ♠ét sè ❤Ư q✉➯✱ tÝ♥❤ ❝❤✃t ❧✐➟♥ q✉❛♥ ❝➬♥ ❞ï♥❣ ❝❤♦ ❝➳❝ tr×♥❤ ❜➭② ✈Ị s❛✉ ✈➭ ♠ét sè ✈Ý ❞ô ♠✐♥❤ ❤ä❛ ❝❤♦ ❝➳❝ ❦Õt q✉➯ ➤ã✳ ➜Þ♥❤ ♥❣❤Ü❛✳ ✶✳✶✳✶ X ♠➟tr✐❝ tr➟♥ ✭❬✶❪✮ ❈❤♦ t ợ X d : X ì X → R ➤➢ỵ❝ ❣ä✐ ❧➭ ♠ét ♥Õ✉ t❤á❛ ♠➲♥ ❝➳❝ ➤✐Ị✉ ❦✐Ư♥ ✭✶✮ d(x, y) ≥ ✈í✐ ♠ä✐ x, y ∈ X ✭✷✮ d(x, y) = d(y, x) ✈í✐ ♠ä✐ x, y ∈ X ✳ ✭✸✮ d(x, y) ≤ d(x, z) + d(z, y) ✈í✐ ♠ä✐ x, y, z ∈ X ✳ ❚❐♣ X ❝ï♥❣ ✈í✐ ♠ét ♠➟tr✐❝ ✈➭ ❦Ý ❤✐Ö✉ ❧➭ d(x, y) = ♥Õ✉ ✈➭ ❝❤Ø ♥Õ✉ x = y ✳ ✈➭ d tr➟♥ ♥ã ➤➢ỵ❝ ❣ä✐ ❧➭ ♠ét ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ (X, d) ❤❛② ➤➡♥ ❣✐➯♥ ❧➭ X ✳ ❙è d (x, y) ❣ä✐ ❧➭ ❦❤♦➯♥❣ ❝➳❝❤ tõ ➤✐Ó♠ x ➤Õ♥ ➤✐Ó♠ y ✳ ✶✳✶✳✷ ♠ä✐ ❱Ý ❞ô✳ ✶✮ ❳Ðt X = R✱ d : R × R → R ❝❤♦ ❜ë✐ d (x, y) = |x − y|✱ ✈í✐ x, y ∈ R✳ ❑❤✐ ➤ã d ❧➭ ♠ét ♠➟tr✐❝ tr➟♥ R✳ ✷✮ ❳Ðt X = Rn ✳ ❱í✐ ❜✃t ❦ú x = (x1 , , xn ), y = (y1 , , yn ) ∈ Rn t❛ ➤➷t n d1 (x, y) = |xi − yi |2 n ✈➭ i=1 ♠➟tr✐❝ tr➟♥ |xi − yi |✳ ❑❤✐ ➤ã d1 , d2 ❧➭ ❝➳❝ d2 (x, y) = i=1 Rn ✳ ✶ ➜Þ♥❤ ♥❣❤Ü❛✳ ✶✳✶✳✸ ✭❬✶❪✮ ❈❤♦ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ ❣ä✐ ❧➭ ❤é✐ tơ ✈Ị ➤✐Ĩ♠ n ≥ n0 t❛ ❝ã x∈X d (xn , x) < ε✳ ♥Õ✉ ✈í✐ ♠ä✐ (X, d)✳ {xn } ⊂ X ❉➲② ➤➢ỵ❝ ε > tå♥ t➵✐ n0 ∈ N∗ s❛♦ ❝❤♦ ✈í✐ ♠ä✐ ▲ó❝ ➤ã t❛ ❦Ý ❤✐Ư✉ ❧➭ lim xn = x ❤❛② xn → x ❦❤✐ n→∞ n → ∞✳ ➜Þ♥❤ ♥❣❤Ü❛✳ ✶✳✶✳✹ ✶✮ ❉➲② n ∈ N∗ ✭❬✶❪✮ ❈❤♦ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ {xn } ⊂ X ➤➢ỵ❝ ❣ä✐ ❧➭ ❞➲② ❈❛✉❝❤② ♥Õ✉ ✈í✐ ♠ä✐ s❛♦ ❝❤♦ ✈í✐ ♠ä✐ ❈❛✉❝❤② ♥Õ✉ ✈➭ ❝❤Ø ♥Õ✉ (X, d)✱ {xn } ⊂ X ✳ n, m ≥ n0 lim n,m→+∞ t❛ ❝ã d(xn , xm ) < ε✱ ε > 0✱ tå♥ t➵✐ {xn } ❧➭ ❞➲② ❤❛② d(xn , xm ) = 0✳ ✷✮ ❑❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ (X, d) ➤➢ỵ❝ ❣ä✐ ❧➭ ➤➬② ➤đ ♥Õ✉ ♠ä✐ ❞➲② ❈❛✉❝❤② tr♦♥❣ ♥ã ➤Ị✉ ❤é✐ tơ✳ ➜Þ♥❤ ♥❣❤Ü❛✳ ✶✳✶✳✺ ✭❬✶❪✮ ❈❤♦ ❝➳❝ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ (X, d) ✈➭ (Y, ρ)✳ ➳♥❤ ①➵ f : (X, d) → (Y, ρ) ➤➢ỵ❝ ❣ä✐ ❧➭ ➳♥❤ ①➵ ❝♦ ♥Õ✉ tå♥ t➵✐ α ∈ [0, 1) s❛♦ ❝❤♦ ρ[f (x) , f (y)] ≤ αd (x, y) , ➜Þ♥❤ ❧ý✳ ✶✳✶✳✻ ➤➬② ➤đ✱ ➤✐Ĩ♠ ➜✐Ĩ♠ ①➵ ✭❬✶❪✮ ✭◆❣✉②➟♥ ❧ý ➳♥❤ ①➵ ❝♦✮ ●✐➯ sö f :X→X x∗ ∈ X ✈í✐ ♠ä✐ ❧➭ ➳♥❤ ①➵ ❝♦ tõ s❛♦ ❝❤♦ x∗ ∈ X X x, y ∈ X (X, d) ❧➭ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ ✈➭♦ ❝❤Ý♥❤ ♥ã✳ ❑❤✐ ➤ã tå♥ t➵✐ ❞✉② ♥❤✃t f (x∗ ) = x∗ ✳ ❝ã tÝ♥❤ ❝❤✃t f (x∗ ) = x∗ ➤➢ỵ❝ ❣ä✐ ❧➭ ➤✐Ĩ♠ ❜✃t ➤é♥❣ ❝đ❛ ➳♥❤ f ✳ ❚❛ ❦ý ❤✐Ư✉ F ix(f ) ❧➭ t❐♣ ❤ỵ♣ t✃t ❝➯ ❝➳❝ ➤✐Ĩ♠ ❜✃t ➤é♥❣ ❝đ❛ ➳♥❤ ①➵ f ✳ ✶✳✶✳✼ ➜Þ♥❤ ♥❣❤Ü❛✳ ✭❬✶✵❪✮ ❈❤♦ X = ∅✳ ❑❤✐ ➤ã✱ (X, p, ) ➤➢ỵ❝ ❣ä✐ ❧➭ ♠➟tr✐❝ t❤ø tù ♥Õ✉ ✭✐✮ ✭✐✐✮ (X, p) ❧➭ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝✳ (X, ) ❧➭ t❐♣ t❤ø tù ❜é ♣❤❐♥✳ ✷ ❦❤➠♥❣ ❣✐❛♥ ➜Þ♥❤ ♥❣❤Ü❛✳ ✶✳✶✳✽ ✭❬✶✶❪✮ ❛✳ ●✐➯ sư ➤➢ỵ❝ ❣ä✐ ❧➭ ♥ư❛ ❧✐➟♥ tô❝ tr➟♥ t➵✐ ❍➭♠ ♠ä✐ X ❧➭ ♠ét ❦❤➠♥❣ ❣✐❛♥ t➠♣➠✳ ❍➭♠ x0 ∈ X ♥Õ✉ ψ:X→R lim sup ψ(x) ≤ ψ(x0 )✳ x→x0 ψ ➤➢ỵ❝ ❣ä✐ ❧➭ ♥ư❛ ❧✐➟♥ tơ❝ tr➟♥ tr➟♥ X ♥Õ✉ ♥ã ❧➭ ♥ư❛ ❧✐➟♥ tơ❝ tr➟♥ t➵✐ x ∈ X✳ ❍➭♠ ψ ➤➢ỵ❝ ❣ä✐ ❧➭ ♥ư❛ ❧✐➟♥ tơ❝ ❞➢í✐ tr➟♥ X tr➟♥✱ tr♦♥❣ ➤ã ♥Õ✉ ❤➭♠ −ψ ❧➭ ♥ư❛ ❧✐➟♥ tơ❝ (−ψ)(x) = −ψ(x) ✈í✐ ♠ä✐ x ∈ X ✳ ψ ◆ã✐ ❝➳❝❤ ❦❤➳❝✱ ❤➭♠ ➤➢ỵ❝ ❣ä✐ ❧➭ ♥ư❛ ❧✐➟♥ tơ❝ ❞➢í✐ t➵✐ x0 ∈ X ♥Õ✉ lim inf ψ(x) ≥ ψ(x0 )✳ x→x0 ➜➠✐ ❦❤✐✱ t❛ ✈✐Õt lim ψ(x)✱ lim ψ(x) x→x0 ❧➬♥ ❧➢ỵt t❤❛② ❝❤♦ lim sup ψ(x) ✈➭ x→x0 x→x0 lim inf ψ(x)✳ x→x0 ❜✳ ❍➭♠ x0 ∈ X ♥Õ✉ ψ ✿ [0, +∞) → [0, +∞) ➤➢ỵ❝ ❣ä✐ ❧➭ ♥ư❛ ❧✐➟♥ tô❝ tr➟♥ ❜➟♥ ♣❤➯✐ t➵✐ lim sup ψ(x) ≤ ψ(x0 )✳ x→x0 + ➜Þ♥❤ ♥❣❤Ü❛✳ ✶✳✶✳✾ ✭❬✶✹❪✮ ❈❤♦ t❐♣ ❤ỵ♣ ❧➭ ♠ét ♠➟tr✐❝ r✐➟♥❣ tr➟♥ X X = ∅✳ p : X ì X R+ ợ ọ ♥Õ✉ t❤á❛ ♠➲♥ ❝➳❝ ➤✐Ị✉ ❦✐Ư♥ ✭✶✮ x = y ♥Õ✉ ✈➭ ❝❤Ø ♥Õ✉ p(x, x) = p(x, y) = p(y, y) ✈í✐ ♠ä✐ x, y ∈ X ✳ ✭✷✮ p(x, x) ≤ p(x, y) ✈í✐ ♠ä✐ x, y ∈ X ✳ ✭✸✮ p(x, y) = p(y, x) ✈í✐ ♠ä✐ x, y ∈ X ✳ ✭✹✮ p(x, y) ≤ p(x, z) + p(z, y) − p(z, z) ✈í✐ ♠ä✐ x, y, z ∈ X ✳ ❚❐♣ X = ∅ ❝ï♥❣ ✈í✐ ♠ét ♠➟tr✐❝ r✐➟♥❣ p tr➟♥ ♥ã ➤➢ỵ❝ ❣ä✐ ❧➭ ♠ét ❦❤➠♥❣ ♠➟tr✐❝ r✐➟♥❣ ✈➭ ❦Ý ❤✐Ö✉ ❧➭ ✶✳✶✳✶✵ ❱Ý ❞ô✳ ✶✮ ❈❤♦ ❣✐❛♥ (X, p)✳ X = R+ ✱ p : X ì X R+ ị p (x, y) = max {x, y}✱ ✈í✐ ♠ä✐ x, y ∈ X ✳ ❑❤✐ ➤ã✱ (X, p) ❧➭ ♠ét ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣✳ ❚❤❐t ✈❐②✱ t❛ t❤✃② p t❤á❛ ♠➲♥ ➤✐Ị✉ ❦✐Ư♥ ✭✶✮✱ ✭✷✮✱ ✭✸✮ ❝đ❛ ➜Þ♥❤ ♥❣❤Ü❛ ✶✳✶✳✾✳ ▲✃② x, y, z ∈ X ❜✃t ❦ú✳ ❚❛ ①Ðt ❝➳❝ tr➢ê♥❣ ❤ỵ♣ s❛✉✳ ✸ ✰ ❚r➢ê♥❣ ❤ỵ♣ ✶✿ ◆Õ✉ x ≤ y ≤ z t❤× t❛ ❝ã✿ p(x, y) = y ≤ z + z − z = p(x, z) + p(z, y) − p(z, z)✳ ✰ ❈➳❝ tr➢ê♥❣ ❤ỵ♣ ❤ỵ♣ tr➟♥✳ ❱❐② x ≤ z ≤ y ✈➭ z ≤ x ≤ y ❝❤ø♥❣ ♠✐♥❤ t➢➡♥❣ tù tr➢ê♥❣ p t❤á❛ ♠➲♥ ➤✐Ị✉ ❦✐Ư♥ ✭✹✮ ❝đ❛ ➜Þ♥❤ ♥❣❤Ü❛ ✶✳✶✳✾✳ ❉♦ ➤ã (X, p) ❧➭ ♠ét ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣✳ ✷✮ ❈❤♦ X = R− = {x ∈ R : x ≤ 0}✱ ✈í✐ x, y ∈ R− ✱ t❛ ➤Þ♥❤ ♥❣❤Ü❛ p (x, y) = − {x, y}✳ ❑❤✐ ➤ã✱ p ❧➭ ♠ét ♠➟tr✐❝ r✐➟♥❣ tr➟♥ R− ✳ ✸✮ ❈❤♦ X = [0, 1]✱ ✈í✐ x, y ∈ X ✱ t❛ ➤Þ♥❤ ♥❣❤Ü❛ p (x, y) = emax{x,y} − t❤× p ❧➭ ♠ét ♠➟tr✐❝ r✐➟♥❣ tr➟♥ X ✳ ✶✳✶✳✶✶ sè ❇ỉ ➤Ị✳ ✭❬✶✹❪✮ ❈❤♦ (X, p) ❧➭ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣✳ ❑❤✐ ➤ã ❝➳❝ ❤➭♠ ps , pw : X ì X [0, ) ợ ❜ë✐ ps (x, y) = 2p (x, y) − p (x, x) − p (y, y) , pw (x, y) = p (x, y) − min{p (x, x) , p (y, y)}, ✈í✐ ♠ä✐ ✶✳✶✳✶✷ x, y ∈ X ❧➭ ❝➳❝ ♠➟tr✐❝ t➢➡♥❣ ➤➢➡♥❣ tr➟♥ ➜Þ♥❤ ♥❣❤Ü❛✳ ✭❬✶✹❪✮ ❈❤♦ (X, p) X✳ ❧➭ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣✱ x ∈ X ✈➭ ε > 0✳ ❚❛ ❦Ý ❤✐Ö✉ Bp (x, ε) = {y ∈ X : p (x, y) < p (x, x) + ε} ✈➭ ❣ä✐ Bp (x, ε) ❧➭ ì t r ị ý x ❦Ý♥❤ ε tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣ (X, p)✳ ✭❬✶✹❪✮ ợ tt ì tr ♠➟tr✐❝ (X, p) ❧➭ ❝➡ së ❝ñ❛ ♠ét t➠♣➠ τp tr➟♥ X ✳ ❈❤ø♥❣ ♠✐♥❤✳ ❉Ô t❤✃② r➺♥❣ X = Bp (x, ε)✳ ●✐➯ sö Bp (x, ε) , Bp (y, δ) x∈X,ε>0 ❧➭ ❝➳❝ ❤×♥❤ ❝➬✉ ♠ë tï② ý tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣ Bp (y, δ) = φ✳ ó ỗ (X, p) Bp (x, ) ∩ z ∈ Bp (x, ε) ∩ Bp (y, δ) t❛ ❝ã Bp (z, η) ⊂ Bp (x, ε) ∩ Bp (y, δ)✱ ✈í✐ η := p (z, z) + {ε − p (x, z) , δ − p (y, z)}✳ ✶✳✶✳✶✹ ➜Þ♥❤ ♥❣❤Ü❛✳ ✭❬✶✹❪✮ ❈❤♦ (X, p) ❧➭ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣ ✈➭ ❞➲② {xn } ⊂ X ✳ ❑❤✐ ➤ã ✹ ❇➞② ❣✐ê✱ t❛ sÏ ❝❤ø♥❣ ♠✐♥❤ r➺♥❣ ❧➭ α✲❝❤Ý♥❤ {xnk } ❝ñ❛ {xn } s❛♦ ❝❤♦ α(xnk , z) ≥ 1✱ ✈í✐ ♠ä✐ k ∈ N✳ q✉②✱ ♥➟♥ tå♥ t➵✐ ❞➲② ❝♦♥ ◆Õ✉ z ❧➭ ➤✐Ó♠ ❜✃t ➤é♥❣ ❝đ❛ f ✳ ❱× X p(z, f z) > 0✱ sư ❞ơ♥❣ ➤✐Ị✉ ❦✐Ư♥ ✭✷✳✺✮✱ ✈í✐ x = xnk ✈➭ y = z ✱ t❛ t❤✉ ➤➢ỵ❝ p(xnk +1 , f z) ≤ α(xnk , z)p(f xnk , f z) ≤ β(M (xnk , z))M (xnk , z) ❇➞② ❣✐ê✱ ✈í✐ k ➤đ ❧í♥✱ t❛ ❝ã M (xnk , z) = p(z, f z)✳ ❱× ✈❐②✱ tõ ❜✃t ➤➻♥❣ t❤ø❝ tr➢í❝ ✈➭ ❇ỉ ➤Ị ✶✳✶✳✶✺✱ t❛ ♥❤❐♥ ➤➢ỵ❝ = lim p(xnk +1 , f z) k→+∞ ❚õ ➤ã t❛ ❝ã ❱× M (xnk , z) = lim β(M (xnk , z)) ≤ k→+∞ lim β(M (xnk , z)) = 1✳ k→+∞ β ∈ S ✱ t❛ s✉② r❛ lim M (xnk , z) = 0✳ ➜✐Ò✉ ♥➭② ♠➞✉ t❤✉➱♥✳ k→+∞ ❱× ✈❐②✱ t❛ ❝ã ➤é♥❣ ❝đ❛ p(z, f z) = ✈➭ ✈× t❤Õ t❛ ❝ã f z = z ✳ ❱❐②✱ z ❧➭ ♠ét ➤✐Ó♠ ❜✃t f✳ ❇➞② ❣✐ê ❣✐➯ sö r➺♥❣ u ✈➭ v ✱ ✈í✐ u = v ❧➭ ❝➳❝ ➤✐Ĩ♠ ❜✃t ➤é♥❣ ❝ñ❛ f ✳ ❑❤✐ ➤ã✱ t❛ ❝ã < p(u, v) ≤ α(u, v)p(f u, f v) ≤ β(M (u, v))M (u, v) < M (u, v), tr♦♥❣ ➤ã M (u, v) = max p(u, v), p(u, f u), p(v, f v)), [p(u, f v)+p(f u, v)] = p(u, v) ❙✉② r❛ < p(u, v) < M (u, v) = p(u, v)✳ ➜✐Ò✉ ♥➭② ♠➞✉ t❤✉➱♥✳ ❉♦ ➤ã✱ t❛ ❝ã ➤é♥❣ ❝đ❛ u = v ✳ ❱× ✈❐② t❛ ➤➲ ❝❤ø♥❣ ♠✐♥❤ ➤➢ỵ❝ tÝ♥❤ ❞✉② ♥❤✃t ➤✐Ĩ♠ ❜✃t f✳ X = [0, 1]✱ d(x, y) = |x − y|✱ ✈í✐ ♠ä✐ x, y ∈ X ✱ e−t p(x, y) = max{x, y}✱ ✈í✐ ♠ä✐ x, y ∈ X (t) = ỗ t > ✈➭ (t + 1) ✷✳✶✳✻ ❱Ý ❞ô✳ ✭❬✷✵❪✮ ❈❤♦ ✷✶ β(0) = ✳ ➜➷t    α(x, y) =   ➳♥❤ ①➵ f : X → X ♥Õ✉ (x, y) = (0, 0) ♥Õ✉ (x, y) = (0, 0) ①➳❝ ➤Þ♥❤ ❜ë✐ f (x) = x ✈í✐ x ∈ X ❧➭ α✲❝❤✃♣ ♥❤❐♥ ➤➢ỵ❝✱ ♥❤➢♥❣ ♥ã ❦❤➠♥❣ t❤á❛ ♠➲♥ ➤✐Ị✉ ❦✐Ư♥ ❝đ❛ ➤Þ♥❤ ❧ý ●❡r❛❣❤t② tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ (X, d)✳ ❚❤❐t ✈❐②✱ ❜➺♥❣ ❝➳❝❤ ❧✃② x = ✈➭ y = 0✱ t❛ ❝ã 1 d(f 1, f 0) = d( , 0) = − = 3 ✈➭ β(d(1, 0))d(1, 0) = β(|1 − 0|)|1 − 0| = β(1) = ❱× > 2e 2e ị ý rt ợ sử ❞ơ♥❣ ➤Ĩ ❝❤ø♥❣ ♠✐♥❤ sù tå♥ t➵✐ ➤✐Ĩ♠ ❜✃t ➤é♥❣ ❝đ❛ f✳ ▼➷t ❦❤➳❝✱ t❛ ➤Ĩ ý t❤✃② r➺♥❣ ➳♥❤ ①➵ f ❦❤➠♥❣ t❤á❛ ♠➲♥ ➤✐Ị✉ ❦✐Ư♥ ❝đ❛ ➜Þ♥❤ ❧ý ✸✳✶ tr♦♥❣ ❬✶✵❪ ➤è✐ ✈í✐ ♠➟tr✐❝ r✐➟♥❣ ①➳❝ ➤Þ♥❤ ë tr➟♥✱ ❜ë✐ ✈× > = β(p(1, 0))p(1, 0) 2e ▼➷t ❦❤➳❝✱ ❜➺♥❣ ❝➳❝❤ ❧✃② x, y ∈ X ✱ ❝❤➻♥❣ ❤➵♥✱ x ≥ y ✈➭ x > 0✱ ❦❤✐ ➤ã t❛ ❝ã p(f 1, f 0) = M (x, y) = max{p(x, y), p(x, f x), p(y, f y), [p(x, f y) + p(f x, y)]} = x α(x, y)p(f x, f y) = x 12 ✈➭ β(M (x, y))M (x, y) = β(x)x = ❇➞② ❣✐ê✱ ✈× 12 < 2e ≤ e−x ✱ ✈í✐ ♠ä✐ x+1 e−x x x+1 x ∈ [0, 1]✱ t❛ t❤✃② r➺♥❣ ➤✐Ị✉ ❦✐Ư♥ ✭✷✳✺✮ t❤á❛ ♠➲♥✳ ❉Ơ t❤✃② r➺♥❣ ❝➳❝ ➤✐Ị✉ ❦✐Ư♥ ✭✐✮✲✭✐✈✮ ❝đ❛ ➜Þ♥❤ ❧ý ✷✳✶✳✺ t❤á❛ ♠➲♥✱ ✷✷ f ♥➟♥ ➳♣ ❞ơ♥❣ ➤Þ♥❤ ❧ý ♥➭② t❛ s✉② r❛ ❝ã ➤✐Ó♠ ❜✃t ➤é♥❣ ❞✉② ♥❤✃t✱ ➤ã ❝❤Ý♥❤ ❧➭ z = 0✳ ➜Þ♥❤ ❧ý s❛✉ ❝❤♦ t❛ ♠ét ❦Õt q✉➯ ✈Ị sù tå♥ t➵✐ ➤✐Ĩ♠ ❜✃t ➤é♥❣ ❝ñ❛ ❝➳❝ tù ➳♥❤ ①➵ tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣ t❤ø tù✳ ✷✳✶✳✼ ➤đ✱ ✭❬✷✵❪✮ ❈❤♦ ➜Þ♥❤ ❧ý✳ (X, p, ) ❧➭ ♠ét ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣ t❤ø tù ➤➬② α : X × X → [0; +∞) ❧➭ ♠ét ❤➭♠ ✈➭ f : X → X ❣✐➯♠✳ ●✐➯ sö r➺♥❣ tå♥ t➵✐ β∈S ❧➭ ♠ét ➳♥❤ ①➵ ❦❤➠♥❣ t❤á❛ ♠➲♥ ➤✐Ị✉ ❦✐Ư♥ p(f x, f y) ≤ β(M (x, y))M (x, y) ✈í✐ ♠ä✐ x, y ∈ X ♠➭ x ✭✷✳✼✮ y ✱ tr♦♥❣ ➤ã M (x, y) = max p(x, y), p(x, f x), p(y, f y), [p(x, f y) + p(f x, y)] ●✐➯ t❤✐Õt ❝➳❝ ➤✐Ị✉ ❦✐Ư♥ s❛✉ ➤➢ỵ❝ t❤á❛ ♠➲♥ ✭✐✮ ✭✐✐✮ ❚å♥ t➵✐ x0 ∈ X s❛♦ ❝❤♦ ◆Õ✉ ❞➲② ❦❤➠♥❣ ❣✐➯♠ {xn } s❛♦ ❝❤♦ xnk ✭✐✐✐✮ ❑❤✐ ➤ã✱ x0 f x0 ❀ {xn } ❤é✐ tơ tí✐ x✱ t❤× tå♥ t➵✐ ❞➲② ❝♦♥ {xnk } ❝đ❛ x✱ ✈í✐ ♠ä✐ k ∈ N❀ x✱ y ❧➭ s♦ s➳♥❤ ➤➢ỵ❝ ✈í✐ ♥❤❛✉ ✈í✐ ❜✃t ❦ú x, y ∈ F ix(f )✳ f ❝ã ➤✐Ó♠ ❜✃t ➤é♥❣ ❞✉② ♥❤✃t ❈❤ø♥❣ ♠✐♥❤✳ ❳➳❝ ➤Þ♥❤ ➳♥❤ ①➵ α(x, y) = z ∈ X✳ α : X × X → [0; +∞) ế x ế tr trờ ợ ò ❚❛ ❝ã t❤Ĩ ❞Ơ ❞➭♥❣ t❤✃② r➺♥❣ f y, ❧➭ ợ ì ề ❦✐Ư♥ ✭✐✮ tr♦♥❣ ➜Þ♥❤ ❧ý ✷✳✶✳✺ t❤á❛ ♠➲♥✳ ❚õ ➤✐Ị✉ ❦✐Ư♥ ✭✐✮ ë tr➟♥ t❛ s✉② r❛ ➤✐Ị✉ ❦✐Ư♥ ✭✐✐✮ ủ ị ý ợ tỏ ❝❤♦ {xn } ❧➭ ♠ét ❞➲② tr♦♥❣ X s❛♦ α(xn , xn+1 ) ≥ 1✱ ✈í✐ ♠ä✐ n ∈ N ✈➭ xn → x ∈ X ✱ ❦❤✐ n → +∞✳ ❚❤❡♦ ➤Þ♥❤ ♥❣❤Ü❛ ❝đ❛ α✱ t❛ ❝ã xn xn+1 ✱ ✈í✐ ♠ä✐ n ∈ N✳ ◆❤ê ➤✐Ị✉ ❦✐Ư♥ ✭✐✐✮✱ tå♥ t➵✐ ❞➲② ✷✸ {xnk } ❝ñ❛ {xn } s❛♦ ❝❤♦ xnk ❝♦♥ ✈í✐ ♠ä✐ k ∈ N ✈➭ ❞♦ ➤ã✱ X m, n ∈ N ♠➭ m < n✳ ❧➭ x✱ ✈í✐ ♠ä✐ k ∈ N ✈➭ ✈× t❤Õ α(xnk , x) ≥ 1✱ α✲ ❝❤Ý♥❤ q✉②✳ ❍➡♥ ♥÷❛✱ α(xm , xn ) ≥ 1✱ ✈í✐ ♠ä✐ ❉♦ ➤ã ➤✐Ị✉ ❦✐Ư♥ ✭✐✐✐✮ ❝đ❛ ➜Þ♥❤ ❧ý ✷✳✶✳✺ t❤á❛ ♠➲♥✳ ❇➺♥❣ ❝➳❝❤ ①Ðt t➢➡♥❣ tù t❛ t❤✃② r➺♥❣ ➤✐Ị✉ ❦✐Ư♥ ✭✐✐✐✮ ❝đ❛ ➤Þ♥❤ ❧ý ❦Ð♦ t❤❡♦ ➤✐Ị✉ ❦✐Ư♥ ✭✐✈✮ ❝đ❛ ➜Þ♥❤ ý ì tế tết ủ ị ❧ý ✷✳✶✳✺ ➤➢ỵ❝ t❤á❛ ♠➲♥✳ ❉Ơ t❤✃② r➺♥❣ ➤✐Ị✉ ❦✐Ư♥ ❝♦ ✭✷✳✺✮ ❝ị♥❣ t❤á❛ ♠➲♥ ✈× s❛♦ ❝❤♦ x y ✈➭ α(x, y) = ♥Õ✉ x α(x, y) = 1✱ ✈í✐ ♠ä✐ x, y ∈ X y ✳ ❉♦ ➤ã✱ ♥❤ê ➜Þ♥❤ ❧ý ✷✳✶✳✺✱ t❛ s✉② r❛ f ❝ã ➤✐Ó♠ ❜✃t ➤é♥❣ ❞✉② ♥❤✃t✳ ➜✐Ó♠ ❜✃t ➤é♥❣ ❜é ➤➠✐ ❝đ❛ ❝➳❝ ➳♥❤ ①➵ ❝♦ ❦✐Ĩ✉ ●❡r❛❣❤t② ✷✳✷ s✉② ré♥❣ tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣ P❤➬♥ ♥➭② ❝❤ó♥❣ t➠✐ tr×♥❤ ❜➭② ❦❤➳✐ ♥✐Ư♠ ➤✐Ĩ♠ ❜✃t ➤é♥❣ ❜é ➤➠✐✱ ♠ét sè ➤Þ♥❤ ❧ý ➤✐Ĩ♠ ❜✃t ➤é♥❣ ❜é ➤➠✐ ❝➳❝ ➳♥❤ ①➵ ❝♦ ❦✐Ĩ✉ ●❡r❛❣❤t② s✉② ré♥❣ tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ 0✲➤➬② ➤đ t❤ø tù✱ ♠ét sè ❤Ư q✉➯ ❝đ❛ ❝❤ó♥❣ ✈➭ ❝➳❝ ✈Ý ❞ô ♠✐♥❤ ❤ä❛✳ ♠➟tr✐❝ r✐➟♥❣ ▼ét sè ♥❤❐♥ ①Ðt ✈Ị ➤✐Ĩ♠ ❜✃t ➤é♥❣ ❝đ❛ ❝➳❝ ➳♥❤ ①➵ ❝♦ ❇❛♥❛❝❤ s rộ ũ ợ trì ị ĩ ộ ➤➠✐ ❝ñ❛ ➳♥❤ ①➵ ❈❤♦ F ❦Ð♦ t❤❡♦ tn ✭❬✷✹❪✮ P❤➬♥ tư f : X × X −→ X ❧➭ ❧í♣ ❝➳❝ ❤➭♠ → 0✳ (x, y) ∈ X × X ♥Õ✉ ➤➢ỵ❝ ❣ä✐ ❧➭ ➤✐Ĩ♠ ❜✃t ➤é♥❣ f (x, y) = x ✈➭ f (y, x) = y ✳ θ : [0, ∞) → [0, 1) t❤á❛ ♠➲♥ ➤✐Ò✉ ❦✐Ö♥ θ(tn ) → ◆➝♠ ✷✵✶✵ ❆✳ ❆♠✐♥✐✲❍❛r❛♥❞✐ ✈➭ trì ết q s ị ❧ý✳ ✈➭ ♠ét ➳♥❤ ①➵ ✭✐✮ ✭✐✐✮ ✭❬✻❪✮ ❈❤♦ (X, ) t s tứ tự ợ tr ị ột ♠➟tr✐❝ d f : X → X ✳ ●✐➯ sö r➺♥❣ ❝➳❝ ➤✐Ị✉ ❦✐Ư♥ s❛✉ t❤á❛ ♠➲♥ (X, d) ❧➭ ➤➬② ➤đ✳ ✭✶✮ f ❧✐➟♥ tơ❝ ❤♦➷❝ ✷✹ ✭✷✮ {xn } ♥Õ✉ ❞➲② ❦❤➠♥❣ ❣✐➯♠ tr♦♥❣ X ❤é✐ tơ tí✐ ➤✐Ĩ♠ x ∈ X✱ t❤× x✱ ✈í✐ ♠ä✐ n ∈ N✳ xn ✭✐✐✐✮ f ✭✐✈✮ tå♥ t➵✐ x0 ∈ X ✭✈✮ tå♥ t➵✐ θ∈F ❧➭ ➳♥❤ ①➵ ❦❤➠♥❣ ❣✐➯♠✳ s❛♦ ❝❤♦ x0 f x0 ✳ s❛♦ ❝❤♦ ✈í✐ ♠ä✐ x, y ∈ X ♠➭ x y t❛ ❝ã d(f x, f y) ≤ θ(d(x, y))d(x, y) ❑❤✐ ➤ã f t➵✐ ♠ét ➤✐Ĩ♠ ✭✷✳✽✮ ❝ã ♠ét ➤✐Ĩ♠ ❜✃t ➤é♥❣✳ ❍➡♥ ♥÷❛✱ ế ỗ zX s x z y (x, y) ∈ X tå♥ z ✱ t❤× t❛ ♥❤❐♥ ➤➢ỵ❝ tÝ♥❤ ❞✉② ♥❤✃t ❝đ❛ ➤✐Ĩ♠ ❜✃t ➤é♥❣✳ ❚✐Õ♣ t ú t trì ột ị ý ể t ➤é♥❣ ❝❤♦ tr♦♥❣ ❧➭ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣ ➜Þ♥❤ ❧ý✳ ✷✳✷✳✸ ❈❤♦ ➳♥❤ ①➵ ✭❬✷✷❪✮ ❈❤♦ f :X→X 0✲ ➤➬② ➤ñ t❤ø tù✳ (X, p) ❧➭ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣ 0✲➤➬② ➤ñ t❤ø tù✳ ❧➭ ➳♥❤ ①➵ ❦❤➠♥❣ ❣✐➯♠ s❛♦ ❝❤♦ p(f x, f y) ≤ θ(p(x, y))p(x, y), ✈í✐ ♠ä✐ x, y ∈ X x0 ∈ X s❛♦ ❝❤♦ ✭✶✮ f ✭✷✮ ♥Õ✉ ❞➲② x0 x y ✭❤♦➷❝ y f x0 ✭❤♦➷❝ x0 x✮ x2 ∈ X θ ∈ F✳ ●✐➯ sö r➺♥❣ tå♥ t➵✐ f x0 ✮✳ ❚❛ ❝ò♥❣ ❣✐➯ t❤✐Õt r➺♥❣ f {xn } ❦❤➠♥❣ ❣✐➯♠ tr♦♥❣ X xn ❝ã ♠ét ➤✐Ó♠ ❜✃t ➤é♥❣ s❛♦ ❝❤♦ ♠➭ ❤é✐ tơ tí✐ ➤✐Ĩ♠ x ∈ X ✱ t❤× xn x x)✱ ✈í✐ ♠ä✐ n ∈ N✳ w✳ ❈❤ø♥❣ ♠✐♥❤✳ ❚❤❡♦ ❣✐➯ t❤✐Õt tå♥ t➵✐ x0 x1 ∈ X ✈➭ ✭✷✳✾✮ ❧✐➟♥ tô❝ ❤♦➷❝ ✭❤♦➷❝ ❑❤✐ ➤ã✱ ♠➭ (X, p) x1 = f x ✳ ❑❤✐ ➤ã✱ t❛ ❝ã✱ ∈ X s❛♦ ❝❤♦ x0 x1 x0 ✳ ▼ét ❝➳❝❤ t➢➡♥❣ tù✱ t❛ ❧✃② x2 = f x1 ✳ ❚r♦♥❣ tr➢ê♥❣ ❤ỵ♣ ♥➭②✱ x2 = f x1 t❤❡♦ ❝➳❝❤ ♥➭② t❛ ❝ã ❞➲② {xn } tr♦♥❣ X f x0 ✳ ❚❛ ①➳❝ ➤Þ♥❤ f x0 = x1 ✳ ❚✐Õ♣ tơ❝ s❛♦ ❝❤♦ f xn = xn+1 , n ∈ N ✷✺ ✭✷✳✶✵✮ ◆Õ✉ tå♥ t➵✐ sè ✈➭ ✈× ✈❐② ➤✐Ĩ♠ n0 ∈ N s❛♦ ❝❤♦ xn0 +1 = xn0 ✱ t❤× t❛ ❝ã xn0 +1 = xn0 = f xn0 xn0 ❧➭ ♠ét ➤✐Ĩ♠ ❜✃t ➤é♥❣ ❝đ❛ f ✳ ❉♦ ➤ã✱ ✈✐Ư❝ ❝❤ø♥❣ ♠✐♥❤ tå♥ t➵✐ ➤✐Ĩ♠ ❜✃t ➤é♥❣ ❦Õt t❤ó❝✳ ●✐➯ sư xn+1 = xn ✱ ✈í✐ ♠ä✐ n ∈ N✳ ❱× ❤➭♠ f ❦❤➠♥❣ ❣✐➯♠✱ ♥➟♥ tõ ❝➳❝❤ ➤➷t tr➟♥ t❛ ♥❤❐♥ ➤➢ỵ❝ x0 f x = x1 f x = x2 xn = f xn−1 xn+1 = f xn ✭✷✳✶✶✮ ❚õ ✭✷✳✾✮✱ ✭✷✳✶✵✮ ✈➭ ✭✷✳✶✶✮✱ ✈í✐ ♠ä✐ n ≥ 1✱ t❛ ♥❤❐♥ ➤➢ỵ❝ p(xn+1 , xn+2 ) = p(f xn , f xn+1 ) ≤ θ(p(xn , xn+1 ))p(xn , xn+1 ) ≤ p(xn , xn+1 ) ❑❤✐ ➤ã✱ ❞➲② ✭✷✳✶✷✮ {p(xn , xn+1 )} ❧➭ ❞➲② ➤➡♥ ➤✐Ö✉ ❣✐➯♠✳ ❉♦ ➤ã✱ p(xn , xn+1 ) → c ≥ n → ∞✳ ●✐➯ sư r➺♥❣ c > 0✳ ❑❤✐ ➤ã✱ tõ ➤✐Ị✉ ❦✐Ö♥ ✭✷✳✾✮✱ t❛ ❝ã p(xn+1 , xn+2 ) ≤ θ(p(xn , xn+1 )) ✭✷✳✶✸✮ p(xn , xn+1 ) ❚õ ❝➠♥❣ t❤ø❝ ✭✷✳✶✸✮ t❛ s✉② r❛ θ(p(xn , xn+1 )) → ❦❤✐ n → ∞✳ ❚õ tÝ♥❤ ❝❤✃t ❝ñ❛ ❦❤✐ θ∈F s✉② r❛ r➺♥❣ p(xn , xn+1 ) → ❦❤✐ n → ∞ ❇➞② ❣✐ê✱ t❛ sÏ ❝❤ø♥❣ ♠✐♥❤ r➺♥❣ ❞➲② {xn } ❧➭ ❞➲② ✭✷✳✶✹✮ 0✲❈❛✉❝❤②✳ ●✐➯ sö ♥❣➢ỵ❝ ❧➵✐ r➺♥❣ lim sup p(xn , xm ) > ✭✷✳✶✺✮ n,m→∞ ❚õ ➤✐Ị✉ ❦✐Ư♥ ✭✹✮ ❝đ❛ ♠➟tr✐❝ r✐➟♥❣ ✈➭ ➤✐Ị✉ ❦✐Ư♥ ✭✷✳✾✮✱ ✈í✐ n > m t❛ ❝ã p(xn , xm ) ≤ p(xn , xn+1 ) + p(xn+1 , xm+1 ) + p(xm+1 , xm ) − p(xm+1 , xm+1 ) − p(xn+1 , xn+1 ) ≤ p(xn , xn+1 ) + p(xm+1 , xm ) + θ(p(xn , xm ))p(xn , xm ) ≤ p(xn , xn+1 ) + p(xm+1 , xm ) − θ(p(xn , xm )) ✷✻ ✭✷✳✶✻✮ ❚õ ✭✷✳✶✹✮ ✈➭ ✭✷✳✶✺✮✱ t❛ ♥❤❐♥ ➤➢ỵ❝ lim n,m→∞ tõ ➤ã t❛ ❝ã − θ(p(xn , xm )) = ∞, ✭✷✳✶✼✮ lim θ(p(xn , xm )) ≥ 1✱ ➤✐Ò✉ ♥➭② ❦Ð♦ t❤❡♦ r➺♥❣ lim θ(p(xn , xm )) = n,m→∞ n,m→∞ 1✳ ì F t ợ lim p(xn , xm ) = 0✳ ➜✐Ò✉ ♥➭② ♠➞✉ t❤✉➱♥✳ ❉♦ ➤ã✱ n,m→∞ ❞➲② {xn } ❧➭ ❞➲② 0✲❈❛✉❝❤②✳ ❱× (X, p) ❧➭ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣ 0✲➤➬② ➤ñ✱ ♥➟♥ tå♥ t➵✐ w∈X s❛♦ ❝❤♦ xn → w tr♦♥❣ (X, p) ✈➭ p(w, w) = 0✳ ❍➡♥ ♥÷❛✱ t❛ ❝ã lim p(xn , w) = p(w, w) = ✭✷✳✶✽✮ n→∞ ❇➞② ❣✐ê t❛ sÏ ❝❤Ø r❛ r➺♥❣ ✰ ❚r➢ê♥❣ ❤ỵ♣ ✶✿ ◆Õ✉ f f w = w✳ ▼✉è♥ t❤Õ t❛ ét trờ ợ s tụ tì t ó f w = lim f xn = lim xn+1 = w n→∞ ❱× t❤Õ✱ t❛ ❝ã n→∞ ✭✷✳✶✾✮ f w = w✳ ✰ ❚r➢ê♥❣ ❤ỵ♣ ✷✿ ◆Õ✉ ✭✷✳✾✮ t❤á❛ ♠➲♥✱ t❤× t❛ ❝ã p(w, f w) ≤ p(w, xn+1 ) + p(xn+1 , f w) − p(xn+1 , xn+1 ) ≤ p(w, xn+1 ) + p(xn+1 , f w) ≤ p(w, xn+1 ) + θ(p(xn , w))p(xn , w) ≤ p(w, xn+1 ) + p(xn , w) ❇ë✐ ✈× ✭✷✳✷✵✮ p(xn , w) → ❦❤✐ n → ∞✱ ♥➟♥ t❛ ♥❤❐♥ ➤➢ỵ❝ f w = w✳ ❙❛✉ ➤➞② ❧➭ ✈Ý ❞ơ ♠✐♥❤ ❤ä❛ ❝❤♦ ➜Þ♥❤ ❧ý ✷✳✷✳✸ ✈➭ ❝ị♥❣ ❝❤Ø r❛ r➺♥❣ ➜Þ♥❤ ❧ý ✷✳✷✳✸ ❧➭ ♠ë ré♥❣ t❤ù❝ sù ❝đ❛ ➜Þ♥❤ ❧ý ✷✳✷✳✷✳ ✷✳✷✳✹ ❱Ý ❞ơ ➤Þ♥❤ ❜ë✐ X X = [0, +∞) ∩ Q✱ ✈➭ ①Ðt p : X ì X R+ ợ p(x, y) = max{x, y}✱ ✈í✐ ♠ä✐ x, y ∈ X ✳ ❑❤✐ ➤ã✱ (X, p) ❧➭ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣ ❚r➟♥ ✳ ✭❬✷✷❪✮ ❈❤♦ 0✲➤➬② ➤ñ✳ ◆❤➢♥❣ ♥ã ✈➱♥ ❝❤➢❛ ❧➭ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣ ➤➬② ➤đ✳ t❛ ①Ðt q✉❛♥ ❤Ư t❤ø tù ❜é ♣❤❐♥ ❝❤♦ ❜ë✐ x y ⇔ x = y; ❤♦➷❝ x, y ∈ [0, 1], ✷✼ ✈í✐ x ≤ y ✭✷✳✷✶✮ ❈❤♦ ❤➭♠ sè ❳➳❝ ➤Þ♥❤ ➳♥❤ ①➵ ●✐➯ sö r➺♥❣ θ(t) = (t + 1)−1 ✱ ✈í✐ ♠ä✐ t ≥ 0✳ ❑❤✐ ➤ã✱ râ r➭♥❣ r➺♥❣ θ ∈ F ✳ f : X → X ❝❤♦ ❜ë✐   x3    + x3 fx =     x2 ♥Õ✉ x ∈ [0, 1], ✭✷✳✷✷✮ ♥Õ✉ x > y ≤ x✳ ❑❤✐ ➤ã✱ t❛ ①Ðt ❤❛✐ tr➢ê♥❣ ❤ỵ♣ s❛✉✿ ✰ ❚r➢ê♥❣ ❤ỵ♣ ✶✿ ◆Õ✉ x ∈ [0, 1] (y ∈ [0, 1])✱ t❤× t❛ ❝ã p(f x, f y) = max y3 x3 , + x3 + y = x3 , + x3 p(x, y) = max{x, y} = x ✭✷✳✷✸✮ ❱× ✈❐②✱ t❛ ❝ã x x3 θ(p(x, y))p(x, y) − p(f x, f y) = − + x + x3 x − x2 ≥ = + x3 ❉♦ ➤ã✱ ✈í✐ ✭✷✳✷✹✮ x ∈ [0, 1]✱ t❤× p(f x, f y) ≤ θ(p(x, y))p(x, y)✳ ✰ ❚r➢ê♥❣ ❤ỵ♣ ✷✿ ◆Õ✉ x > (y = x)✱ t❤× t❛ ❝ã p(f x, f y) = max 1 , x2 y = , x2 p(x, y) = max{x, y} = x ✭✷✳✷✺✮ ❱× ✈❐②✱ t❛ ❝ã θ(p(x, y))p(x, y) − p(f x, f y) = x − 1+x x x3 − x − = = − k ≥ 0, x3 + x2 ✭✷✳✷✻✮ tr♦♥❣ ➤ã x2 + x + 0 1✱ t❤× p(f x, f y) ≤ θ(p(x, y))p(x, y)✳ ❍➡♥ ♥÷❛✱ tõ ✈✐Ư❝ ①Ðt ❚r➢ê♥❣ ❤ỵ♣ ✶ ✈➭ ❚r➢ê♥❣ ❤ỵ♣ ✷✱ râ r➭♥❣ r➺♥❣ ❝➯ ❤❛✐ ❣✐➯ t❤✐Õt ✭✶✮ ✈➭ ✭✷✮ ❝đ❛ ➜Þ♥❤ ❧ý ✷✳✷✳✸ ➤➢ỵ❝ t❤á❛ ♠➲♥✱ ✈➭ ✈í✐ x0 = 0✱ t❛ ❝ã x0 f x0 ✳ ❱× t❤Õ✱ t✃t ❝➯ tết ủ ị ý ề ợ tỏ ♠➲♥✳ ❇ë✐ ✈❐②✱ ❝ã ➤✐Ó♠ ❜✃t ➤é♥❣ w = 0✳ ◆❣➢ỵ❝ ❧➵✐✱ ♥Õ✉ tr♦♥❣ ❱Ý ❞ơ ✷✳✷✳✹ t❛ ①Ðt ♠➟tr✐❝ t✐➟✉ ❝❤✉➮♥ ✈í✐ ♠ä✐ f x, y ∈ X ✱ t❤× ❜➺♥❣ ❝➳❝❤ ❧✃② x = ✈➭ d(x, y) = |x − y| y = 1✱ t❛ ❝ã (1/3)3 1 = 0.46 , − d(f , f 1) = + (1/3)3 1 d( , 1) = | − 1| = 0.66 3 ✭✷✳✷✽✮ ✈➭ ✈× ✈❐② t❛ ❝ã 1 d(f , f 1) = 0.46 > 0, = θ(d( , 1))d( , 1) 3 ❉♦ ➤ã✱ ❣✐➯ t❤✐Õt ✭✷✳✷✾✮ d(f x, f y) ≤ θ(d(x, y))d(x, y) ❦❤➠♥❣ ➤➢ỵ❝ t❤á❛ ♠➲♥✳ ❑Õt q✉➯ s❛✉ ➤➞② tỉ♥❣ q✉➳t ✈➭ ♠ë ré♥❣ ➜Þ♥❤ ❧ý ✷✳✶ tr♦♥❣ ❬✽❪✳ ✷✳✷✳✺ ➜Þ♥❤ ❧ý✳ ➳♥❤ ①➵ ✭❬✷✷❪✮ ❈❤♦ F : X2 → X✳ (X, p) ❧➭ ♠ét ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣ 0✲➤➬② ➤ñ ✈➭ ●✐➯ sư r➺♥❣✱ ✈í✐ ♠ä✐ x, y, a, b ∈ X ✈➭ θ ∈ F ✱ ❝➳❝ ➤✐Ị✉ ❦✐Ư♥ s❛✉ ➤➢ỵ❝ t❤á❛ ♠➲♥ p(F (x, y), F (a, b)) ≤ θ((p(x, a) + p(y, b)) × 2−1 ) ((p(x, a) + p(y, b)) × 2−1 ) ❑❤✐ ➤ã✱ F ✭✷✳✸✵✮ ❝ã ♠ét ➤✐Ó♠ ❜✃t ➤é♥❣ ❜é ➤➠✐✳ ❈❤ø♥❣ ♠✐♥❤✳ ❳Ðt ♠➟tr✐❝ P : X × X → [0, ∞) ❝❤♦ ❜ë✐ P (A, B) = p(x, a) + p(y, b), ∀A = (x, y), B = (a, b) ∈ X ✷✾ ✭✷✳✸✶✮ ❑❤✐ ➤ã✱ ♥Õ✉ (X , p) ➤➬② ➤đ ✭0✲➤➬② ➤đ✮✱ t❤× (X , P ) ❧➭ ➤➬② ➤ñ ✭t➢➡♥❣ ø♥❣ 0✲➤➬② ➤đ✮✳ ❇➞② ❣✐ê✱ t❛ ①➳❝ ➤Þ♥❤ ➳♥❤ ①➵ T : X → X ❝❤♦ ❜ë✐ T (A) = (F (x, y), F (y, x)), ∀A = (x, y) ∈ X ●✐➯ sö ✭✷✳✸✷✮ P : X × X → [0, ∞) ❧➭ ♠➟tr✐❝ tr➟♥ X ợ ị P (A, B) = P (A, B) , ❚õ ✭✷✳✸✵✮✱ ✈í✐ ♠ä✐ ✈í✐ ♠ä✐ A = (x, y), B = (a, b) ∈ X (x, y), (a, b) ∈ X ♠➭ x a ✈➭ y b✱ t❛ ❝ã p(F (x, y), F (a, b)) ≤ θ((p(x, a) + p(y, b)) × 2−1 ) ((p(x, a) + p(y, b)) × 2−1 ), p(F (b, a), F (y, x)) ≤ θ((p(x, a) + p(y, b)) × 2−1 ) ((p(x, a) + p(y, b)) × 2−1 ) ➜✐Ị✉ ♥➭② ❦Ð♦ t❤❡♦ r➺♥❣ ✈í✐ ♠ä✐ (x, y), (a, b) ∈ X ♠➭ x a ✈➭ y ✭✷✳✸✸✮ b✱ t❛ ❝ã {p(F (x, y), F (a, b)) + p(F (b, a), F (y, x))} × 2−1 ≤ θ((p(x, a) + p(y, b)) × 2−1 ) ((p(x, a) + p(y, b)) × 2−1 ), ✭✷✳✸✹✮ ♥❣❤Ü❛ ❧➭ t❛ ❝ã P (T (A), T (B)) ≤ θ(P (A, B))P (A, B) ❇✃t ➤➻♥❣ t❤ø❝ tr➟♥ ❝❤Ý♥❤ ❧➭ ➤✐Ị✉ ❦✐Ư♥ ✭✷✳✾✮✱ ✈í✐ ♠ä✐ A ♠➭ A = (x, y) ✭✷✳✸✺✮ = (x, y), B = (a, b) ∈ X (a, b) = B ✳ ❱× ✈❐②✱ t✃t ❝➯ ❝➳❝ ➤✐Ị✉ ❦✐Ư♥ ❝đ❛ ➜Þ♥❤ ❧ý ✷✳✷✳✸ ➤Ị✉ tỏ r trờ ợ ụ ị ý ✷✳✷✳✸✱ t❛ s✉② r❛ r➺♥❣ ♠ét ➤✐Ó♠ ❜✃t ➤é♥❣✳ ❑❤✐ ➤ã✱ tõ ➤Þ♥❤ ♥❣❤Ü❛ ❝đ❛ T ❝ã T ✱ t❛ ❧➵✐ s✉② r❛ x = F (x, y) ✈➭ y = F (y, x)✳ ➜✐Ò✉ ➤ã ❝ã ♥❣❤Ü❛ ❧➭ (x, y) ❧➭ ♠ét ➤✐Ĩ♠ ❜✃t ➤é♥❣ ❜é ➤➠✐ ❝đ❛ F ✳ ✷✳✷✳✻ ❈❤ó ý ✭❬✷✷❪✮ ◆Õ✉ t❛ ❧✃② θ(t) = k ✱ ✈í✐ ♠ä✐ t ∈ [0, +∞)✱ ë ➤➞② ≤ k < tr♦♥❣ ❜✃t ➤➻♥❣ t❤ø❝ ✭✷✳✸✵✮✱ tì t ợ ết q ủ sr s t❤❛♠ ✭❬✼❪✮ tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣ ✸✵ 0✲➤➬② ➤ñ✳ í ụ s ọ trờ ợ ị ý ụ ợ ị ý tr tì ụ ợ í ụ t❤ø❝ ✭❬✷✷❪✮ ❈❤♦ X = [0, 1] p : X R+ ợ ị p(x, y) = max{x, y} + |x − y|✱ ✈í✐ ♠ä✐ x, y ∈ X ✳ ❑❤✐ ➤ã✱ (X, p) ❧➭ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣ 0✲➤➬② ➤ñ✱ ♥❤➢♥❣ ♥ã ❦❤➠♥❣ ❧➭ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣ ➤➬② ➤đ✳ ❚❛ ①Ðt q✉❛♥ ❤Ư t❤ø tù tr➟♥ x, y ∈ X, x ❳Ðt ❤➭♠ ✈➭ ❤➭♠ X ♥❤➢ s❛✉ y ⇔ x = y ❤♦➷❝ (x, y) ∈ {(0, 0), (0, 1), (1, 1)} θ(t) = (t + 1)−1 ✱ ✈í✐ ♠ä✐ t ≥ 0✳ ➤Þ♥❤ ➳♥❤ ①➵ F : X2 → X ❝❤♦ ❜ë✐ ❑❤✐ ➤ã✱ râ r➭♥❣ r➺♥❣ F (x, y) = (y − x) ✱ ✈í✐ ♠ä✐ ✭✷✳✸✻✮ θ ∈ F ✳ ❚❛ ①➳❝ x, y ∈ X ✳ ❑❤✐ ➤ã t❛ ❝ã ❝➳❝ tr➢ê♥❣ ❤ỵ♣ s❛✉✳ ✰ ❚r➢ê♥❣ ❤ỵ♣ ✶✿ ◆Õ✉ ❤♦➷❝ (x, y) = (a, b) = (0, 0) ❤♦➷❝ (x, y) = (a, b) = (1, 1) (x, y) = (0, 0) ✈➭ (a, b) = (1, 1)✱ t❤× t❛ ❝ã✱ p(F (x, y), F (a, b)) = 0✳ ❱× ✈❐②✱ ➤✐Ị✉ ❦✐Ư♥ ✭✷✳✸✵✮ t❤á❛ ♠➲♥✳ (x, y) = (0, 0) ✈➭ (a, b) = (0, 1)✱ t❤× t❛ ❝ã p(F (0, 0), F (0, 1)) = < = θ((p(0, 0) + p(0, 1)) × 2−1 ) ✰ ❚r➢ê♥❣ ❤ỵ♣ ✷✿ ◆Õ✉ ((p(0, 0) + p(0, 1)) × 2−1 ) ✭✷✳✸✼✮ ❱× ✈❐②✱ ➤✐Ị✉ ❦✐Ư♥ ✭✷✳✸✵✮ t❤á❛ ♠➲♥✳ (x, y) = (0, 1) ✈➭ (a, b) = (1, 1)✱ t❤× t❛ ❝ã p(F (0, 1), F (1, 1)) = < 5 = θ((p(0, 1) + p(1, 1)) × 2−1 ) ✰ ❚r➢ê♥❣ ợ ế ((p(0, 1) + p(1, 1)) ì 21 ) ✭✷✳✸✽✮ ❉♦ ➤ã✱ ➤✐Ị✉ ❦✐Ư♥ ✭✷✳✸✵✮ t❤á❛ ♠➲♥✳ ❱× ✈❐②✱ t✃t ❝➯ ❝➳❝ ➤✐Ị✉ ❦✐Ư♥ ❝đ❛ ➜Þ♥❤ ❧ý ✷✳✷✳✺ ➤Ị✉ t❤á❛ ♠➲♥ ✈➭ (0, 0) ❧➭ ➤✐Ĩ♠ ❜✃t ➤é♥❣ ❜é ➤➠✐ ❝đ❛ F ✳ ❱× (X, p) ❦❤➠♥❣ ❧➭ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣ ➤➬② ➤đ✱ ♥➟♥ ➜Þ♥❤ ❧ý ✷✳✶ tr♦♥❣ ❬✽❪ ❦❤➠♥❣ ➳♣ ❞ơ♥❣ ➤➢ỵ❝✳ ✸✶ ❑Õt ❧✉❐♥ ❙❛✉ ♠ét t❤ê✐ ❣✐❛♥ t❐♣ tr✉♥❣ ♥❣❤✐➟♥ ❝ø✉ ✈➭ t❤❛♠ ❦❤➯♦ ♥❤✐Ị✉ t➭✐ ❧✐Ư✉ ❦❤➳❝ ♥❤❛✉✱ ✈Ị ➤Ị t➭✐✿ ➜✐Ĩ♠ ❜✃t ➤é♥❣ ❝đ❛ ❝➳❝ ➳♥❤ ①➵ ❝♦ ❦✐Ĩ✉ ●❡r❛❣❤t② tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣✱ ❞➢í✐ sù ❤➢í♥❣ ❞➱♥ ❝đ❛ t❤➬② ❣✐➳♦ P●❙✳❚❙✳ ❚r➬♥ ❱➝♥ ➣♥✱ ❝❤ó♥❣ t➠✐ ➤➲ t❤✉ ➤➢ỵ❝ ♠ét sè ❦Õt q✉➯ s❛✉✿ ✶✳ ❍Ö t❤è♥❣ ❤ã❛ ❝➳❝ ❦❤➳✐ ♥✐Ư♠✱ ❝➳❝ tÝ♥❤ ❝❤✃t ❝➡ ❜➯♥ ✈➭ ❝➳❝ ✈Ý ❞ơ ♠✐♥❤ ❤ä❛ ✈Ò ♠➟tr✐❝✱ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝✱ ➳♥❤ ①➵ ❝♦✱ ♥❣✉②➟♥ ❧ý ➳♥❤ ①➵ ❝♦✱ ♠➟tr✐❝ r✐➟♥❣✱ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣✱ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣ ➤➬② ➤ñ✱ ❦❤➠♥❣ ❣✐❛♥ ♠❡tr✐❝ r✐➟♥❣ t❤ø tù✱ ➤✐Ó♠ ❜✃t ➤é♥❣ tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ ➤➬② ➤đ✱ ➤✐Ĩ♠ ❜✃t ➤é♥❣ tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣ ủ rì ột số ị ý ể ❜✃t ➤é♥❣ ❝đ❛ ❝➳❝ ➳♥❤ ①➵ ❝♦ ❦✐Ĩ✉ ❈✐r✐❝ t❤á❛ ♠➲♥ ➤✐Ị✉ ❦✐Ư♥ ❝♦ ❦✐Ĩ✉ ●❡r❛❣❤t② tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣✳ ✸✳ ❈❤ø♥❣ ♠✐♥❤ ❝❤✐ t✐Õt ❝➳❝ tÝ♥❤ ❝❤✃t ✈➭ ➤Þ♥❤ ❧ý ♠➭ tr♦♥❣ ❝➳❝ t➭✐ ❧✐Ư✉ t❤❛♠ ❦❤➯♦ ❝❤➢❛ ứ ứ ò s ợ ♥❤➢ ➜Þ♥❤ ❧ý ✶✳✷✳✶✱ ➜Þ♥❤ ❧ý ✷✳✶✳✹✱ ➜Þ♥❤ ❧ý ✷✳✶✳✺✱ ➜Þ♥❤ ❧ý ✷✳✶✳✼✱ ➜Þ♥❤ ❧ý ✷✳✷✳✸✱ ➜Þ♥❤ ❧ý ✷✳✷✳✺✳ ✹✳ ●✐í✐ t❤✐Ư✉ ❝❤✐ t✐Õt ❱Ý ❞ơ ✶✳✷✳✹✱ ❱Ý ❞ơ ✷✳✶✳✻✱❱Ý ❞ơ ✷✳✷✳✹✱❱Ý ❞ơ ✷✳✷✳✼✳ ✸✷ t➭✐ ❧✐Ư✉ t❤❛♠ ❦❤➯♦ ❬✶❪ ỗ t ❑❤♦❛ ❤ä❝ ✈➭ ❑ü t❤✉❐t✳ ❬✷❪ ❚✳ ❆❜❞❡❧❥❛✇❛❞✱ ❊✳ ❑❛r❛♣✐♥❛r✱ ❑✳ ❚❛s ✭✶✾✼✸✮✱ ✧❊①✐st❡♥❝❡ ❛♥❞ ✉♥✐q✉❡♥❡ss ♦❢ ❛ ❝♦♠♠♦♥ ❢✐①❡❞ ♣♦✐♥t ♦♥ ♣❛rt✐❛❧ ♠❡tr✐❝ s♣❛❝❡s✧✱ ❆♣♣❧✳ ▼❛t❤✳ ▲❡tt❡rs✱ ✷✹ ✭✶✶✮✱ ✶✾✵✵✲✶✾✵✹✳ ❬✸❪ ■✳ ❆❧t✉♥✱ ❆✳ ❊r❞✉r❛♥ ✭✷✵✶✶✮✱ ✧❋✐①❡❞ ♣♦✐♥t t❤❡♦r❡♠s ❢♦r ♠♦♥♦t♦♥❡ ♠❛♣♣✐♥❣s ♦♥ ♣❛rt✐❛❧ ♠❡tr✐❝ s♣❛❝❡s ✧✱ ❋✐①❡❞ P♦✐♥t ❚❤❡♦r② ❛♥❞ ❆♣♣❧✳✱ ■❉ ✺✵✽✼✸✵✱ ✶✵ ♣❛❣❡s✳ ❬✹❪ ■✳ ❆❧t✉♥✱ ❑✳ ❙❛❞❛r❛♥❣❛♥✐ ✭✷✵✶✸✮✱ ✧●❡♥❡r❛❧✐③❡❞ ●❡r❛❣❤t② t②♣❡ ♠❛♣♣✐♥❣s ♦♥ ♣❛rt✐❛❧ ♠❡tr✐❝ s♣❛❝❡s ❛♥❞ ❢✐①❡❞ ♣♦✐♥t r❡s✉❧ts✧✱ ❆r❛❜ ❏✳ ▼❛t❤✳✱ ✷✱ ✷✹✼✲✷✺✸✳ ❬✺❪ ■✳ ❆❧t✉♥✱ ❋✳ ❙♦❧❛✱ ❍✳ ❙✐♠s❡❦ ✭✷✵✶✵✮✱ ✧●❡♥❡r❛❧✐③❡❞ ❝♦♥tr❛❝t✐♦♥s ♦♥ ♣❛rt✐❛❧ ♠❡t✲ r✐❝ s♣❛❝❡s✧✱ ❚♦♣♦❧✳ ❆♣♣❧✳✱ ✶✺✼✱ ✷✼✼✽✲✷✼✽✺✳ ❬✻❪ ❆✳ ❆♠✐♥✐✲❍❛r❛♥❞✐✱ ❍✱ ❊♠❛♠✐ ✭✷✵✶✵✮✱ ✧❆ ❢✐①❡❞ ♣♦✐♥t t❤❡♦r♠❡ ❢♦r ❝♦♥tr❛❝✲ t✐♦♥ t②♣❡ ♠➳♣ ✐♥ ♣❛rt✐❛❧❧② ♦r❞❡r❡❞ ♠❡tr✐❝ s♣❛❝❡s ❛♥❞ ❛♣♣❧✐❝❛t✐♦♥ t♦ ♦r❞✐✲ ♥❛r② ❞✐❢❢❡r❡♥t✐❛❧ ❡q✉❛t✐♦♥s✧✱ ◆♦♥❧✐♥❡❛r ❆♥❛❧②s✐s✿ ❚❤❡♦r②✱ ▼❡t❤♦❞s ❛♥❞ ❆♣♣❧✐❝❛t✐♦♥s✱ ✼✷ ✭✺✮✱ ✷✷✸✽✲✷✷✹✷✳ ❬✼❪ ❚✳ ●✳ ❇❤❛s❦❛r✱ ❱✳ ▲❛❦s❤♠✐❦❛♥t❤❛♠ ✭✷✵✵✻✮✱ ✧❋✐①❡❞ ♣♦✐♥t t❤❡♦r❡♠s ✐♥ ♣❛r✲ t✐❛❧❧② ♦r❞❡r❡❞ ♠❡tr✐❝ s♣❛❝❡s ❛♥❞ ❛♣♣❧✐❝❛t✐♦♥s✧✱ ◆♦♥❧✐♥❡❛r ❆♥❛❧✳✱ ✻✺ ✭✼✮✱ ✶✸✼✾✲✶✸✾✸✳ ❬✽❪ ❇✳ ❙✳ ❈❤♦✉❞❤✉r②✱ ❆✳ ❑✉♥❞✉ ✭✷✵✶✷✮✱ ✧❖♥ ❝♦✉♣❧❡❞ ❣❡♥❡r❛❧✐s❡❞ ❇❛♥❛❝❤ ❛♥❞ ❑❛♥♥❛♥ t②♣❡ ❝♦♥tr❛❝t✐♦♥s✧✱ ❏✳ ◆♦♥❧✐♥❡❛r ❙❝✐✳ ❆♣♣❧✳✱ ✺ ✭✹✮✱ ✷✺✾✲✷✼✵✳ ❬✾❪ ❍✳ P✳ ❈♦r♣♦r❛t✐♦♥ ✭✷✵✶✻✮✱ ✧❋✐①❡❞ ♣♦✐♥ts t❤❡♦r❡♠ ❢♦r ●❡r❛❣❤t②✲ ❚②♣❡ ❈♦♥✲ tr❛❝t✐✈❡ ▼❛♣♣✐♥❣s ❛♥❞ ❈♦✉♣❧❡❞ ❋✐①❡❞ P♦✐♥t ❘❡s✉❧ts ✐♥ ✵✲ ❈♦♠♣❧❡t❡ ❖r✲ ❞❡r❡❞ P❛rt✐❛❧ ▼❡tr✐❝ ❙♣❛❝❡s✧✱ ■♥t❡r✳ ❏✳ ❆♥❛❧✳✱ ■❉ ✽✾✹✼✵✷✵✱ ✺ ♣❛❣❡s✳ ✸✸ ❬✶✵❪ ❉✳ ❉✉❦✐❝✱ ❩✳ ❑❛❞❡❧❜✉r❣✱ ❙✳ ❘❛❞❡♥♦✈✐❝ ✭✷✵✶✶✮✱ ✧❋✐①❡❞ ♣♦✐♥ts ♦❢ ●❡r❛❣❤t②✲ t②♣❡ ♠❛♣♣✐♥❣s ✐♥ ✈❛r✐♦✉s ❣❡♥❡r❛❧✐③❡❞ ♠❡tr✐❝ s♣❛❝❡s✧✱ ❆❜str✳ ❆♣♣❧✳ ❆♥❛❧✳✱ ■❉ ✺✻✶✷✹✺✱ ✶✸ ♣❛❣❡s✳ ❬✶✶❪ ❘✳ ❊♥❣❡❧❦✐♥❣ ✭✶✾✼✼✮✱ ●❡♥❡r❛❧ ❚♦♣♦❧♦❣②✱ P❲◆✲P♦❧✐s❤✱ ❙❝✐❡♥t✐❢✐❝ P✉❜❧✐s❤❡rs✱ ❲❛rs③❛✇❛✳ ❬✶✷❪ ▼✳ ●❡r❛❣❤t② ✭✶✾✼✸✮✱ ✧❖♥ ❝♦♥tr❛❝t✐✈❡ ♠❛♣♣✐♥❣s✧✱ Pr♦❝✳ ❆♠❡r✳ ▼❛t❤✳ ❙♦❝✳✱ ✹✵✱ ✻✵✹✲✻✵✽✳ ❬✶✸❪ ❊✳ ❑❛r❛♣✐♥❛r✱ ■✳ ▼✳ ❊r❤❛♥ ✭✷✵✶✶✮✱ ✧❆ ❢✐①❡❞ ♣♦✐♥t t❤❡♦r❡♠ ❢♦r ♦♣❡r❛t♦rs ♦♥ ♣❛rt✐❛❧ ♠❡tr✐❝ s♣❛❝❡s✧✱ ❆♣♣❧✳ ▼❛t❤✳ ▲❡tt❡rs✱ ✷✹ ✭✶✶✮✱ ✶✽✾✹✲✶✽✾✾✳ ❬✶✹❪ ❙✳ ●✳ ▼❛tt❤❡✇s ✭✶✾✾✹✮✱ ✧P❛rt✐❛❧ ♠❡tr✐❝ t♦♣♦❧♦❣②✧✱ ❆♥♥✳ ◆❡✇ ❨♦r❦ ❆❝❛❞✳ ❙❝✐✳✱ ✼✷✽✱ ✶✽✸✲✶✾✼✳ ❬✶✺❪ ❉✳ P❛❡s❛♥♦✱ P✳ ❱❡tr♦ ✭✷✵✶✷✮✱ ✧❙✉③✉❦✐✬s t②♣❡ ❝❤❛r❛❝t❡r✐③❛t✐♦♥s ♦❢ ❝♦♠♣❧❡t❡✲ ♥❡ss ❢♦r ♣❛rt✐❛❧ ♠❡tr✐❝ s♣❛❝❡s ❛♥❞ ❢✐①❡❞ ♣♦✐♥ts ❢♦r ♣❛rt✐❛❧❧② ♦r❞❡r❡❞ ♠❡tr✐❝ s♣❛❝❡s✧✱ ❚♦♣♦❧✳ ❆♣♣❧✳✱ ✶✺✾✱ ✾✶✶✲✾✷✵✳ ❬✶✻❪ ❙✳ ❘❛❞❡♥♦✈✐❝✱ ❩✳ ❑❛❞❡❧❜✉r❣✱ ❉✳ ❏❛♥❞r❧✐❝✱ ❆✳ ❏❛♥❞r❧✐❝ ✭✷✵✶✷✮✱ ✧❙♦♠❡ r❡s✉❧ts ♦♥ ✇❡❛❦ ❝♦♥tr❛❝t✐✈❡ ♠❛♣s✧✱ ❇✉❧❧✳ ■r❛♥✐❛♥ ▼❛t❤✳ ❙♦❝✳✱ ✸✽ ✭✸✮✱ ✻✷✺✲✻✹✺✳ ❬✶✼❪ ❙✳ ❘♦♠❛❣✉❡r❛ ✭✷✵✶✵✮✱ ✧❆ ❑✐r❦ t②♣❡ ❝❤❛r❛❝t❡r✐③❛t✐♦♥ ♦❢ ❝♦♠♣❧❡t❡♥❡ss ❢♦r ♣❛r✲ t✐❛❧ ♠❡tr✐❝ s♣❛❝❡s✧✱ ❋✐①❡❞ P♦✐♥t ❚❤❡♦r② ❆♣♣❧✳✱ ■❉ ✹✾✸✷✾✽✱ ✻ ♣❛❣❡s✳ ❬✶✽❪ ❙✳ ❘♦♠❛❣✉❡r❛ ✭✷✵✶✶✮✱ ✧❋✐①❡❞ ♣♦✐♥t t❤❡♦r❡♠ ❢♦r ❣❡♥❡r❛❧✐❞❡❞ ❝♦♥tr❛❝t✐♦♥s ♦♥ ♣❛rt✐❛❧ ♠❡tr✐❝ s♣❛❝❡s✧✱ ❚♦♣♦❧✳ ❆♣♣❧✳✱ ✷✶✽✱ ✷✸✾✽✲✷✹✵✻✳ ❬✶✾❪ ❙✳ ❘♦♠❛❣✉❡r❛ ✭✷✵✶✶✮✱ ✧▼❛t❦♦✇s❦✐ ✐s t②♣❡ t❤❡♦r❡♠s ❢♦r ❣❡♥❡r❛❧✐❞❡❞ ❝♦♥tr❛❝✲ t✐♦♥s ♦♥ ✭♦r❞❡r❡❞✮ ♣❛rt✐❛❧ ♠❡tr✐❝ s♣❛❝❡s✧✱ ❆♣♣❧✳ ●❡♥✳ ❚♦♣♦❧✳✱ ✶✷✱ ✷✶✸✲✷✷✵✳ ❬✷✵❪ ❱✳ ▲✳ ❘♦s❛✱ P✳ ❱❡tr♦ ✭✷✵✶✹✮✱ ✧❋✐①❡❞ ♣♦✐♥ts ❢♦r ●❡r❛❣❤t②✲ ❝♦♥tr❛❝t✐♦♥s ✐♥ ♣❛r✲ t✐❛❧ ♠❡tr✐❝ s♣❛❝❡s✧✱ ❏✳ ◆♦♥❧✐♥❡❛r ❙❝✐✳ ❆♣♣❧✳✱ ✼✱ ✶✲✶✵✳ ✸✹ ❬✷✶❪ ❇✳ ❙❛♠❡t✱ ❈✳ ❱❡tr♦✱ P✳ ❱❡tr♦ ✭✷✵✶✷✮✱ ✧❋✐①❡❞ ♣♦✐♥t t❤❡♦r❡♠ ❢♦r α✲ψ ✲ ❝♦♥tr❛❝t✐✈❡ t②♣❡ ♠❛♣♣✐♥❣s✧✱ ◆♦♥❧✐♥❡❛r ❆♥❛❧✳✱ ✼✺✱ ✷✶✺✹✲✷✶✻✺✳ ❬✷✷❪ ❊✳ ❨♦❧❛❝❛♥ ✭✷✵✶✻✮✱ ✧❋✐①❡❞ ♣♦✐♥t t❤❡♦r❡♠s ❢♦r ●❡r❛❣❤t② ❝♦♥tr❛❝t✐✈❡ ♠❛♣✲ ♣✐♥❣s ❛♥❞ ❝♦✉♣❧❡❞ ❢✐①❡❞ ♣♦✐♥t r❡s✉❧ts ✐♥ 0✲❝♦♠♣❧❡t❡ ♦r❞❡r❡❞ ♣❛rt✐❛❧ ♠❡tr✐❝ s♣❛❝❡s✧✱ ■♥t❡r✳ ❏✳ ❆♥❛❧✳✱ ■❉ ✽✾✹✼✵✷✵✱ ✺ ♣❛❣❡s✳ ❬✷✸❪ ❆✳ ❆♠✐♥✐✲❍❛r❛♥❞✐✱ ❍✳ ❊♠❛♠✐ ✭✷✵✶✵✮✱ ✧❆ ❢✐①❡❞ ♣♦✐♥t t❤❡♦r❡♠ ❢♦r ❝♦♥tr❛❝t✐♦♥ t②♣❡ ♠❛♣s ✐♥ ♣❛rt✐❛❧❧② ♦r❞❡r❡❞ ♠❡tr✐❝ s♣❛❝❡s ❛♥❞ ❛♣♣❧✐❝❛t✐♦♥ t♦ ♦r❞✐♥❛r② ❞✐❢❢❡r❡♥t✐❛❧ ❡q✉❛t✐♦♥s✧✱ ◆♦♥❧✐♥❡❛r ❆♥❛❧✳✱ ✼✷ ✭✺✮✱ ✷✷✸✽✲✷✷✹✷✳ ❬✷✹❪ ❍✳ ❑✳ ◆❛s❤✐♥❡✱ ❇✳ ❙❛♠❡t✱ ❛♥❞ ❈✳ ❱❡tr♦ ✭✷✵✶✷✮✱ ✧❈♦✉♣❧❡❞ ❝♦✐♥❝✐❞❡♥❝❡ ♣♦✐♥ts ❢♦r ❝♦♠♣❛t✐❜❧❡ ♠❛♣♣✐♥❣s s❛t✐s❢②✐♥❣ ♠✐①❡❞ ♠♦♥♦t♦♥❡ ♣r♦♣❡rt②✧✱ ❏✳ ◆♦♥❧✐♥✲ ❡❛r ❙❝✐✳ ❆♣♣❧✳✱ ✺✱ ✶✵✹✲✶✶✹✳ ✸✺

Ngày đăng: 25/08/2021, 16:02

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
[2] T. Abdeljawad, E. Karapinar, K. Tas (1973), "Existence and uniqueness of a common fixed point on partial metric spaces", Appl. Math. Letters, 24 (11), 1900-1904 Sách, tạp chí
Tiêu đề: Existence and uniqueness of a common fixed point on partial metric spaces
Tác giả: T. Abdeljawad, E. Karapinar, K. Tas
Nhà XB: Appl. Math. Letters
Năm: 1973
[3] I. Altun, A. Erduran (2011), "Fixed point theorems for monotone mappings on partial metric spaces ", Fixed Point Theory and Appl., ID 508730, 10 pages Sách, tạp chí
Tiêu đề: Fixed point theorems for monotone mappings on partial metric spaces
Tác giả: I. Altun, A. Erduran
Nhà XB: Fixed Point Theory and Applications
Năm: 2011
[4] I. Altun, K. Sadarangani (2013), "Generalized Geraghty type mappings on partial metric spaces and fixed point results", Arab J. Math., 2, 247-253 Sách, tạp chí
Tiêu đề: Generalized Geraghty type mappings on partial metric spaces and fixed point results
Tác giả: I. Altun, K. Sadarangani
Nhà XB: Arab J. Math.
Năm: 2013
[5] I. Altun, F. Sola, H. Simsek (2010), "Generalized contractions on partial met- ric spaces", Topol. Appl., 157, 2778-2785 Sách, tạp chí
Tiêu đề: Generalized contractions on partial met- ric spaces
Tác giả: I. Altun, F. Sola, H. Simsek
Nhà XB: Topol. Appl.
Năm: 2010
[6] A. Amini-Harandi, H, Emami (2010), "A fixed point theorme for contrac- tion type máp in partially ordered metric spaces and application to ordi- nary differential equations", Nonlinear Analysis: Theory, Methods and Applications, 72 (5), 2238-2242 Sách, tạp chí
Tiêu đề: A fixed point theorme for contrac- tion type máp in partially ordered metric spaces and application to ordi- nary differential equations
Tác giả: A. Amini-Harandi, H. Emami
Nhà XB: Nonlinear Analysis: Theory, Methods and Applications
Năm: 2010
[7] T. G. Bhaskar, V. Lakshmikantham (2006), "Fixed point theorems in par- tially ordered metric spaces and applications", Nonlinear Anal., 65 (7), 1379-1393 Sách, tạp chí
Tiêu đề: Fixed point theorems in partially ordered metric spaces and applications
Tác giả: T. G. Bhaskar, V. Lakshmikantham
Nhà XB: Nonlinear Analysis
Năm: 2006
[8] B. S. Choudhury, A. Kundu (2012), "On coupled generalised Banach and Kannan type contractions", J. Nonlinear Sci. Appl., 5 (4), 259-270 Sách, tạp chí
Tiêu đề: On coupled generalised Banach and Kannan type contractions
Tác giả: B. S. Choudhury, A. Kundu
Nhà XB: J. Nonlinear Sci. Appl.
Năm: 2012
[9] H. P. Corporation (2016), "Fixed points theorem for Geraghty- Type Con- tractive Mappings and Coupled Fixed Point Results in 0- Complete Or- dered Partial Metric Spaces", Inter. J. Anal., ID 8947020, 5 pages Sách, tạp chí
Tiêu đề: Fixed points theorem for Geraghty- Type Con- tractive Mappings and Coupled Fixed Point Results in 0- Complete Or- dered Partial Metric Spaces
Tác giả: H. P. Corporation
Nhà XB: Inter. J. Anal.
Năm: 2016
[10] D. Dukic, Z. Kadelburg, S. Radenovic (2011), "Fixed points of Geraghty- type mappings in various generalized metric spaces", Abstr. Appl. Anal., ID 561245, 13 pages Sách, tạp chí
Tiêu đề: Fixed points of Geraghty-type mappings in various generalized metric spaces
Tác giả: D. Dukic, Z. Kadelburg, S. Radenovic
Năm: 2011
[11] R. Engelking (1977), General Topology, PWN-Polish, Scientific Publishers, Warszawa Sách, tạp chí
Tiêu đề: General Topology
Tác giả: R. Engelking
Nhà XB: PWN-Polish
Năm: 1977
[12] M. Geraghty (1973), "On contractive mappings", Proc. Amer. Math. Soc., 40, 604-608 Sách, tạp chí
Tiêu đề: On contractive mappings
Tác giả: M. Geraghty
Nhà XB: Proc. Amer. Math. Soc.
Năm: 1973
[13] E. Karapinar, I. M. Erhan (2011), "A fixed point theorem for operators on partial metric spaces", Appl. Math. Letters, 24 (11), 1894-1899 Sách, tạp chí
Tiêu đề: A fixed point theorem for operators onpartial metric spaces
Tác giả: E. Karapinar, I. M. Erhan
Năm: 2011
[14] S. G. Matthews (1994), "Partial metric topology", Ann. New York Acad.Sci., 728, 183-197 Sách, tạp chí
Tiêu đề: Partial metric topology
Tác giả: S. G. Matthews
Nhà XB: Ann. New York Acad.Sci.
Năm: 1994
[15] D. Paesano, P. Vetro (2012), "Suzuki's type characterizations of complete- ness for partial metric spaces and fixed points for partially ordered metric spaces", Topol. Appl., 159, 911-920 Sách, tạp chí
Tiêu đề: Suzuki's type characterizations of complete-ness for partial metric spaces and fixed points for partially ordered metricspaces
Tác giả: D. Paesano, P. Vetro
Năm: 2012
[16] S. Radenovic, Z. Kadelburg, D. Jandrlic, A. Jandrlic (2012), "Some results on weak contractive maps", Bull. Iranian Math. Soc., 38 (3), 625-645 Sách, tạp chí
Tiêu đề: Some results on weak contractive maps
Tác giả: S. Radenovic, Z. Kadelburg, D. Jandrlic, A. Jandrlic
Nhà XB: Bull. Iranian Math. Soc.
Năm: 2012
[17] S. Romaguera (2010), "A Kirk type characterization of completeness for par- tial metric spaces", Fixed Point Theory Appl., ID 493298, 6 pages Sách, tạp chí
Tiêu đề: A Kirk type characterization of completeness for partial metric spaces
Tác giả: S. Romaguera
Nhà XB: Fixed Point Theory Appl.
Năm: 2010
[18] S. Romaguera (2011), "Fixed point theorem for generalided contractions on partial metric spaces", Topol. Appl., 218, 2398-2406 Sách, tạp chí
Tiêu đề: Fixed point theorem for generalided contractions onpartial metric spaces
Tác giả: S. Romaguera
Năm: 2011
[19] S. Romaguera (2011), "Matkowski is type theorems for generalided contrac- tions on (ordered) partial metric spaces", Appl. Gen. Topol., 12, 213-220 Sách, tạp chí
Tiêu đề: Matkowski is type theorems for generalided contrac- tions on (ordered) partial metric spaces
Tác giả: S. Romaguera
Nhà XB: Appl. Gen. Topol.
Năm: 2011
[20] V. L. Rosa, P. Vetro (2014), "Fixed points for Geraghty- contractions in par- tial metric spaces", J. Nonlinear Sci. Appl., 7, 1-10 Sách, tạp chí
Tiêu đề: Fixed points for Geraghty- contractions in par- tial metric spaces
Tác giả: V. L. Rosa, P. Vetro
Nhà XB: J. Nonlinear Sci. Appl.
Năm: 2014
[21] B. Samet, C. Vetro, P. Vetro (2012), "Fixed point theorem for α - ψ - contractive type mappings", Nonlinear Anal., 75, 2154-2165 Sách, tạp chí
Tiêu đề: Fixed point theorem for α - ψ - contractive type mappings
Tác giả: B. Samet, C. Vetro, P. Vetro
Nhà XB: Nonlinear Anal.
Năm: 2012

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w