1. Trang chủ
  2. » Luận Văn - Báo Cáo

Điểm bất động bộ đôi và điểm trùng nhau bộ đôi của các ánh xạ kiểu α ᴪ co trong không gian mêtrich thứ tự

51 7 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 51
Dung lượng 458,72 KB

Nội dung

❇é ●✐➳♦ ❞ô❝ ✈➭ ➜➭♦ t➵♦ ❚r➢ê♥❣ ➜➵✐ ❤ä❝ ❱✐♥❤ ◆❣✉②Ơ♥ ❳✉➞♥ ◗✉ý ➜✐Ĩ♠ ❜✃t ➤é♥❣ ❜é ➤➠✐ ✈➭ ➤✐Ĩ♠ trï♥❣ ♥❤❛✉ ❜é ➤➠✐ ❝đ❛ ❝➳❝ ➳♥❤ ①➵ ❦✐Ĩ✉ α✲ψ ✲❝♦ tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ t❤ø tù ▲✉❐♥ ✈➝♥ ❚❤➵❝ sü ❚♦➳♥ ❤ä❝ ◆❣❤Ư ❆♥ ✲ ✷✵✶✼ ❇é ●✐➳♦ ❞ơ❝ ✈➭ ➜➭♦ t➵♦ ❚r➢ê♥❣ ➜➵✐ ❤ä❝ ❱✐♥❤ ◆❣✉②Ô♥ ❳✉➞♥ ◗✉ý ➜✐Ó♠ ❜✃t ➤é♥❣ ❜é ➤➠✐ ✈➭ ➤✐Ó♠ trï♥❣ ♥❤❛✉ ❜é ➤➠✐ ❝đ❛ ❝➳❝ ➳♥❤ ①➵ ❦✐Ĩ✉ α✲ψ ✲❝♦ tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ t❤ø tù ▲✉❐♥ ✈➝♥ ❚❤➵❝ sü ❚♦➳♥ ❤ä❝ ❈❤✉②➟♥ ♥❣➭♥❤✿ ❚♦➳♥ ●✐➯✐ tÝ❝❤ ▼➲ sè✿ ✻✵✳✹✻✳✵✶✳✵✷ ❈➳♥ ❜é ❤➢í♥❣ ❞➱♥ ❦❤♦❛ ❤ä❝ P●❙✳ ❚❙✳ ❚r➬♥ ❱➝♥ ➣♥ ◆❣❤Ư ❆♥ ✲ ✷✵✶✼ ▲ê✐ ❝➯♠ ➡♥ ▲✉❐♥ ✈➝♥ ♥➭② ➤➢ỵ❝ ❤♦➭♥ t❤➭♥❤ t➵✐ ❚r➢ê♥❣ ➜➵✐ ❤ä❝ ❱✐♥❤✱ ❞➢í✐ sù ❤➢í♥❣ ❞➱♥ t❐♥ t×♥❤ ❝❤✉ ➤➳♦ ❝đ❛ t❤➬② ❣✐➳♦ P●❙✳❚❙✳ ❚r➬♥ ❱➝♥ ➣♥✱ t➳❝ ❣✐➯ ①✐♥ ❜➭② tá sù ❜✐Õt ➡♥ s➞✉ s➽❝ tí✐ ❚❤➬②✳ ◆❤➞♥ ❞Þ♣ ♥➭② ❡♠ ①✐♥ ❝❤➞♥ t❤➭♥❤ ❝➳♠ ➡♥ ❱✐Ư♥ ❙➢ ♣❤➵♠ ❚ù ♥❤✐➟♥✱ P❤ß♥❣ ➤➭♦ t➵♦ ❙❛✉ ➤➵✐ ❤ä❝✱ q✉ý t❤➬②✱ ❝➠ ❣✐➳♦ tr♦♥❣ tæ ●✐➯✐ ❚Ý❝❤ ✲ ❱✐Ö♥ ❙➢ ♣❤➵♠ ❚ù ♥❤✐➟♥✱ ❚r➢ê♥❣ ➜➵✐ ❤ä❝ ❱✐♥❤ ➤➲ t❐♥ t×♥❤ ❣✐ó♣ ➤ì ❡♠ tr♦♥❣ q✉➳ tr×♥❤ ❤ä❝ t❐♣ ✈➭ ❤♦➭♥ t❤➭♥❤ ❧✉❐♥ ✈➝♥✳ ❈✉è✐ ❝ï♥❣ t➠✐ ①✐♥ ❝❤➞♥ t❤➭♥❤ ❝➳♠ ➡♥ ❣✐❛ ➤×♥❤ ✈➭ ❝➳❝ ❛♥❤ ❝❤Þ ❤ä❝ ✈✐➟♥ ❝❛♦ ❤ä❝ ❦❤♦➳ ✷✸ ●✐➯✐ ❚Ý❝❤ t➵✐ ❚r➢ê♥❣ ➜➵✐ ❤ä❝ ❱✐♥❤ ✈➭ ❣✐❛ ➤×♥❤ ➤➲ t➵♦ ➤✐Ị✉ ❦✐Ư♥ t❤✉❐♥ ❧ỵ✐ ♥❤✃t ➤Ĩ ❣✐ó♣ t➠✐ ❤♦➭♥ t❤➭♥❤ tèt ♥❤✐Ư♠ ✈ơ tr♦♥❣ q✉➳ tr×♥❤ ❤ä❝ t❐♣✳ ▼➷❝ ❞ï ➤➲ tÝ❝❤ ❝ù❝ ➤➬✉ t➢ ✈➭ ❝ã ♥❤✐Ò✉ ❝è ❣➽♥❣ tr♦♥❣ ♥❣❤✐➟♥ ❝ø✉✱ t❤ù❝ ❤✐Ư♥ ➤Ị t➭✐✱ s♦♥❣ ❧✉❐♥ ✈➝♥ ❦❤➠♥❣ tr➳♥❤ ❦❤á✐ ♥❤÷♥❣ s❛✐ sãt✳ ❚➳❝ ❣✐➯ ♠♦♥❣ ♥❤❐♥ ợ ữ ý ế ó ó ủ qý ✈➭ ❜➵♥ ➤ä❝ ➤Ĩ ❧✉❐♥ ✈➝♥ ➤➢ỵ❝ ❤♦➭♥ t❤✐Ư♥✳ ❚➳❝ ❣✐➯ ✐ ▼ô❝ ▲ô❝ ❚r❛♥❣ ▼ô❝ ❧ô❝ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✐ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✐✐✐ ▲ê✐ ♥ã✐ ➤➬✉ ❈❤➢➡♥❣ ■✳ ➜✐Ó♠ ❜✃t ➤é♥❣ ❜é ➤➠✐ ❝đ❛ ❝➳❝ ➳♥❤ ①➵ ❦✐Ĩ✉ α✲ψ ✲❝♦ tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ t❤ø tù ✶✳✶✳ ❈➳❝ ❦✐Õ♥ t❤ø❝ ❝❤✉➮♥ ❜Þ ✶ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✳✷✳ ➜✐Ó♠ ❜✃t ➤é♥❣ ❜é ➤➠✐ ❝đ❛ ❝➳❝ ➳♥❤ ①➵ ❦✐Ĩ✉ ✶ α✲ψ ✲❝♦ tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ t❤ø tù ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✹ ❈❤➢➡♥❣ ■■✳ ➜✐Ó♠ ❜✃t ➤é♥❣ ❜é ➤➠✐ ✈➭ ➤✐Ó♠ trï♥❣ ♥❤❛✉ ❜é ➤➠✐ ❝đ❛ ❝➳❝ ➳♥❤ ①➵ ❦✐Ĩ✉ α✲ψ ✲❝♦ tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ t❤ø tù ✷✳✶✳ ➜✐Ó♠ ❜✃t ➤é♥❣ ❜é ➤➠✐ ❝đ❛ ❝➳❝ ➳♥❤ ①➵ ❦✐Ĩ✉ ✷✸ α✲ψ ✲❝♦ s✉② ré♥❣ tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ t❤ø tù ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✳✷✳ ➜✐Ĩ♠ trï♥❣ ♥❤❛✉ ❜é ➤➠✐ ❝đ❛ ❝➳❝ ➳♥❤ ①➵ ❦✐Ó✉ α✲ψ ✲❝♦ ✷✸ tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ t❤ø tù ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✹ ❑Õt ❧✉❐♥ ✹✷ ❚➭✐ ❧✐Ö✉ t❤❛♠ ❦❤➯♦ ✹✸ ✐✐ ▼ë ➤➬✉ ▲ý t❤✉②Õt ➤✐Ĩ♠ ❜✃t ➤é♥❣ ❧➭ sù ❦Õt ❤ỵ♣ ữ tí ì ọ ý tết ể ❜✃t ➤é♥❣ ➤➲ ➤ã♥❣ ❣ã♣ ✈❛✐ trß q✉❛♥ trä♥❣ tr♦♥❣ ✈✐Ư❝ ♥❣❤✐➟♥ ❝ø✉ ❝➳❝ ❤✐Ư♥ t➢ỵ♥❣ ♣❤✐ t✉②Õ♥✳ ➜➷❝ ❜✐Ưt✱ ❧ý t❤✉②Õt ➤✐Ĩ♠ ❜✃t ➤é♥❣ ➤➲ ➤➢ỵ❝ ➳♣ ❞ơ♥❣ tr♦♥❣ ❝➳❝ ❧Ü♥❤ ✈ù❝ ➤❛ ❞➵♥❣ ♥❤➢ ❙✐♥❤ ❤ä❝✱ ❍ã❛ ❤ä❝✱ ❑✐♥❤ tÕ✱ ❑ü t❤✉❐t✱ ▲ý t❤✉②Õt trß ❝❤➡✐ ✈➭ ❱❐t ❧ý✳ ❙ù ❤÷✉ Ý❝❤ ❝đ❛ ❝➳❝ ø♥❣ ❞ơ♥❣ ❝➭♥❣ t➝♥❣ ❧➟♥ ♥❤ê sù ♣❤➳t tr✐Ĩ♥ ❝đ❛ ❦❤♦❛ ❤ä❝ ❦ü t❤✉❐t✱ ❦ü t❤✉❐t ♠➳② tÝ♥❤ ➤Ó tÝ♥❤ t♦➳♥ ❝❤Ý♥❤ ①➳❝ ➤✐Ó♠ ❜✃t ➤é♥❣✳ ❑Õt q✉➯ q✉❛♥ trä♥❣ ➤➬✉ t✐➟♥ ♣❤➯✐ ❦Ó ➤Õ♥ tr♦♥❣ ❧ý t❤✉②Õt ➤✐Ó♠ ❜✃t ➤é♥❣ ❧➭ ♥❣✉②➟♥ ❧Ý ➳♥❤ ①➵ ❝♦ tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ ➤➬② ➤ñ ❝ñ❛ ❇❛♥❛❝❤✳ ❙❛✉ ➤ã✱ ◆❣✉②➟♥ ❧ý ➳♥❤ ①➵ ❝♦ ❇❛♥❛❝❤ ➤➲ trë t❤➭♥❤ ♠ét ❝➠♥❣ ❝ơ ♣❤ỉ ❞ơ♥❣ ➤Ĩ ❣✐➯✐ q✉②Õt ❝➳❝ ❜➭✐ t♦➳♥ ✈Ò sù tå♥ t➵✐ tr♦♥❣ ♥❤✐Ò✉ ❝❤✉②➟♥ ♥❣➭♥❤ ❝đ❛ ●✐➯✐ tÝ❝❤ t♦➳♥ ❤ä❝ ✈➭ ❝ã ♥❤✐Ị✉ ø♥❣ ❞ô♥❣ q✉❛♥ trä♥❣ tr♦♥❣ ♣❤➢➡♥❣ ♣❤➳♣ sè ♥❤➢ P❤➢➡♥❣ ♣❤➳♣ ◆❡✇t♦♥✲ ❘❛♣❤s♦♥✱ t❤✐Õt ❧❐♣ ❝➳❝ ➤Þ♥❤ ❧ý ❧✐➟♥ q✉❛♥ ➤Õ♥ sù tå♥ t➵✐ ✈➭ tÝ♥❤ ❞✉② ♥❤✃t ♥❣❤✐Ư♠ ❝đ❛ ♣❤➢➡♥❣ tr×♥❤ ✈✐ ♣❤➞♥✱ sù tå♥ t➵✐ ♥❣❤✐Ư♠ ❝đ❛ ♣❤➢➡♥❣ tr×♥❤ tÝ❝❤ ♣❤➞♥ ✈➭ ❤Ư ♣❤➢➡♥❣ tr×♥❤ t✉②Õ♥ tÝ♥❤✳ ❱× t❤Õ ➤➲ ❝ã ♠ét sè ❧í♥ ❝➳❝ ♠ë ré♥❣ ❝đ❛ ➤Þ♥❤ ❧ý ♥➭② ❝❤♦ ❝➳❝ ❧í♣ ➳♥❤ ①➵ ✈➭ ❦❤➠♥❣ ❣✐❛♥ ❦❤➳❝ ♥❤❛✉✱ ❜➺♥❣ ❝➳❝❤ ➤✐Ị✉ ❝❤Ø♥❤ ➤✐Ị✉ ❦✐Ư♥ ❝♦ ❝➡ ❜➯♥ ❤♦➷❝ t❤❛② ➤æ✐ ❦❤➠♥❣ ❣✐❛♥✳ ◆➝♠ ✷✵✵✻✱ ❇❤❛s❦❛r ✈➭ ▲❛❦s❤♠✐❦❛♥t❤❛♠ ➤➲ ❣✐í✐ t❤✐Ư✉ ❦❤➳✐ ♥✐Ư♠ ➤✐Ĩ♠ ❜✃t ➤é♥❣ ❜é ➤➠✐ ❝đ❛ ❝➳❝ ➳♥❤ ①➵ t❤á❛ ♠➲♥ tÝ♥❤ ➤➡♥ ➤✐Ư✉ tré♥ tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ t❤ø tù ✈➭ t❤✉ ➤➢ỵ❝ ♠ét sè ❦Õt q✉➯ ✈Ò sù tå♥ t➵✐ ✈➭ ❞✉② ♥❤✃t ❝đ❛ ♥❣❤✐Ư♠ ❝đ❛ ❜➭✐ t♦➳♥ ❣✐➳ trÞ ❜✐➟♥ t✉➬♥ ❤♦➭♥✳ ◆➝♠ ✷✵✵✾✱ ▲❛❦s❤♠✐❦❛♥t❤❛♠ ✈➭ ❈✐r✐✬❝ ➤➲ ❝❤ø♥❣ ♠✐♥❤ ➤Þ♥❤ ❧ý ✈Ị ➤✐Ĩ♠ trï♥❣ ♥❤❛✉ ❜é ➤➠✐ ✈➭ ➤✐Ĩ♠ ❜✃t ➤é♥❣ ❜é ➤➠✐ ❝ñ❛ ❝➳❝ ➳♥❤ ①➵ ❝♦ ♣❤✐ t✉②Õ♥ tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ ➤➬② ➤ñ t❤ø tù ❜é ♣❤❐♥✳ ◆➝♠ ✷✵✶✵✱ ❈❤✉❞❤✉r② ✈➭ ❑✉♥❞✉ ➤➲ ❝❤ø♥❣ ♠✐♥❤ ❝➳❝ ❦Õt q✉➯ ✈Ị ➤✐Ĩ♠ trï♥❣ ♥❤❛✉ ❜é ➤➠✐ ❝đ❛ ❝➳❝ ➳♥❤ ①➵ t➢➡♥❣ t❤Ý❝❤ tr♦♥❣ ❝➳❝ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ ➤➬② ➤ñ✳ ◆➝♠ ✷✵✶✷✱ ❙❛♠❡t ✈➭ ❝é♥❣ sù ➤➲ ➤➢❛ r❛ ❦❤➳✐ ♥✐Ö♠ ➳♥❤ ①➵ α✲ψ ✲❝♦✱ ➳♥❤ ①➵ α✲❝❤✃♣ ♥❤❐♥ ✈➭ ❝❤ø♥❣ ♠✐♥❤ ❝➳❝ ➤Þ♥❤ ❧ý ➤✐Ĩ♠ ❜✃t ➤é♥❣ ❝❤♦ ❝➳❝ ➳♥❤ ①➵ ♥➭② tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ ➤➬② ➤ñ✳ ❙❛✉ ➤ã✱ ❑❛r❛♣✐♥❛r ✈➭ ❙❛♠❡t ➤➲ ➤➢❛ r❛ ❦❤➳✐ ♥✐Ö♠ ➳♥❤ ể t ợ ữ ết q ♠í✐ ✈Ị ➤✐Ĩ♠ ❜✃t ➤é♥❣ ❝❤♦ ❧í♣ ❝➳❝ ➳♥❤ ①➵ ♥➭②✳ ▼ơ❝ ➤Ý❝❤ ❝đ❛ ❧✉❐♥ ✈➝♥ ❧➭ ♥❣❤✐➟♥ ❝ø✉ ❝➳❝ ➤Þ♥❤ ❧ý ✈Ị ➤✐Ĩ♠ ❜✃t ➤é♥❣ ❜é ➤➠✐ ❝đ❛ ❝➳❝ ➳♥❤ ①➵ ❦✐Ĩ✉ α✲ψ ✲❝♦✱ ❝➳❝ ➤Þ♥❤ ❧ý ✈Ị ➤✐Ĩ♠ ❜✃t ➤é♥❣ ❜é ➤➠✐ ❝đ❛ ❝➳❝ ➳♥❤ ①➵ ❦✐Ĩ✉ α✲ψ ✲❝♦ s✉② ré♥❣✱ ♠ét sè ➤Þ♥❤ ❧ý ➤✐Ĩ♠ trï♥❣ ♥❤❛✉ ❜é ➤➠✐ ❝đ❛ ❝➳❝ ➳♥❤ ①➵ ❦✐Ĩ✉ α✲ψ ✲❝♦ tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ t❤ø tù ✈➭ ♠ét sè ✈Ý ❞ô ♠✐♥❤ ❤ä❛ ❝❤♦ ❝➳❝ ❦Õt q✉➯ ➤ã✳ ▲✉❐♥ ✈➝♥ ❣å♠ ✷ ❝❤➢➡♥❣✿ ❈❤➢➡♥❣ ✶ ✈í✐ ♥❤❛♥ ➤Ị ➜✐Ĩ♠ ❜✃t ➤é♥❣ ❜é ➤➠✐ ❝đ❛ ❝➳❝ ➳♥❤ ①➵ ❦✐Ĩ✉ α✲ψ ✲❝♦ tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ t❤ø tù✳ ❚r♦♥❣ ❝❤➢➡♥❣ ♥➭②✱ ë ♠ô❝ ✶ ❝❤ó♥❣ t➠✐ ❣✐í✐ t❤✐Ư✉ q✉❛ ♠ét sè ❦✐Õ♥ t❤ø❝ ❧➭♠ ❝➡ së ❝❤♦ ✈✐Ư❝ tr×♥❤ ❜➭② ❧✉❐♥ ✈➝♥ ❜❛♦ ❣å♠ ♠ét sè ❦❤➳✐ ♥✐Ö♠✿ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝✱ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ ➤➬② ➤ñ✱ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ t❤ø tù✱ ❝➳❝ ➳♥❤ ①➵ ❦✐Ó✉ ✐✐✐ α✲ψ ✲❝♦✱ ➳♥❤ ①➵ α✲❝❤✃♣ ♥❤❐♥✱ ➳♥❤ ①➵ α✲ψ ✲❝♦ s✉② ré♥❣✱ ➳♥❤ ①➵ α✲ψ ✲❝♦ s✉② ré♥❣ ❧♦➵✐ ■✱ ➳♥❤ ①➵ α✲ψ ✲❝♦ s✉② ré♥❣ ❧♦➵✐ ■■✱ ➳♥❤ ①➵ ❝ã tÝ♥❤ ❝❤✃t ➤➡♥ ➤✐Ö✉ tré♥✱ ➳♥❤ ①➵ t➢➡♥❣ t❤Ý❝❤✱ ➤✐Ĩ♠ ❜✃t ➤é♥❣ ❝đ❛ ➳♥❤ ①➵✱ ➤✐Ĩ♠ ❜✃t ➤é♥❣ ❜é ➤➠✐ ❝đ❛ ❝➳❝ ➳♥❤ ①➵ ❝♦✱ ➤✐Ĩ♠ trï♥❣ ♥❤❛✉ ➤✐Ĩ♠ ❜✃t ➤é♥❣ ❜é ➤➠✐ ❝đ❛ ❝➳❝ ➳♥❤ ①➵ ❝♦✱ ♠ét sè ❦Õt q✉➯ ✈Ị ➤✐Ĩ♠ ❜✃t ➤é♥❣ ❝ñ❛ ❝➳❝ ➳♥❤ ①➵ α✲ψ ✲❝♦ ✈➭ ♠ét sè ✈Ý ❞ô ♠✐♥❤ ❤ä❛ ❝❤♦ ❝➳❝ ❦Õt q✉➯ ➤ã✳ ▼ô❝ ✷ ể trì ột số ị ý ể t ➤é♥❣ ❜é ➤➠✐ ❝đ❛ ❝➳❝ ➳♥❤ ❦✐Ĩ✉ α✲ψ ✲❝♦ tr➟♥ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ t❤ø tù✳ ❈❤➢➡♥❣ ✷ ✈í✐ ♥❤❛♥ ➤Ị ➜✐Ó♠ ❜✃t ➤é♥❣ ❜é ➤➠✐ ✈➭ ➤✐Ó♠ trï♥❣ ♥❤❛✉ ❜é α✲ψ ✲❝♦ tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ t❤ø tù✳ ❚r♦♥❣ ♠ô❝ ú t trì ột số ị ý ề ➤✐Ĩ♠ ❜✃t ➤é♥❣ ❜é ➤➠✐ ❝đ❛ ➳♥❤ ①➵ α✲ψ ✲❝♦✱ ➳♥❤ ①➵ α✲❝❤✃♣ ♥❤❐♥✱ ➳♥❤ ①➵ α✲ψ ✲❝♦ s✉② ré♥❣ ❧♦➵✐ ■✱ ➳♥❤ ①➵ α✲ψ ✲❝♦ s✉② ré♥❣ ❧♦➵✐ ➤➠✐ ❝đ❛ ❝➳❝ ➳♥❤ ①➵ ❦✐Ĩ✉ ■■ tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ t❤ø tù ✈➭ ❝➳❝ ❤Ư q✉➯ ❝đ❛ ❝❤ó♥❣✳ ▼ơ❝ ✷ ể trì ột số ị ý ể trù ♥❤❛✉ ❜é ➤➠✐ ❝đ❛ ❝➳❝ ➳♥❤ ①➵ ➤➡♥ ➤✐Ư✉ tré♥✱ ➳♥❤ ①➵ ❦✐Ó✉ α✲ψ ✲❝♦✱ ➳♥❤ ①➵ α✲❝❤✃♣ ♥❤❐♥ ❝ï♥❣ ✈í✐ ❝➳❝ ❤Ư q✉➯ ❝đ❛ ❝❤ó♥❣ ✈➭ ♠ét sè ✈Ý ❞ơ ♠✐♥❤ ❤ä❛✳ ◆❣❤Ư ❆♥✱ ♥❣➭② ✸✵ t❤➳♥❣ ✼ ♥➝♠ ✷✵✶✼ ◆❣✉②Ơ♥ ❳✉➞♥ ◗✉ý ✐✈ ❝❤➢➡♥❣ ✶ ➜✐Ĩ♠ ❜✃t ➤é♥❣ ❜é ➤➠✐ ❝đ❛ ❝➳❝ ➳♥❤ ①➵ ❦✐Ĩ✉ α✲ψ ✲❝♦ tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ t❤ø tù ❈➳❝ ❦✐Õ♥ t❤ø❝ ❝❤✉➮♥ ❜Þ ✶✳✶ P❤➬♥ ♥➭② ❝❤ó♥❣ t➠✐ ❣✐í✐ t❤✐Ư✉ q✉❛ ♠ét sè ❦✐Õ♥ t❤ø❝ ❧➭♠ ❝➡ së ❝❤♦ ✈✐Ư❝ tr×♥❤ ❜➭② ❝đ❛ ❧✉❐♥ ✈➝♥✳ ❈➳❝ ♥é✐ ❞✉♥❣ ❣å♠✿ ❑❤➠♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝✱ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ ➤➬② ➤ñ✱ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ t❤ø tù✱ ❝➳❝ ➳♥❤ ①➵ ❝♦✱ ➳♥❤ ①➵ ❦✐Ó✉ ①➵ α✲ψ ✲❝♦✱ ➳♥❤ α✲❝❤✃♣ ♥❤❐♥✱ ➳♥❤ ①➵ α✲ψ ✲❝♦ s✉② ré♥❣✱ ➳♥❤ ①➵ α✲ψ ✲❝♦ s✉② ré♥❣ ❧♦➵✐ ■✱ ➳♥❤ ①➵ α✲ψ ✲❝♦ s✉② ré♥❣ ❧♦➵✐ ■■✱ ➳♥❤ ①➵ ❝ã tÝ♥❤ ❝❤✃t ➤➡♥ ➤✐Ư✉ tré♥✱ ➳♥❤ ①➵ t➢➡♥❣ t❤Ý❝❤✱ ➤✐Ĩ♠ ❜✃t ➤é♥❣ ❝đ❛ ➳♥❤ ①➵✱ ➤✐Ĩ♠ ❜✃t ➤é♥❣ ❜é ➤➠✐ ❝đ❛ ❝➳❝ ➳♥❤ ①➵ ❝♦✱ ➤✐Ó♠ trï♥❣ ♥❤❛✉ ➤✐Ó♠ ❜✃t ➤é♥❣ ❜é ➤➠✐ ❝ñ❛ ❝➳❝ ➳♥❤ ①➵ ❝♦✱ ♠ét sè ❦Õt q✉➯ ✈Ị ➤✐Ĩ♠ ❜✃t ➤é♥❣ ❝đ❛ ❝➳❝ ➳♥❤ ①➵ α✲ψ ✲❝♦ ✈➭ ♠ét sè ✈Ý ❞ô ♠✐♥❤ ❤ä❛ ❝❤♦ ❝➳❝ ❦Õt q✉➯ ➤ã✳ ➜Þ♥❤ ♥❣❤Ü❛✳ ✶✳✶✳✶ ♠➟tr✐❝ tr➟♥ X ✭❬✶❪✮ ❈❤♦ t ợ X d : X ì X → R ➤➢ỵ❝ ❣ä✐ ❧➭ ♠ét ♥Õ✉ t❤á❛ ♠➲♥ ❝➳❝ ➤✐Ị✉ ❦✐Ư♥✿ ✭✶✮ d(x, y) ≥ ✈í✐ ♠ä✐ x, y ∈ X ✭✷✮ d(x, y) = d(y, x) ✈í✐ ♠ä✐ x, y ∈ X ✳ ✭✸✮ d(x, y) ≤ d(x, z) + d(z, y) ✈í✐ ♠ä✐ x, y, z ∈ X ✳ ❚❐♣ X ❝ï♥❣ ✈í✐ ♠ét ♠➟tr✐❝ ✈➭ ❦Ý ❤✐Ö✉ ❧➭ d(x, y) = ♥Õ✉ ✈➭ ❝❤Ø ♥Õ✉ x = y ✳ ✈➭ d tr➟♥ ♥ã ➤➢ỵ❝ ❣ä✐ ❧➭ ♠ét ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ (X, d) ❤❛② ➤➡♥ ❣✐➯♥ ❧➭ X ✳ ❙è d (x, y) ❣ä✐ ❧➭ ❦❤♦➯♥❣ ❝➳❝❤ tõ ➤✐Ó♠ x ➤Õ♥ ➤✐Ó♠ y ✳ ✶✳✶✳✷ ❱Ý ❞ơ✳ ✈í✐ ♠ä✐ ✶✮ ❳Ðt X = R✳ ❍➭♠ d : R × R → R ❝❤♦ ❜ë✐ d (x, y) = |x − y|✱ x, y ∈ R✳ ❑❤✐ ➤ã d ❧➭ ♠ét ♠➟tr✐❝ tr➟♥ R✳ ✶ ✷✮ ❳Ðt X = Rn ✳ n ➤➷t ❱í✐ ❜✃t ❦ú |xi − yi |2 d1 (x, y) = x = (x1 , , xn ), y = (y1 , , yn ) ∈ Rn n ✈➭ ✶✳✶✳✸ i=1 Rn ✳ ➜Þ♥❤ ♥❣❤Ü❛✳ n ≥ n0 t❛ ❝ã ✭❬✶❪✮ ❈❤♦ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ x∈X ❧➭ ❤é✐ tơ ✈Ị ➤✐Ĩ♠ |xi − yi |✳ ❑❤✐ ➤ã d1 , d2 ❧➭ d2 (x, y) = i=1 ❝➳❝ ♠➟tr✐❝ tr➟♥ t❛ ♥Õ✉ ✈í✐ ♠ä✐ d (xn , x) < ε✳ (X, d)✱ ❞➲② {xn } ⊂ X ➤➢ỵ❝ ❣ä✐ ε > tå♥ t➵✐ n0 ∈ N∗ ▲ó❝ ➤ã t❛ ❦Ý ❤✐Ư✉ ❧➭ s❛♦ ❝❤♦ ✈í✐ ♠ä✐ lim xn = x ❤❛② xn → x ❦❤✐ n→∞ n → ∞✳ ❈❤♦ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ ✭❞➲② ❝➡ ❜➯♥✮ ♥Õ✉ ✈í✐ ♠ä✐ ❝ã (X, d)✳ ❉➲② {xn } ⊂ X ➤➢ỵ❝ ❣ä✐ ❧➭ ❞➲② ❈❛✉❝❤② ε > 0✱ tå♥ t➵✐ n0 ∈ N∗ s❛♦ ❝❤♦ ✈í✐ ♠ä✐ n, m ≥ n0 t❛ d(xn , xm ) < ε✱ ❤❛② {xn } ➤➢ỵ❝ ❣ä✐ ❧➭ ❞➲② ❈❛✉❝❤② ♥Õ✉ ✈➭ ❝❤Ø ♥Õ✉ lim n,m→+∞ ✶✳✶✳✹ ◆❤❐♥ ①Ðt✳ ✷✮ ◆Õ✉ ❞➲② ✶✮ ◆Õ✉ ❞➲② {xn } ❤é✐ tơ t❤× ♥ã ❧➭ ❞➲② ❈❛✉❝❤②✳ {xn } ❧➭ ❞➲② ❈❛✉❝❤② tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ X {xnk } ❤é✐ tơ ✈Ị ➤✐Ĩ♠ x ∈ X ✶✳✶✳✺ d(xn , xm ) = ➜Þ♥❤ ♥❣❤Ü❛✳ t❤× ❞➲② ✈➭ ❝ã ❞➲② ❝♦♥ {xn } ❝ị♥❣ ❤é✐ tơ ✈Ị x✳ ✭❬✶❪✮ ❑❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ (X, d) ➤➢ỵ❝ ❣ä✐ ❧➭ ➤➬② ➤ñ✱ ♥Õ✉ ♠ä✐ ❞➲② ❈❛✉❝❤② tr♦♥❣ ♥ã ➤Ị✉ ❤é✐ tơ✳ ❚❐♣ ❝♦♥ ❣✐❛♥ ❝♦♥ ✶✳✶✳✻ M M ❝đ❛ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ (X, d) ➤➢ỵ❝ ❣ä✐ ❧➭ ➤➬② ➤đ✱ ♥Õ✉ ❦❤➠♥❣ ✈í✐ ♠➟tr✐❝ ❝➯♠ s✐♥❤ ❧➭ ❦❤➠♥❣ ❣✐❛♥ ➤➬② ➤đ✳ ❱Ý ❞ơ✳ ✶✮ ❚❐♣ ❤ỵ♣ ❝➳❝ sè t❤ù❝ R ✈í✐ ♠➟tr✐❝ d (x, y) = |x − y|, x, y ∈ R ❧➭ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ ➤➬② ➤ñ✳ ✷✮ ❚❐♣ ❤ỵ♣ Rn ❣å♠ t✃t ❝➯ ❝➳❝ ❜é n sè t❤ù❝✱ ✈í✐ ♠➟tr✐❝ d1 (x, y)✱ d2 (x, y) ❧➭ ❝➳❝ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ ➤➬② ➤ñ✳ ✸✮ ♠➟tr✐❝ X = C[a, b] ❧➭ t❐♣ ❤ỵ♣ t✃t ❝➯ ❝➳❝ ❤➭♠ sè t❤ù❝ ❧✐➟♥ tơ❝ tr➟♥ [a, b] ✈í✐ d(x, y) = max {|x(t) − y(t)| : t ∈ [a, b]} ❧➭ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ ➤➬② ➤ñ✳ ✷ ✹✮ lp ∞ p |xn | = {x = (xn )n : < ∞}, p ≥ 1, ✈í✐ ♠➟tr✐❝ ➤Þ♥❤ ❜ë✐✿ x = (xn )n , y = (yn )n tr♦♥❣ lp t❛ ➤Þ♥❤ ♥❣❤Ü❛ p ∞ |xn − yn |p d(x, y) = (lp , d) ❧➭ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ ➤➬② ➤ñ✳ ✭❬✶❪✮ ❈❤♦ ❝➳❝ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ ➜Þ♥❤ ♥❣❤Ü❛✳ ✶✳✶✳✼ (X, d) ✈➭ (Y, ρ)✳ ➳♥❤ ①➵ f : (X, d) → (Y, ρ) ➤➢ỵ❝ ❣ä✐ ❧➭ ➳♥❤ ①➵ ❝♦ ♥Õ✉ tå♥ t➵✐ k ∈ [0, 1) s❛♦ ❝❤♦ ρ[f (x) , f (y)] ≤ k d (x, y) , ➜Þ♥❤ ❧ý✳ ✶✳✶✳✽ ➤➬② ➤đ✱ ➤✐Ĩ♠ ➜✐Ĩ♠ ①➵ ✭❬✶❪✮ ✭◆❣✉②➟♥ ❧ý ➳♥❤ ①➵ ❝♦✮ ●✐➯ sö f :X→X x∗ ∈ X ❧➭ ➳♥❤ ①➵ ❝♦ tõ s❛♦ ❝❤♦ x∗ ∈ X X x, y ∈ X (X, d) ❧➭ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ ✈➭♦ ❝❤Ý♥❤ ♥ã✳ ❑❤✐ ➤ã tå♥ t➵✐ ❞✉② ♥❤✃t f (x∗ ) = x∗ ✳ ❝ã tÝ♥❤ ❝❤✃t f (x∗ ) = x∗ ➤➢ỵ❝ ❣ä✐ ❧➭ ➤✐Ĩ♠ ❜✃t ➤é♥❣ ❝đ❛ ➳♥❤ f✳ ➜Þ♥❤ ♥❣❤Ü❛✳ ✶✳✶✳✾ ✭❬✶✽❪✮ ❈❤♦ X ❧➭ ♠ét ➳♥❤ ①➵✳ ➳♥❤ ①➵ F y ✈í✐ ♠ä✐ ❦Ð♦ t❤❡♦ F (x) ≤ F (y)✳ (X, ≤) ❧➭ ♠ét t❐♣ ➤➢ỵ❝ s➽♣ t❤ø tù ✈➭ F : X −→ ➤➢ỵ❝ ❣ä✐ ❧➭ ❦❤➠♥❣ ❣✐➯♠✱ ♥Õ✉ ✈í✐ ♠ä✐ ❚➢➡♥❣ tù✱ F x, y ∈ X, x ≤ ➤➢ỵ❝ ❣ä✐ ❧➭ ❦❤➠♥❣ t➝♥❣✱ ♥Õ✉ ✈í✐ ♠ä✐ x, y ∈ X, x ≤ y ❦Ð♦ t❤❡♦ F (x) ≥ F (y)✳ ❚r♦♥❣ ❬✽❪✱ ❚✳ ●✳ ❇❤❛s❦❛r ✈➭ ❱✳ ▲❛❦s❤♠✐❦❛♥t❤❛♠ ➤➲ ➤➢❛ r❛ ❝➳❝ ❦❤➳✐ ♥✐Ư♠ ❞➢í✐ ➤➞② ✈Ị ➳♥❤ ①➵ ➤➡♥ ➤✐Ư✉ tré♥ ✈➭ ➤✐Ĩ♠ ❜✃t ➤é♥❣ ❜é ➤➠✐ ✈➭ t❤✉ ➤➢ỵ❝ ♠ét sè ❦Õt q✉➯ s❛✉✳ ✶✳✶✳✶✵ ị ĩ X ì X X ➳♥❤ ①➵ F (X, ≤) ❧➭ ♠ét t❐♣ ❤ỵ♣ ➤➢ỵ❝ s➽♣ t❤ø tù ✈➭ F : ➤➢ỵ❝ ❣ä✐ ❧➭ ❝ã tÝ♥❤ ❝❤✃t ➤➡♥ ➤✐Ö✉ tré♥✱ ♥Õ✉ F ➤➡♥ ➤✐Ö✉ ❦❤➠♥❣ ❣✐➯♠ t❤❡♦ ❜✐Õ♥ t❤ø ♥❤✃t ✈➭ ➤➡♥ ➤✐Ö✉ ❦❤➠♥❣ t➝♥❣ t❤❡♦ ❜✐Õ♥ t❤ø ❤❛✐ ❝đ❛ ♥ã✱ ♥❣❤Ü❛ ❧➭ ✈í✐ ♠ä✐ x1 , x2 ∈ X, x1 ≤ x2 ✸ s✉② r❛ F (x1 , y) ≤ F (x2 , y) ✈í✐ ❜✃t ❦ú y∈X ❜✃t ❦ú x ∈ X✳ ✶✳✶✳✶✶ ➜Þ♥❤ ♥❣❤Ü❛✳ ✈➭ ✈í✐ ♠ä✐ ❜é ➤➠✐ ❝đ❛ ➳♥❤ ①➵ ✶✳✶✳✶✷ y1 , y2 ∈ X, y1 ≤ y2 ✭❬✶✽❪✮ P❤➬♥ tư (x, y) ∈ X × X F : X ì X X ị ĩ s r ế F (x, y1 ) ≥ F (x, y2 ) ✈í✐ ➤➢ỵ❝ ❣ä✐ ❧➭ ➤✐Ĩ♠ ❜✃t ➤é♥❣ F (x, y) = x ✈➭ F (y, x) = y ✳ ✭❬✶✸❪✮ ❈❤♦ (X, ≤) ❧➭ ♠ét t❐♣ ❝ã t❤ø tù✳ ❉➲② {xn } ❣ä✐ ❧➭ ❦❤➠♥❣ ❣✐➯♠ ➤è✐ ✈í✐ q✉❛♥ ❤Ư t❤ø tù ≤ ♥Õ✉ xn ≤ xn+1 ✱ ❞➲② {xn } ⊂ X ➤➢ỵ❝ ❣ä✐ ❧➭ ❦❤➠♥❣ t➝♥❣ ➤è✐ ✈í✐ q✉❛♥ ❤Ư t❤ø tù ≤ ♥Õ✉ xn ✶✳✶✳✶✸ X ➜Þ♥❤ ❧ý✳ ✭❬✽❪✮ ❈❤♦ ⊂ X ➤➢ỵ❝ ≥ xn+1 ✈í✐ ♠ä✐ n ∈ N✳ (X, ≤) ❧➭ ♠ét t❐♣ s➽♣ t❤ø tù ✈➭ d ❧➭ ♠ét ♠➟tr✐❝ tr➟♥ (X, d) ❧➭ ♠ét ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ ➤➬② ➤đ✳ ●✐➯ sư F : X × X −→ X s❛♦ ❝❤♦ ❧➭ ➳♥❤ ①➵ ❧✐➟♥ tơ❝ ❝ã tÝ♥❤ ❝❤✃t ➤➡♥ ➤✐Ư✉ tré♥ tr➟♥ X ✈➭ ❣✐➯ sö tå♥ t➵✐ k ∈ [0, 1) s❛♦ ❝❤♦ d (F (x, y), F (u, v)) ≤ ◆Õ✉ tå♥ t➵✐ x , y0 ∈ X k [d(x, u) + d(y, v)] , ✈í✐ ♠ä✐ x ≥ u ✈➭ y ≤ v s❛♦ ❝❤♦ x0 ≤ F (x0 , y0 ) ✈➭ y0 ≥ F (y0 , x0 ), x, y ∈ X t❤× tå♥ t➵✐ ✶✳✶✳✶✹ X ➜Þ♥❤ ❧ý✳ s❛♦ ❝❤♦ s❛♦ ❝❤♦ ✭❬✽❪✮ ❈❤♦ (X, d) F (x, y) = x ✈➭ F (y, x) = y ✳ (X, ≤) ❧➭ ♠ét t❐♣ s➽♣ t❤ø tù ✈➭ d ❧➭ ♠ét ♠➟tr✐❝ tr➟♥ ❧➭ ♠ét ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ ➤➬② ➤đ✳ ●✐➯ sư r➺♥❣ X ❝ã tÝ♥❤ ❝❤✃t ❞➢í✐ ➤➞②✿ ✭✐✮ ♥Õ✉ (xn ) ❧➭ ❞➲② ❦❤➠♥❣ ❣✐➯♠ ✈➭ {xn } −→ x✱ t❤× xn ≤ x ✈í✐ ♠ä✐ n, ✭✐✐✮ ♥Õ✉ (yn ) ❧➭ ❞➲② ❦❤➠♥❣ t➝♥❣ ✈➭ {yn } −→ y ✱ t❤× y ≤ yn ✈í✐ ♠ä✐ n ●✐➯ sư F : X × X −→ X sö tå♥ t➵✐ ❧➭ ➳♥❤ ①➵ ❝ã tÝ♥❤ ❝❤✃t ➤➡♥ ➤✐Ö✉ tré♥ tr➟♥ X ✈➭ ❣✐➯ k ∈ [0, 1) s❛♦ ❝❤♦ d (F (x, y), F (u, v)) ≤ k [d(x, u) + d(y, v)] , ✹ ✈í✐ ♠ä✐ x ≥ u ✈➭ y ≤ v ✭✐✐✮ ✭✐✐✐✮ tå♥ t➵✐ ♥Õ✉ x , y0 ∈ X s❛♦ ❝❤♦ α∗ ((x0 , y0 ), (F (x0 , y0 ), F (y0 , x0 ))) ≥ 1❀ {xn }, {yn } ❧➭ ❝➳❝ ❞➲② tr♦♥❣ X s❛♦ ❝❤♦ ✈í✐ ♠ä✐ n ∈ N t❤á❛ ♠➲♥ α∗ ((xn , yn ), (xn+1 , yn+1 )) ≥ ✈➭ lim xn = x, lim yn = y, n→∞ α∗ ((xn , yn ), (x, y)) ≥ 1✳ t❤× t❛ ❝ã ❑❤✐ ➤ã✱ tå♥ t➵✐ ➜Þ♥❤ ❧ý✳ ✷✳✶✳✶✸ n→∞ x, y ∈ X s❛♦ ❝❤♦ F (x, y) = x ✈➭ F (y, x) = y ✳ ✭❬✶✷❪✮ ➜Þ♥❤ ý ợ s r từ ị ý ứ ♠✐♥❤✳ ❚➢➡♥❣ tù ♥❤➢ ❝❤ø♥❣ ♠✐♥❤ ❝đ❛ ➜Þ♥❤ ❧ý ✷✳✶✳✶✶✱ t❛ ♥❤❐♥ t❤✃② r➺♥❣ TF t❤á❛ ♠➲♥ ➤✐Ị✉ ❦✐Ư♥ ✭✶✳✷✮ ✈➭ ❞♦ ➤ã t✃t ❝➯ ❝➳❝ ➤✐Ị✉ ❦✐Ư♥ ❝đ❛ ➜Þ♥❤ ý ợ tỏ ì TF ó ột ➤✐Ó♠ ❜✃t ➤é♥❣✱ ♥❣❤Ü❛ ❧➭ F ❝ã ♠ét ➤✐Ó♠ ❜✃t ➤é♥❣ ❜é ➤➠✐✳ ➜Þ♥❤ ❧ý✳ ✷✳✶✳✶✹ ♠ä✐ ✭❬✶✷❪✮ ◆❣♦➭✐ ❝➳❝ ❣✐➯ t❤✐Õt ❝đ❛ ➜Þ♥❤ ❧ý ✷✳✶✳✶✶✱ t❛ ❣✐➯ sư r➺♥❣ ✈í✐ (x, y), (s, t) ∈ X × X tå♥ t➵✐ (u, v) ∈ X × X s❛♦ ❝❤♦ α((x, y), (u, v)) ≥ ✈➭ α((s, t), (u, v)) ≥ 1, ✈➭ ❝ị♥❣ ❣✐➯ sư r➺♥❣ (u, v) ❧➭ s♦ s➳♥❤ ➤➢ỵ❝ ✈í✐ (x, y) ✈➭ (s, t)✳ ❑❤✐ ➤ã✱ F ❝ã ➤✐Ó♠ ❜✃t ➤é♥❣ ❞✉② ♥❤✃t✳ ❈❤ø♥❣ ♠✐♥❤✳ ❚➢➡♥❣ tù ❝❤ø♥❣ ♠✐♥❤ ❝đ❛ ➜Þ♥❤ ❧ý ✷✳✶✳✶✶✱ t❛ ♥❤❐♥ t❤✃② r➺♥❣ TF t❤á❛ ♠➲♥ ➤✐Ị✉ ❦✐Ư♥ ✭✶✳✷✮ ✈➭ ❞♦ ó tt ề ệ ủ ị ý ợ t❤á❛ ♠➲♥✳ ❱× ✈❐② TF ❝ã ♠ét ➤✐Ĩ♠ ❜✃t ➤é♥❣✱ ♥❣❤Ü❛ ❧➭ F ❝ã ♠ét ➤✐Ó♠ ❜✃t ➤é♥❣ ❜é ➤➠✐✳ ✷✳✶✳✶✺ X ➜Þ♥❤ ❧ý✳ s❛♦ ❝❤♦ ✭❬✶✷❪✮ ❈❤♦ (X, ≤) ❧➭ ♠ét t❐♣ s➽♣ t❤ø tù✱ d ❧➭ ♠ét ♠➟tr✐❝ tr➟♥ (X, d) ❧➭ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ ➤➬② ➤ñ ✈➭ F : X × X −→ X ①➵ ❝ã tÝ♥❤ ❝❤✃t ➤➡♥ ➤✐Ư✉ tré♥✳ ●✐➯ sư tå♥ t➵✐ ❤➭♠ (x, y), (u, v) ∈ X × X ♠➭ ψ ∈ Ψ ❧➭ ➳♥❤ s❛♦ ❝❤♦ ✈í✐ ♠ä✐ (x, y) ≥2 (u, v) t❛ ❝ã d(x, u) + d(y, v) d(F (x, y), F (u, v)) + d(F (y, x), F (v, u)) ≤ψ 2 ●✐➯ sö r➺♥❣ ❝➳❝ ➤✐Ị✉ ❦✐Ư♥ s❛✉ ➤➞② ❝ị♥❣ t❤á❛ ♠➲♥ ✸✶ ✭✐✮ ✭✐✐✮ tå♥ t➵✐ F (x0 , y0 ) ∈ X × X ❧✐➟♥ tô❝ ❤♦➷❝ s❛♦ ❝❤♦ (x0 , y0 ) ≤2 (F (x0 , y0 ), F (y0 , x0 )); (X , ≤2 , d) ❧➭ ❝❤Ý♥❤ q✉②✳ ❑❤✐ ➤ã✱ F ❝ã ➤✐Ó♠ ❜✃t ➤é♥❣ ❜é ➤➠✐✳ ❍➡♥ ♥÷❛✱ ♥Õ✉ ✈í✐ ♠ä✐ (x, y), (u, v) tå♥ t➵✐ (z, w) ∈ X × X s❛♦ ❝❤♦ ∈ X×X (x, y) ≤2 (z, w) ✈➭ (u, v) ≤2 (z, w) t❤× F ❝ã ❞✉② ♥❤✃t ❝đ❛ ➤✐Ĩ♠ ❜✃t ➤é♥❣ ❜é ➤➠✐✳ ❈❤ø♥❣ ♠✐♥❤✳ ❚❛ ①➳❝ ➤Þ♥❤ ➳♥❤ ①➵ α∗ ((x, y), (u, v)) = ❘â r➭♥❣✱ TF ❧➭ ➳♥❤ ①➵ α∗ : X × X −→ [0, +∞) ❝❤♦ ❜ë✐ (x, y) ≤2 (u, v), ❤♦➷❝(x, y) ≥2 (u, v) ❦❤✐ tr♦♥❣ ❝➳❝ tr➢ê♥❣ ❤ỵ♣ ❝ß♥ ❧➵✐✳ α✲ψ ✲❝♦ t❤á❛ ♠➲♥ α∗ ((x, y), (u, v))d2 (TF (x, y), TF (u, v)) ≤ ψ(d2 ((x, y), (u, v))), ✈í✐ ♠ä✐ (x, y), (u, v) ∈ X ✳ ❚õ ➤✐Ị✉ ❦✐Ư♥ ✭✐✮ t❛ ❝ã α∗ ((x0 , y0 ), (TF (x0 , y0 ), TF (y0 , x0 ))) ≥ ◆❤ê ❇ỉ ➤Ị ✶✳✶✳✷✶ t❛ s✉② r❛ ❍➡♥ ♥÷❛✱ ✈í✐ ♠ä✐ TF ❧➭ ➳♥❤ ①➵ ❦❤➠♥❣ ❣✐➯♠ t❤❡♦ q✉❛♥ ❤Ö t❤ø tù (x, y), (u, v) ∈ X , tõ tÝ♥❤ ❝❤✃t ➤➡♥ ➤✐Ư✉ tré♥ ❝đ❛ TF ≤2 ✳ t❛ ❝ã α∗ ((x, y), (u, v)) ≥ ⇒ (x, y) ≥2 (u, v) ❤♦➷❝ (x, y) ≤2 (u, v) ⇒ TF (x, y) ≥ TF (u, v) ❤♦➷❝ TF (x, y) ≤ TF (u, v) ⇒ α∗ (TF (x, y), TF (u, v)) ợ ì t ❇ỉ ➤Ị ✷✳✶✳✽ t❛ s✉② r❛ TF ❉♦ ➤ã✱ F ➳♥❤ ①➵ α✲❝❤✃♣ ♥❤❐♥ ➤➢ỵ❝✳ ❇➞② ❣✐ê✱ ♥Õ✉ F ❧➭ tụ tì ị ý t❛ s✉② r❛ sù tå♥ t➵✐ ❝đ❛ ➤✐Ĩ♠ ❜✃t ➤é♥❣ ❜é ➤➠✐✳ ❚r➢ê♥❣ ❤ỵ♣ ♥Õ✉ (X, ≤2 , d) ❧➭ ❦❤➠♥❣ ❣✐❛♥ ❝❤Ý♥❤ q✉② ✈➭ {xn } ❧➭ ❞➲② ❜✃t ❦ú tr♦♥❣ X t❤á❛ ♠➲♥ α ∗ ((x n , yn ), (xn+1 , yn+1 )) ≥ ✈í✐ ♠ä✐ n ∈ N ✈➭ (xn , yn ) −→ (x, y) ∈ X ❦❤✐ n −→ +∞✱ t❤× ♥❤ê ❣✐➯ t❤✐Õt ✸✷ (X , ≤2 , d) ❧➭ ❦❤➠♥❣ ❣✐❛♥ ❝❤Ý♥❤ q✉② t❛ s✉② r❛ tå♥ t➵✐ ♠ét ❞➲② ❝♦♥ {xn(k) } ❝ñ❛ {xn } s❛♦ ❝❤♦ xn(k) ≤ x ✈➭ yn(k) ≥ y ✈í✐ ♠ä✐ k ∈ N✳ ❑❤✐ ➤ã✱ tõ ➤Þ♥❤ ♥❣❤Ü❛ ❝đ❛ α∗ t❛ s✉② r❛ α∗ ((xn(k) , yn(k) ), (x, y)) ≥ ✈í✐ ♠ä✐ k ∈ N✳ ❚r♦♥❣ tr➢ê♥❣ ❤ỵ♣ ♥➭② ♥❤ê ➜Þ♥❤ ❧ý ✷✳✶✳✶✷ t❛ s✉② r❛ sù tå♥ t➵✐ ❝đ❛ ➤✐Ó♠ ❜✃t ➤é♥❣ ❜é ➤➠✐✳ ➜Ó ❝❤Ø r❛ tÝ♥❤ ❞✉② ♥❤✃t ❝đ❛ ➤✐Ĩ♠ ❜✃t ➤é♥❣ ❜é ➤➠✐ t❛ ❣✐➯ sư (z, w) ∈ X s❛♦ ❝❤♦ (x, y) ≤2 (z, w) ➤é♥❣ ❜é ➤➠✐✱ ❦❤✐ ➤ã ♥❤ê ❣✐➯ t❤✐Õt tå♥ t➵✐ ✈➭ (u, v) ≤2 (z, w)✳ ❚õ ➤Þ♥❤ ♥❣❤Ü❛ ❝ñ❛ α∗ ((u, v), (z, w)) ≥ 1✳ (x, y), (u, v) ∈ X ❧➭ ❝➳❝ ➤✐Ó♠ ❜✃t α∗ t❛ s✉② r❛ α∗ ((x, y), (z, w)) ≥ ì tế ị ý t s r❛ tÝ♥❤ ❞✉② ♥❤✃t ❝đ❛ ➤✐Ĩ♠ ❜✃t ➤é♥❣ ❜é ➤➠✐✳ ❇➞② ❣✐ê✱ t❛ tr×♥❤ ❜➭② ♠ét ❦Õt q✉➯ tr♦♥❣ ❬✻❪ ♠➭ ♥ã ❧➭ ❤Ư q✉➯ ❝đ❛ ➜Þ♥❤ ❧ý ✷✳✶✳✶✺✳ ❍Ư q✉➯✳ ✷✳✶✳✶✻ X s❛♦ ❝❤♦ ✭❬✻❪✮ ❈❤♦ (X, ≤) ❧➭ ♠ét t❐♣ s➽♣ t❤ø tù✱ d ❧➭ ♠ét ♠➟tr✐❝ tr➟♥ (X, d) ❧➭ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ ➤➬② ➤ñ ✈➭ F : X × X −→ X ①➵ ❝ã tÝ♥❤ ➤➡♥ ➤✐Ư✉ tré♥✳ ●✐➯ sư r➺♥❣ tå♥ t➵✐ sè (x, y), (u, v) ∈ X × X ♠➭ k ∈ [0, 1) ❧➭ ➳♥❤ s❛♦ ❝❤♦ ✈í✐ ♠ä✐ (x, y) ≥2 (u, v) t❛ ❝ã [d(F (x, y), F (u, v)) + d(F (y, x), F (v, u))] ≤ k[d(x, u) + d(y, v)] ●✐➯ sư r➺♥❣ ❝➳❝ ➤✐Ị✉ ❦✐Ư♥ s❛✉ ➤➞② ❝ò♥❣ t❤á❛ ♠➲♥ ✭✐✮ ✭✐✐✮ tå♥ t➵✐ F (x0 , y0 ) ∈ X × X ❧✐➟♥ tơ❝ ❤♦➷❝ s❛♦ ❝❤♦ (x0 , y0 ) ≤2 (F (x0 , y0 ), F (y0 , x0 )); (X , ≤2 , d) ❧➭ ❦❤➠♥❣ ❣✐❛♥ ❝❤Ý♥❤ q✉②✳ ❑❤✐ ➤ã✱ F ❝ã ➤✐Ĩ♠ ❜✃t ➤é♥❣ ❜é ➤➠✐✳ ❍➡♥ ♥÷❛✱ ♥Õ✉ ✈í✐ ♠ä✐ (x, y), (u, v) tå♥ t➵✐ (z, w) ∈ X × X s❛♦ ❝❤♦ ∈ X×X (x, y) ≤2 (z, w) ✈➭ (u, v) ≤2 (z, w) t❤× F ❞✉② ♥❤✃t ❝đ❛ ➤✐Ĩ♠ ❜✃t ➤é♥❣ ❜é ➤➠✐✳ ✸✸ ❝ã ✷✳✷ ➜✐Ĩ♠ trï♥❣ ♥❤❛✉ ❜é ➤➠✐ ❝đ❛ ❝➳❝ ➳♥❤ ①➵ ❦✐Ó✉ α✲ψ ✲❝♦ tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ t❤ø tù P ú t trì ột số ị ý ➤✐Ĩ♠ trï♥❣ ♥❤❛✉ ❜é ➤➠✐ ❝đ❛ ❝➳❝ ➳♥❤ ①➵ ➤➡♥ ➤✐Ư✉ tré♥✱ ➳♥❤ ①➵ ❦✐Ĩ✉ α✲ψ ✲❝♦✱ ➳♥❤ ①➵ α✲❝❤✃♣ ♥❤❐♥ ➤➢ỵ❝ ❝ï♥❣ ✈í✐ ❝➳❝ ❤Ư q✉➯ ❝đ❛ ❝❤ó♥❣ ✈➭ trì ột số í ụ ọ ị ❧ý✳ t❤á❛ ♠➲♥ ✭❬✶✹❪✮ ❈❤♦ (X, d) ❧➭ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ ➤➬② ➤ñ ✈➭ ❝➳❝ ➳♥❤ ①➵ F : X × X −→ X, g : X −→ X ❤➭♠ (X, ≤) ❧➭ ♠ét t❐♣ ❝ã t❤ø tù✱ d ❧➭ ♠ét ♠➟tr✐❝ tr➟♥ X t❤á❛ ♠➲♥ F ❝ã tÝ♥❤ ❝❤✃t g ✲➤➡♥ ➤✐Ư✉✳ ●✐➯ sư tå♥ t➵✐ ❝➳❝ ψ ∈ Ψ ✈➭ α : X × X −→ [0, +∞) s❛♦ ❝❤♦ ✈í✐ ♠ä✐ x, y, u, v ∈ X ♠➭ g(x) ≥ g(u) ✈➭ g(y) ≥ g(v) t❛ ❝ã α ((g(x), g(y)), (g(u), g(u)))d (F (x, y), F (u, v)) ≤ψ d(g(x), g(u)) + d(g(y), g(v)) ✭✷✳✶✶✮ ●✐➯ sư r➺♥❣ ❝➳❝ ➤✐Ị✉ ❦✐Ư♥ s❛✉ ❝ị♥❣ ➤ó♥❣✿ ✭✶✮ F ✭✷✮ tå♥ t➵✐ ✈➭ g ❧➭ α✲❝❤✃♣ ♥❤❐♥ ➤➢ỵ❝❀ x , y0 ∈ X s❛♦ ❝❤♦ g(x0 ) ≤ F (x0 , y0 ), g(y0 ) ≥ F (y0 , x0 ), α((g(x0 ), g(y0 )), F (x0 , y0 ), F (y0 , x0 )) ≥ ✈➭ α ((g(y0 ), g(x0 )), F (y0 , x0 ), F (x0 , y0 )) ≥ 1; ✭✸✮ F (X × X) ⊆ g(X)✱ g ❧✐➟♥ tơ❝✱ F ✈➭ g ❧➭ ❤❛✐ ➳♥❤ ①➵ t➢➡♥❣ t❤Ý❝❤ tr♦♥❣ X; ✭✹✮ F ❑❤✐ ➤ã✱ ❧✐➟♥ tô❝✳ F ✈➭ g ❝ã ➤✐Ó♠ trï♥❣ ♥❤❛✉ ❜é ➤➠✐✱ tø❝ ❧➭ tå♥ t➵✐ F (x, y) = g(x) ✈➭ F (y, x) = g(y) ✸✹ x, y ∈ X ♠➭ ❈❤ø♥❣ ♠✐♥❤✳ ●✐➯ sö x , y0 ∈ X t❤♦➯ ♠➲♥ α((g(x0 ), g(y0 )), F (x0 , y0 ), F (y0 , x0 )) ≥ ✈➭ α ((g(y0 ), g(x0 )), F (y0 , x0 ), F (x0 , y0 )) ≥ 1; ✈➭ g(x0 ) ≤ F (x0 , y0 ) = g(x1 ) ✈➭ g(y0 ) ≥ F (y0 , x0 ) = g(y1 ) ➜➷t x2 , y2 ∈ X s❛♦ ❝❤♦ F (x1 , y1 ) = g(x2 ) ✈➭ F (y1 , x1 ) = g(y2 ) ❚✐Õ♣ tơ❝ q✉➳ tr×♥❤ ♥➭② ❝❤ó♥❣ t❛ ❝ã t❤Ó ①➞② ❞ù♥❣ ❤❛✐ ❞➲② ✈➭ {xn }, {yn } tr♦♥❣ X ♥❤➢ s❛✉ g(xn+1 ) = F (xn , yn ) g(yn+1 ) = F (yn , xn ), ✈í✐ ♠ä✐ n ∈ N ❇➞② ❣✐ê ❝❤ó♥❣ t❛ sÏ ❝❤Ø r❛ r➺♥❣ g(xn ) ≤ g(xn+1 ) ✈➭ g(yn ) ≥ g(yn+1 ), ✈í✐ ♠ä✐ n ∈ N ❱í✐ n = 0, tõ ❣✐➯ t❤✐Õt ✭✷✳✶✷✮ g(x0 ) ≤ F (x0 , y0 ), g(y0 ) ≥ F (y0 , x0 ) ✈➭ g(x1 ) = F (x0 , y0 )✱ g(y1 ) = F (y0 , x0 ) ❝❤ó♥❣ t❛ ❝ã g(x0 ) ≤ g(x1 ), g(y0 ) ≥ g(y1 ) ❉♦ ➤ã✱ ✭✷✳✶✷✮ ➤ó♥❣ ✈í✐ n = 0✳ ❇➞② ❣✐ê✱ t❛ ❣✐➯ sư r➺♥❣ ✭✷✳✶✷✮ ➤ó♥❣ ✈í✐ g(xn ) ≤ g(xn+1 ), g(yn ) ≥ g(yn+1 )✱ ✈× F n ♥➭♦ ➤ã n ≥ ❑❤✐ ➤ã✱ tõ ❣✐➯ t❤✐Õt ❝ã tÝ♥❤ ❝❤✃t g ✲➤➡♥ ➤✐Ö✉ ♥➟♥ t❛ ❝ã g(xn+2 ) = F (xn+1 , yn+1 ) ≥ F (xn , yn+1 ) ≥ F (xn , yn ) = g(xn+1 ) ✈➭ g(yn+2 ) = F (yn+1 , xn+1 ) ≤ F (yn , xn+1 ) ≤ F (xn , yn ) = g(yn+1 ) ❚õ tr➟♥✱ ❝❤ó♥❣ t❛ ❝ã t❤Ĩ ❦Õt ❧✉❐♥ r➺♥❣ g(xn+1 ) ≤ g(xn+2 ) ✈➭ g(yn+1 ) ≥ g(yn+2 ), ✈í✐ ♠ä✐ n ∈ N ◆❤➢ ✈❐②✱ ❜➺♥❣ q✉② ♥➵♣ t♦➳♥ ❤ä❝✱ ❝❤ó♥❣ t❛ ❦Õt ❧✉❐♥ r➺♥❣ ✭✷✳✶✷✮ ➤ó♥❣ ✈í✐ ♠ä✐ n ∈ N✳ ◆Õ✉ tå♥ t➵✐ n ∈ N ♥➭♦ ➤ã s❛♦ ❝❤♦ (xn+1 , yn+1 ) = (xn , yn )✳ ❑❤✐ ➤ã t❛ ❝ã ✈➭ (g(xn+1 ), g(yn+1 )) = (g(xn ), g(yn ))✳ ▲ó❝ ➤ã✱ râ r➭♥❣ F (xn , yn ) = g(xn ) F (yn , xn ) = g(yn )✱ ♥❣❤Ü❛ ❧➭ F ✈➭ g ❝ã ➤✐Ó♠ trï♥❣ ♥❤❛✉ ❜é ➤➠✐ ❧➭ (xn , yn )✳ ✸✺ ❇➞② ❣✐ê✱ ❝❤ó♥❣ t❛ ❣✐➯ t❤✐Õt r➺♥❣ (xn+1 , yn+1 ) ❚õ ❣✐➯ t❤✐Õt✱ F ✈➭ = (xn , yn ) ✈í✐ ♠ä✐ n ≥ n(ε) g ❧➭ α✲❝❤✃♣ ♥❤❐♥ ➤➢ỵ❝✱ ♥➟♥ t❛ ❝ã α((g(x0 ), g(y0 )), (g(x1 ), g(y1 ))) = α((g(x0 ), g(y0 )), F (x0 , y0 ), F (y0 , x0 )) ≥ 1, ♥❣❤Ü❛ ❧➭ t❛ ❝ã α((F (x0 , y0 ), F (y0 , x0 )),(F (x1 , y1 ), F (y1 , x1 ))) = α((g(x1 ), g(y1 )), (g(x1 ), g(y1 ))) ≥ ❱× ✈❐②✱ ❜➺♥❣ q✉② ♥➵♣ t♦➳♥ ❤ä❝ t❛ ❝ã α((g(xn ), g(yn )), (g(xn+1 ), g(yn+1 ))) ≥ ✭✷✳✶✸✮ ❚➢➡♥❣ tù ♥❤➢ ✈❐②✱ t❛ ❝ò♥❣ ❝ã α((g(yn ), g(xn )), (g(yn+1 ), g(xn+1 ))) ≥ ✭✷✳✶✹✮ ❚õ ✭✷✳✶✶✮ ✈➭ ❣✐➯ t❤✐Õt ✶✮ ✈➭ ✷✮ ❝đ❛ ➤Þ♥❤ ❧ý t❛ ❝ã d(g(xn ), g(xn+1 ) = d(F (xn−1 , yn−1 , F (xn , yn ) ≤ α((g(xn−1 ), g(yn−1 )), (g(xn ), g(yn )))d(F (xn−1 , yn−1 , F (xn , yn ) ≤ψ ✭✷✳✶✺✮ d(g(xn−1 ), g(xn )) + d(g(yn−1 ), g(yn )) ❚➢➡♥❣ tù✱ t❛ ❝ã d(g(yn ), g(yn+1 ) = d(F (yn−1 , xn−1 , F (yn , xn ) ≤ α((g(yn−1 ), g(xn−1 )), (g(yn ), g(xn )))d(F (yn−1 , xn−1 , F (yn , xn ) ≤ψ ✭✷✳✶✻✮ d(g(yn−1 ), g(yn )) + d(g(xn−1 ), g(xn )) ❚õ ❝➳❝ ❝➠♥❣ t❤ø❝ ✭✷✳✶✺✮ ✈➭ ✭✷✳✶✻✮ t❛ ❝ã✿ d(g(xn ), g(xn+1 )) + d(g(yn ), g(yn+1 )) ≤ψ ▲➷♣ ❧➵✐ ❝❤ø♥❣ ♠✐♥❤ tr➟♥ ✈í✐ ♠ä✐ d(g(xn−1 ), g(xn )) + d(g(yn−1 ), g(yn )) n ∈ N t❛ ❝ã d(g(xn ), g(xn+1 )) + d(g(yn ), g(yn+1 )) ≤ ψn ✸✻ d(g(x0 ), g(x1 )) + d(g(y0 ), g(y1 )) ❱í✐ ε > tå♥ t➵✐ n(ε) ∈ N t❤á❛ ♠➲♥ d (g(x0 ), g(x1 )) + d (g(y0 ), g(y1 )) ψn n≥n(ε) ▲✃② ❝➳❝ sè ε < n, m ∈ N s❛♦ ❝❤♦ m > n > n(ε)✱ ❦❤✐ ➤ã ❜➺♥❣ ❝➳❝❤ sư ❞ơ♥❣ ❜✃t ➤➻♥❣ t❤ø❝ t❛♠ ❣✐➳❝✱ t❛ ❝ã d (g(xn ), g(xm )) + d (g(yn ), g(ym )) m−1 d (g(xk ), g(xk+1 )) + d (g(yk ), g(yk+1 )) ≤ k=n m−1 ψk ≤ k=n ψn ≤ n≥n(ε) d (g(x0 ), g(x1 )) + d (g(y0 ), g(y1 )) d (g(x0 ), g(x1 )) + d (g(y0 ), g(y1 )) ε < ➜✐Ò✉ ♥➭② ❝ã ♥❣❤Ü❛ ❧➭✿ d (g(xn ), g(xm )) + d (g(yn ), g(ym )) < ε ❱× d (g(xn ), g(xm )) < d (g(xn ), g(xm )) + d (g(yn ), g(ym )) < ε ✈➭ d (g(yn ), g(ym )) < d (g(xn ), g(xm )) + d (g(yn ), g(ym )) < ε, t❛ s✉② r❛ {g(xn )} ✈➭ {g(yn )} ❧➭ ❝➳❝ ❞➲② ❈❛✉❝❤② tr♦♥❣ (X, d)✳ ❱× (X, d) ❧➭ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ ➤➬② ➤đ✱ ♥➟♥ t➵✐ x, y ∈ X s❛♦ ❝❤♦ {xn } ✈➭ {yn } ❧➭ ❝➳❝ ❞➲② ❤é✐ tô tr♦♥❣ (X, d)✳ ❉♦ ➤ã✱ tå♥ lim F (xn , yn ) = lim g(xn ) = x ✈➭ lim F (yn , xn ) = n→∞ n→∞ n→∞ lim g(yn ) = y n→∞ ❱× F ✈➭ g ❧➭ ❝➳❝ ➳♥❤ ①➵ t➢➡♥❣ t❤Ý❝❤✱ ♥➟♥ t❛ ❝ã lim d(g(F (xn , yn ), F (g(xn ), g(yn ))) = n→∞ ✸✼ ✭✷✳✶✼✮ ✈➭ lim d(g(F (yn , xn ), F (g(yn ), g(xn ))) = n→∞ ❚✐Õ♣ t❤❡♦✱ t❛ sÏ ❝❤ø♥❣ tá r➺♥❣ ❱í✐ ✭✷✳✶✽✮ g(x) = F (x, y) ✈➭ g(y) = F (y, x) n ≥ t❛ ❝ã d(g(x),F (g(xn ), g(yn ))) ≤ d(g(x), g(F (xn ; yn ))) + d(g(F (xn ; yn )), F (g(xn ), g(yn ))) ▲✃② ❣✐í✐ ❤➵♥ ❦❤✐ n → +∞ tr♦♥❣ ❜✃t ➤➻♥❣ t❤ø❝ tr➟♥✱ ♥❤ê tÝ♥❤ ❧✐➟♥ tơ❝ ❝đ❛ F, g ✈➭ tõ ❝➠♥❣ t❤ø❝ ✭✷✳✶✼✮ t❛ ❝ã d(g(x), F (x, y)) = ❚➢➡♥❣ tù✱ t❛ ❝ã d(g(y), F (y, x)) = ❇ë✐ ✈❐②✱ t❛ ♥❤❐♥ ➤➢ỵ❝ g(x) = F (x, y) ✈➭ g(y) = F (y, x)✳ ❉♦ ➤ã F ✈➭ g ❝ã ➤✐Ó♠ trï♥❣ ♥❤❛✉ ❜é ➤➠✐✳ ❇➞② ❣✐ê✱ ❝❤ó♥❣ t❛ t❤❛② ➤✐Ị✉ ❦✐Ư♥ ❧✐➟♥ tơ❝ ❝đ❛ ➳♥❤ ①➵ F tr♦♥❣ ➜Þ♥❤ ❧ý ✷✳✷✳✶ ❜ë✐ ➤✐Ị✉ ❦✐Ư♥ tr➟♥ ❝➳❝ ❞➲②✳ ➜Þ♥❤ ❧ý✳ ✷✳✷✳✷ ❝❤♦ ✭❬✶✹❪✮ ❈❤♦ (X, ≤) ❧➭ t❐♣ ❝ã t❤ø tù✱ d ❧➭ ♠ét ♠➟tr✐❝ tr➟♥ X s❛♦ (X, d) ❧➭ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ ➤➬② ➤ñ ✈➭ ❤❛✐ ➳♥❤ ①➵ F : X × X −→ X g : X −→ X ✳ ●✐➯ sö F ❝ã tÝ♥❤ ❝❤✃t α : X × X −→ [0, +∞) ✈➭ g ✲➤➡♥ ➤✐Ö✉ ✈➭ tå♥ t➵✐ ❝➳❝ ❤➭♠ ψ ∈ Ψ ✈➭ s❛♦ ❝❤♦ ✈í✐ ♠ä✐ x, y, u, v ∈ X ❝➳❝ ➤✐Ị✉ ❦✐Ư♥ s❛✉ t❤á❛ ♠➲♥ ✭✶✮ ❇✃t ➤➻♥❣ t❤ø❝ ✭✷✳✶✶✮ ✈➭ ➤✐Ị✉ ❦✐Ư♥ ✶✮✱ ✷✮ ✈➭ ✸✮ ❧✉➠♥ ➤ó♥❣✳ ✭✷✮ ◆Õ✉ {xn }, {yn } ❧➭ ❝➳❝ ❞➲② tr♦♥❣ X s❛♦ ❝❤♦ α((g(xn ), g(yn )), g(xn+1 ), g(yn+1 )) ≥ ✸✽ ✈➭ α((g(yn ), g(xn )), g(yn+1 ), g(xn+1 )) ≥ ✈í✐ n ∈ N ✈➭ lim g(xn ) = x ✈➭ lim g(yn ) = y, ✈í✐ ♠ä✐ x, y ∈ X ✱ t❤× n→∞ n→∞ α((g(xn ), g(yn )), g(x), g(y)) ≥ ✈➭ α((g(yn ), g(xn )), g(y), g(x)) ≥ ◆Õ✉ tå♥ t➵✐ t❤× F ✈➭ g x , y0 ∈ X s❛♦ ❝❤♦ g(x0 ) ≤ F (xo , y0 ) ✈➭ g(y0 ) ≥ F (y0 , x0 )✱ ❝ã ➤✐Ó♠ trï♥❣ ♥❤❛✉ ❜é ➤➠✐✱ ♥❣❤Ü❛ ❧➭ tå♥ t➵✐ x, y ∈ X s❛♦ ❝❤♦ F (x, y) = g(x) ✈➭ F (y, x) = g(y)✳ ❈❤ø♥❣ ♠✐♥❤✳ ❚➢➡♥❣ tù ❝❤ø♥❣ ♠✐♥❤ ➜Þ♥❤ ❧ý ✷✳✷✳✶✱ t❛ t❤✃② r➺♥❣ {g(xn )} ✈➭ {g(yn )} ❧➭ ❝➳❝ ❞➲② ❈❛✉❝❤② tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ ➤➬② ➤ñ (X, d)✳ ❑❤✐ ➤ã✱ tå♥ t➵✐ x, y ∈ X s❛♦ ❝❤♦ lim g(xn ) = x✱ lim g(yn ) = y ✈➭ ✈í✐ ♠ä✐ n ∈ N n→∞ n→∞ α((g(xn ), g(yn )), g(x), g(y)) ≥ ❚➢➡♥❣ tù✱ ✈í✐ ♠ä✐ ✭✷✳✶✾✮ n ∈ N t❛ ❝ã α((g(yn ), g(xn )), g(y), g(x)) ≥ ❙ư ❞ơ♥❣ ❜✃t ➤➻♥❣ t❤ø❝ t❛♠ ❣✐➳❝✱ ❜✃t ➤➻♥❣ t❤ø❝ ✭✷✳✶✾✮ ✈➭ tÝ♥❤ ❝❤✃t ♠ä✐ ✭✷✳✷✵✮ ψ(t) < t ✈í✐ t > t❛ ❝ã d(F (x, y), g(x)) ≤ d(F (x, y), F (g(xn ), g(yn ))) + d(g(xn+1 , g(x))) ≤ α((g(xn ), g(yn )), (g(x), g(y)))d(F (g(xn ), F (x, y)) + d(g(xn+1 ), g(x)) d(g(x), g(xn )) + d(g(y), g(yn )) + d(g(xn+1 ), g(x)) d(g(xn ), g(x)) + d(g(yn ), g(y)) + d(g(xn+1 ), g(x)) < ≤ψ ✸✾ ❚➢➡♥❣ tù✱ sư ❞ơ♥❣ ❜✃t ➤➻♥❣ t❤ø❝ ✭✷✳✷✵✮ t❛ ❝ã d(F (y, x), g(y)) ≤ d(F (y, x), F (g(yn ), g(xn ))) + d(g(yn+1 , g(y))) ≤ α((g(yn ), g(xn )), (g(y), g(x)))d(F (g(yn ), F (y, x)) + d(g(yn+1 ), g(y)) d(g(y), g(yn )) + d(g(x), g(yn )) + d(g(yn+1 ), g(y)) d(g(yn ), g(y)) + d(g(xn ), g(x)) < + d(g(yn+1 ), g(y)) ≤ψ ▲✃② ❣✐í✐ ❤➵♥ ❦❤✐ n → ∞ tr♦♥❣ ❤❛✐ ❜✃t ➤➻♥❣ t❤ø❝ tr➟♥ t❛ ♥❤❐♥ ➤➢ỵ❝ d(F (x, y), g(x)) = ❇ë✐ ✈❐②✱ t❛ ❝ã ❈❤ó ý✳ ✈➭ d(F (y, x), g(y)) = F (x, y) = g(x)✈➭(F (y, x) = g(y)✱ ❑❤✐ ❧✃② g = I ❧➭ ➳♥❤ ①➵ ➤å♥❣ ♥❤✃t tr➟♥ X ú t ợ ị ý ủ rs ✈➭ ❝é♥❣ sù tr♦♥❣ ❬✶✼❪✳ ✷✳✷✳✸ ❱Ý ❞ô✳ ❈❤♦ X = [0, 1]✳ ❑❤✐ ➤ã (X, ≤) ❧➭ t❐♣ s➽♣ t❤ø tù ✈í✐ t❤ø tù t❤➠♥❣ t❤➢ê♥❣ ❝đ❛ sè t❤ù❝✳ ❈❤♦ d(x, y) = |x − y| ✈í✐ ♠ä✐ x, y ∈ [0, 1] ❑❤✐ ➤ã (X, ≤) ❧➭ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ ➤➬② ➤đ✳ g(x) = x2 ✈í✐ ♠ä✐ x ∈ X ✈➭ x2 − y 2 ➳♥❤ ①➵ F : X ì X X ị F (x, y) = + ✳ ❳Ðt ❤➭♠ sè 3 2t ψ : [0, 1) → [0, 1) ①➳❝ ➤Þ♥❤ ❜ë✐ ψ(t) = ✈í✐ t ∈ [0, 1)✳ ❈❤♦ {xn } ✈➭ {yn } ❧➭ ❤❛✐ ❞➲② tr♦♥❣ X s❛♦ ❝❤♦ lim F (xn , yn ) = a, lim g(xn ) = a ✈➭ lim F (yn , xn ) = n→∞ n→∞ n→∞ 2 b, lim g(yn ) = b✳ ❑❤✐ ➤ã✱ t❛ ❞Ô ❞➭♥❣ t❤✃② r➺♥❣ a = ✈➭ b = ✳ n→∞ 3 2 ❇➞② ❣✐ê✱ ✈í✐ ♠ä✐ n ≥ t❛ ❝ã g(xn ) = xn , g(yn ) = yn ❈❤♦ ➳♥❤ ①➵ g : X → X F (xn , yn ) = ①➳❝ ➤Þ♥❤ ❜ë✐ x2n − yn2 + 3 ✈➭ ✹✵ F (yn , xn ) = yn2 − x2n + 3 ❑❤✐ ➤ã✱ t❛ s✉② r❛ r➺♥❣ lim d(g(F (xn , yn ), F (g(xn ), g(yn ))) = n→∞ ✈➭ lim d(g(F (yn , xn ), F (g(yn ), g(xn ))) = n→∞ ❉♦ ➤ã✱ F ✈➭ g ❧➭ ❤❛✐ ➳♥❤ ①➵ t➢➡♥❣ t❤Ý❝❤ tr♦♥❣ X ✳ ❱í✐ ♠ä✐ x, y, u, v ∈ X ♠➭ g(x) ≥ g(u) ✈➭ g(y) ≥ g(v) t❛ ❝ã x2 − y 2 u2 − v 2 + − + 3 3 = (x2 − u2 ) + (v − y ) ≤ (x2 − u2 ) + (v − y ) ≤ (d(g(x), g(u)) + d(g(y), g(v))) d(F (x, y), F (u, v)) = ❇➞② ❣✐ê ①Ðt ➳♥❤ ①➵✱ α : X × X → [0, +∞) ❝❤♦ ❜ë✐ α ((x, y), (u, v)) = x ≥ y, u ≥ v ❦❤✐ tr trờ ợ ò 2t t > 0✳ ➜å♥❣ t❤ê✐ t❛ ❝ò♥❣ t❤✃② r➺♥❣ F (X × X) ⊆ g(X) ✈➭ F ❝ã tÝ♥❤ ❝❤✃t g ✲➤➡♥ ➤✐Ư✉✳ ❇➺♥❣ ❝➳❝❤ ❉♦ ➤ã✱ ➤✐Ị✉ ❦✐Ư♥ ✭✷✳✶✶✮ ❧➭ ➤ó♥❣ ➤è✐ ✈í✐ ❤➭♠ ❧✃② x0 = 0, ✈➭ y0 = 0, 9✳ ❑❤✐ ➤ã✱ t❛ ❝ã ψ(t) = g(x0 ) = (0, 6)2 = 0, 36 ≤ 0.51 = F (x0 , y0 ) ✈➭ g(y0 ) = (0.9)2 = 0, 81 ≥ 0, 81 = F (y0 , x0 )✳ ◆❤➢ ✈❐②✱ t✃t ❝➯ ❝➳❝ 2 , ❧➭ ➤✐Ĩ♠ trï♥❣ ➤✐Ị✉ ❦✐Ư♥ ❝đ❛ ➜Þ♥❤ ❧ý ✷✳✷✳✶ ➤➢ỵ❝ t❤á❛ ♠➲♥✳ ❉♦ ✈❐② 3 ♥❤❛✉ ❜é ➤➠✐ ❝ñ❛ F ✈➭ g tr♦♥❣ X ✹✶ ❑Õt ❧✉❐♥ ❙❛✉ ♠ét t❤ê✐ ❣✐❛♥ t❐♣ tr✉♥❣ ♥❣❤✐➟♥ ❝ø✉ ✈➭ t❤❛♠ ❦❤➯♦ ♥❤✐Ị✉ t➭✐ ❧✐Ư✉ ❦❤➳❝ ♥❤❛✉ ✈Ị ➤Ị t➭✐✿ ➜✐Ĩ♠ ❜✃t ➤é♥❣ ❜é ➤➠✐ ✈➭ ➤✐Ó♠ trï♥❣ ♥❤❛✉ ❜é ➤➠✐ ❝đ❛ ❝➳❝ ➳♥❤ ①➵ ❦✐Ĩ✉ α✲ψ ✲❝♦ tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ t❤ø tù✱ ❞➢í✐ sù ❤➢í♥❣ ❞➱♥ ❝đ❛ t❤➬② ❣✐➳♦ P●❙✳❚❙✳ ❚r➬♥ ❱➝♥ ➣♥✱ ❝❤ó♥❣ t➠✐ ➤➲ t❤✉ ➤➢ỵ❝ ♠ét sè ❦Õt q✉➯ s❛✉✿ ✶✳ ❍Ö t❤è♥❣ ❤ã❛ ❝➳❝ ❦❤➳✐ ♥✐Ư♠✱ ❝➳❝ tÝ♥❤ ❝❤✃t ❝➡ ❜➯♥ ✈➭ ❝➳❝ ✈Ý ❞ơ ♠✐♥❤ ❤ä❛ ✈Ò ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝✱ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ ➤➬② ➤ñ✱ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ t❤ø tù✱ ❝➳❝ ➳♥❤ ①➵ ❝♦✱ ➳♥❤ ①➵ ❦✐Ĩ✉ ➤✐Ư✉ tré♥✱ ➳♥❤ ①➵ α✲ψ ✲❝♦✱ ➳♥❤ ①➵ α✲ ❝❤✃♣ ♥❤❐♥ ➤➢ỵ❝✱ ➳♥❤ ①➵ ❝ã tÝ♥❤ ➤➡♥ g ✲ ➤➡♥ ➤✐Ư✉✱ ➤✐Ĩ♠ ❜✃t ➤é♥❣✱ ➤✐Ĩ♠ ❜✃t ➤é♥❣ ❜é ➤➠✐✱ ➤✐Ĩ♠ trï♥❣ ♥❤❛✉ ❜é ➤➠✐ ❝đ❛ ❝➳❝ ➳♥❤ rì ột số ị ý ể t ➤é♥❣✱ ➤✐Ó♠ ❜✃t ➤é♥❣ ❜é ➤➠✐ ✈➭ ➤✐Ó♠ trï♥❣ ♥❤❛✉ ❜é ➤➠✐ ❝đ❛ ❝➳❝ ➳♥❤ ①➵ α✲ψ ✲❝♦ ♠➭ ❝❤ó♥❣ ❧➭ ♠ë ré♥❣ ❝➳❝ ❦Õt q✉➯ ❝ñ❛ ▼✉rs❛❧❡❡♥✱ ❆❣❛r✇❛❧✱ ❑❛r❛♣✐♥❛r✳ ✸✳ ❈❤ø♥❣ ♠✐♥❤ ❝❤✐ t✐Õt ❝➳❝ tÝ♥❤ ❝❤✃t ✈➭ ➤Þ♥❤ ❧ý ♠➭ tr♦♥❣ ❝➳❝ t➭✐ ❧✐Ö✉ t❤❛♠ ❦❤➯♦ ❝❤➢❛ ❝❤ø♥❣ ứ ò s ợ ị ý ✶✳✷✳✶✱ ➜Þ♥❤ ❧ý ✶✳✷✳✷✱ ➜Þ♥❤ ❧ý ✶✳✷✳✸✱ ➜Þ♥❤ ❧ý ✷✳✶✳✶✶✱ ➜Þ♥❤ ❧ý ✷✳✶✳✶✺✱ ➜Þ♥❤ ❧ý ✷✳✷✳✶✱ ➜Þ♥❤ ❧ý ✷✳✷✳✷✳ ✹✳ ●✐í✐ t❤✐Ư✉ ❝❤✐ t✐Õt ❱Ý ❞ơ ✶✳✷✳✹✱ ❱Ý ❞ơ ✶✳✷✳✺✱ ❱Ý ❞ô ✷✳✶✳✸✱❱Ý ❞ô ✷✳✶✳✹✱ ❱Ý ❞ô ✷✳✶✳✺✱ ❱Ý ❞ô t ệ t ỗ ✭✶✾✾✽✮✱ ❚➠♣➠ ➤➵✐ ❝➢➡♥❣✱ ◆❤➭ ①✉✃t ❜➯♥ ❑❤♦❛ ❤ä❝ ✈➭ ❑ü t❤✉❐t✳ ❬✷❪ ❆✳ ❆❣❤❛❥❛♥✐ ❛♥❞ ▼✳ ❆❜❜❛s ❛♥❞ ❊✳ P✳ ❑❛❧❧❡❤❜❛st✐ ✭✷✵✶✷✮✱ ✧❈♦✉♣❧❡❞ ❢✐①❡❞ ♣♦✐♥t t❤❡♦r❡♠s ✐♥ ♣❛rt✐❛❧❧② ♦r❞❡r❡❞ ♠❡tr✐❝ s♣❛❝❡s ❛♥❞ ❛♣♣❧✐❝❛t✐♦♥✧✱ ▼❛t❤✳ ❈♦♠♠✉♥✳✱ ✶✼✱ ✹✾✼✲✺✵✾✳ ❬✸❪ ❍✳ ❆②❞✐✱ ❊✳ ❑❛r❛♣✐♥❛r✱ ❇✳ ❙❛♠❡t✱ ❈✳ ❘❛❥✐❝ ✭✷✵✶✸✮✱ ✧❉✐s❝✉ss✐♦♥ ♦♥ s♦♠❡ ❝♦✉♣❧❡❞ ❢✐①❡❞ ♣♦✐♥t t❤❡♦r❡♠s✧✱ ❋✐①❡❞ P♦✐♥t ❚❤❡♦r② ❆♣♣❧✳✱ ✷✵✶✸✱ ✺✵✱ ❞♦✐✿✶✵✳✶✶✽✻✴✶✻✽✼✲✶✽✶✷✲✷✵✶✸✲✺✵✳ ❬✹❪ ❙✳ ❇❛♥❛❝❤ ✭✶✾✷✷✮✱ ✧❙✉r ❧❡s ♦♣Ðr❛t✐♦♥s ❞❛♥s ❧❡s ❡♥s❡♠❜❧❡s ❛❜str❛✐ts ❡t ❧❡✉r ❛♣♣❧✐❝❛t✐♦♥s ❛✉① Ðq✉❛t✐♦♥s ✐♥tÐ❣r❛❧❡s✧✱ ❋✉♥❞✳ ▼❛t❤✳✱ ✸✱ ✶✸✸✲✶✽✶✳ ❬✺❪ ❱✳ ❇❡r✐♥❞❡ ✭✷✵✵✷✮✱ ■t❡r❛t✐✈❡ ❛♣♣r♦①✐♠❛t✐♦♥ ♦❢ ❢✐①❡❞ ♣♦✐♥ts✱ ❊❞✐t✉r❛ ❊❢❡✲ ♠❡r✐❞❡✱ ❇❛✐❛ ▼❛r❡✳ ❬✻❪ ❱✳ ❇❡r✐♥❞❡ ✭✷✵✶✶✮✱ ✧●❡♥❡r❛❧✐③❡❞ ❝♦✉♣❧❡❞ ❢✐①❡❞ ♣♦✐♥t t❤❡♦r❡♠s ❢♦r ♠✐①❡❞ ♠♦♥♦t♦♥❡ ♠❛♣♣✐♥❣s ✐♥ ♣❛rt✐❛❧❧② ♦r❞❡r❡❞ ♠❡tr✐❝ s♣❛❝❡s✧✱ ◆♦♥❧✐♥❡❛r ❆♥❛❧✳✱ ✼✹✱ ✼✸✹✼✲✼✸✺✺✳ ❬✼❪ ❱✳ ❇❡r✐♥❞❡ ✭✷✵✶✷✮✱ ✧❈♦✉♣❧❡❞ ❢✐①❡❞ ♣♦✐♥t t❤❡♦r❡♠s ❢♦r α✲ψ ✲❝♦♥tr❛❝t✐✈❡ ♠✐①❡❞ ♠♦♥♦t♦♥❡ ♠❛♣♣✐♥❣s ✐♥ ♣❛rt✐❛❧❧② ♦r❞❡r❡❞ ♠❡tr✐❝ s♣❛❝❡s✧✱ ◆♦♥❧✐♥❡❛r ❆♥❛❧✳✱ ✼✺✱ ✸✷✶✽✲✸✷✷✽✳ ❬✽❪ ❚✳ ●✳ ❇❤❛s❦❛r✱ ❱✳ ▲❛❦s❤♠✐❦❛♥t❤❛♠ ✭✷✵✵✻✮✱ ✧❋✐①❡❞ ♣♦✐♥t t❤❡♦r❡♠s ✐♥ ♣❛r✲ t✐❛❧❧② ♦r❞❡r❡❞ ♠❡tr✐❝ s♣❛❝❡s ❛♥❞ ❛♣♣❧✐❝❛t✐♦♥s✧✱ ◆♦♥❧✐♥❡❛r ❆♥❛❧✳✱ ✻✺✱ ✶✸✼✾✲ ✶✸✾✸✳ ❬✾❪ ❇✳ ❙✳ ❈❤♦✉❞❤✉r②✱ ❑✳ ❉❛s✱ P✳ ❉❛s ✭✷✵✶✷✮✱ ✧❈♦✉♣❧❡❞ ❝♦✐♥❝✐❞❡♥❝❡ ♣♦✐♥t r❡s✉❧ts ❢♦r ❝♦♠♣❛t✐❜❧❡ ♠❛♣♣✐♥❣s ✐♥ ♣❛rt✐❛❧❧② ♦r❞❡r❡❞ ❢✉③③② ♠❡tr✐❝ s♣❛❝❡s✧✱ ❋✉③③② ❙❡ts ❛♥❞ ❙②st❡♠s✱ ✷✷✷✱ ✽✹✲✾✼✳ ✹✸ ❬✶✵❪ ❇✳ ❙✳ ❈❤♦✉❞❤✉r②✱ ❆✳ ❑✉♥❞✉ ✭✷✵✶✵✮✱ ✧❆ ❈♦✉♣❧❡❞ ❝♦✐♥❝✐❞❡♥❝❡ ♣♦✐♥t r❡s✉❧t ✐♥ ♣❛rt✐❛❧❧② ♦r❞❡r❡❞ ♠❡tr✐❝ s♣❛❝❡s ❢♦r ❝♦♠♣❛t✐❜❧❡ ♠❛♣♣✐♥❣s✧✱ ◆♦♥❧✐♥❡❛r ❆♥❛❧✳✱ ✼✸ ✭✽✮✱ ✷✺✷✹✲✷✺✸✶✳ ❬✶✶❪ ❆✳ ❍❛r❛♥❞✐ ✭✷✵✵✽✮✱ ✧❆ ❈♦✉♣❧❡❞ ❛♥❞ tr✐♣❧❡❞ ❢✐①❡❞ ♣♦✐♥t t❤❡♦r② ✐♥ ♣❛rt✐❛❧❧② ♦r❞❡r❡❞ ♠❡tr✐❝ s♣❛❝❡s ✇✐t❤ ❛♣♣❧✐❝❛t✐♦♥s t♦ ✐♥✐t✐❛❧ ✈❛❧✉❡ ♣r♦❜❧❡♠✧✱ ▼❛t❤✳ ❈♦♠♣✉t✳ ▼♦❞❡❧✱ ❞♦✐✿✶✵✳✶✵✶✻✴❥✳♠❝♠✳✷✵✶✶✳✶✷✳✵✵✻✱ ✺✼ ✭✾➊✶✵✮✱ ✷✸✹✸✲✷✸✹✽✳ ❬✶✷❪ ❊✳ ❑❛r❛♣✐♥❛r✱ ❘✳ ❆❣❛r✇❛❧ ✭✷✵✶✸✮✱ ✧❆ ♥♦t❡ ♦♥ ✬✬❈♦✉♣❧❡❞ ❢✐①❡❞ ♣♦✐♥t t❤❡♦✲ r❡♠s ❢♦r α✲ψ ✲❝♦♥tr❛❝t✐✈❡✲t②♣❡ ♠❛♣♣✐♥❣s ✐♥ ♣❛rt✐❛❧❧② ♦r❞❡r❡❞ ♠❡tr✐❝ s♣❛❝❡s✧ ❋✐①❡❞ P♦✐♥t ❚❤❡♦r② ❛♥❞ ❆♣♣❧✳✱ ✷✵✶✸✱ ✷✶✻✱ ❞♦✐✿✶✵✳✶✶✽✻✴✶✻✽✼✲✶✽✶✷✲✷✵✶✸✲✷✶✻✳ ❬✶✸❪ ❊✳ ❑❛r❛♣✐♥❛r✱ ❇✳ ❙❛♠❡t ✭✷✵✶✷✮✱ ✧●❡♥❡r❛❧✐③❡❞ α✲ψ ✲❝♦♥tr❛❝t✐✈❡ t②♣❡ ♠❛♣♣✐♥❣s ❛♥❞ r❡❧❛t❡❞ ❢✐①❡❞ ♣♦✐♥t t❤❡♦r❡♠s ✇✐t❤ ❛♣♣❧✐❝❛t✐♦♥s✧✱ ❆❜str✳ ❆♣♣❧✳ ❆♥❛❧✳✱ ✷✵✶✷✱ ❆rt✐❝❧❡ ■❉ ✼✾✸✹✽✻✱ ✶✼ ♣❛❣❡s✳ ❬✶✹❪ P✳ Pr❡❡t✐✱ ❙✳ ❑✉♠❛r ✭✷✵✶✺✮✱ ✧❈♦✉♣❧❡❞ ❢✐①❡❞ ♣♦✐♥t ❢♦r α✲ψ ✲❝♦♥tr❛❝t✐✈❡ ✐♥ ♣❛r✲ t✐❛❧❧② ♦r❞❡r❡❞ ♠❡tr✐❝ s♣❛❝❡s ✉s✐♥❣ ❝♦♠♣❛t✐❜❧❡ ♠❛♣♣✐♥❣s✧✱ ❆♣♣❧✳ ▼❛t❤✳✱ ✻✱ ✶✸✽✵✲✶✸✽✽✳ ❬✶✺❪ ❱✳ ▲❛❦s❤♠✐❦❛♥t❤❛♠✱ ▲✳ ❈✐r✐❝ ✭✷✵✵✾✮✱ ✧❈♦✉♣❧❡❞ ❢✐①❡❞ ♣♦✐♥t t❤❡♦r❡♠s ❢♦r ♥♦♥❧✐♥❡❛r ❝♦♥tr❛❝t✐♦♥s ✐♥ ♣❛rt✐❛❧❧② ♦r❞❡r❡❞ ♠❡tr✐❝ s♣❛❝❡s✧✱ ◆♦♥❧✐♥❡❛r ❆♥❛❧✳✱ ✼✵ ✭✶✷✮✱ ✹✸✹✶✲✹✸✹✾✳ ❬✶✻❪ ◆✳ ❱✳ ▲✉♦♥❣✱ ◆✳ ❳✳ ❚❤✉❛♥ ✭✷✵✶✶✮✱ ✧❈♦✉♣❧❡❞ ❢✐①❡❞ ♣♦✐♥ts ✐♥ ♣❛rt✐❛❧❧② ♦r❞❡r❡❞ ♠❡tr✐❝ s♣❛❝❡s ❛♥❞ ❛♣♣❧✐❝❛t✐♦♥✧✱ ◆♦♥❧✐♥❡❛r ❆♥❛❧✳✱ ✼✹✱ ✾✽✸✲✾✾✷✳ ❬✶✼❪ ▼✳ ▼✉rs❛❧❡❡♥✱ ❙✳ ❆✳ ▼♦❤✐✉❞❞✐♥❡✱ ❘✳ P✳ ❆❣❛r✇❛❧ ✭✷✵✶✷✮✱ ✧❈♦✉♣❧❡❞ ❢✐①❡❞ ♣♦✐♥t t❤❡♦r❡♠s ❢♦r α✲ψ ✲❝♦♥tr❛❝t✐✈❡ t②♣❡ ♠❛♣♣✐♥❣s ✐♥ ♣❛rt✐❛❧❧② ♦r❞❡r❡❞ ♠❡tr✐❝ s♣❛❝❡s✧✱ ❋✐①❡❞ P♦✐♥t ❚❤❡♦r② ❆♣♣❧✳✱ ✷✵✶✷✱ ✷✷✽✱ ❞♦✐✿✶✵✳✶✶✽✻✴✶✻✽✼✲ ✶✽✶✷✲✷✵✶✷✲✷✷✽✳ ❬✶✽❪ ❍✳ ❑✳ ◆❛s❤✐♥❡✱ ❇✳ ❙❛♠❡t✱ ❛♥❞ ❈✳ ❱❡tr♦ ✭✷✵✶✷✮✱ ✧❈♦✉♣❧❡❞ ❝♦✐♥❝✐❞❡♥❝❡ ♣♦✐♥ts ✹✹ ❢♦r ❝♦♠♣❛t✐❜❧❡ ♠❛♣♣✐♥❣s s❛t✐s❢②✐♥❣ ♠✐①❡❞ ♠♦♥♦t♦♥❡ ♣r♦♣❡rt②✧✱ ❏✳ ◆♦♥❧✐♥✲ ❡❛r ❙❝✐✳ ❆♣♣❧✳✱ ✺✱ ✶✵✹✲✶✶✹✳ ❬✶✾❪ ❏✳ ◆✐❡t♦✱ ❘✳ ▲ã♣❡③ ✭✷✵✵✺✮✱ ✧❈♦♥tr❛❝t✐✈❡ ♠❛♣♣✐♥❣ t❤❡♦r❡♠s ✐♥ ♣❛rt✐❛❧❧② ♦r✲ ❞❡r❡❞ s❡ts ❛♥❞ ❛♣♣❧✐❝❛t✐♦♥s t♦ ♦r❞✐♥❛r② ❞✐❢❢❡r❡♥t✐❛❧ ❡q✉❛t✐♦♥s✧✱ ❖r❞❡r✱ ✷✷✱ ✷✷✸✲✷✸✾✳ ❬✷✵❪ P✳ ❉✳ Pr♦✐♥♦✈ ✭✷✵✵✼✮✱ ✧❆ ❣❡♥❡r❛❧✐③❛t✐♦♥ ♦❢ t❤❡ ❇❛♥❛❝❤ ❝♦♥tr❛❝t✐♦♥ ♣r✐♥❝✐♣❧❡ ✇✐t❤ ❤✐❣❤ ♦r❞❡r ♦❢ ❝♦♥✈❡r❣❡♥❝❡ ♦❢ s✉❝❝❡ss✐✈❡ ❛♣♣r♦①✐♠❛t✐♦♥s✧✱ ◆♦♥❧✐♥❡❛r ❆♥❛❧✳✱ ✻✼✱ ✷✸✻✶✲✷✸✻✾✳ ❬✷✶❪ ❇✳ ❙❛♠❡t✱ ❈✳❱❡tr♦✱ P✳ ❱❡tr♦ ✭✷✵✶✷✮✱ ✧❋✐①❡❞ ♣♦✐♥t t❤❡♦r❡♠s ❢♦r ❝♦♥tr❛❝t✐✈❡ t②♣❡ ♠❛♣♣✐♥❣s✧✱ ◆♦♥❧✐♥❡❛r ❆♥❛❧✳✱ ✼✺✱ α✲ψ ✲ ✷✶✺✹✲✷✶✻✺✳ ❬✷✷❪ P✳ ◆✳ ❉✉tt❛✱ ❇✳ ❙✳ ❈❤♦✉❞❤✉r② ✭✷✵✵✽✮✱ ❆ ❣❡♥❡r❛❧✐③❛t✐♦♥ ♦❢ ❝♦♥tr❛❝t✐♦♥ ♣r✐♥❝✐♣❧❡ ✐♥ ♠❡tr✐❝ s♣❛❝❡s✱ ❋✐①❡❞ P♦✐♥t ❚❤❡♦r② ❆♣♣❧✳✱ ✹✵✻✸✻✽✳ ✹✺ ✷✵✵✽✱ ✽ ♣❛❣❡s✱ ■❉ ... ➤ñ✱ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ t❤ø tù✱ ❝➳❝ ➳♥❤ ①➵ ❦✐Ó✉ ✐✐✐ α? ??ψ ✲❝♦✱ ➳♥❤ ①➵ α? ??❝❤✃♣ ♥❤❐♥✱ ➳♥❤ ①➵ α? ??ψ ✲❝♦ s✉② ré♥❣✱ ➳♥❤ ①➵ α? ??ψ ✲❝♦ s✉② ré♥❣ ❧♦➵✐ ■✱ ➳♥❤ ①➵ α? ??ψ ✲❝♦ s✉② ré♥❣ ❧♦➵✐ ■■✱ ➳♥❤ ①➵ ❝ã tÝ♥❤ ❝❤✃t ➤➡♥... α? ??ψ ✲❝♦ tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ t❤ø tù✳ ❚r♦♥❣ ♠ơ❝ ✶ ❝❤ó♥❣ t➠✐ tr×♥❤ ❜➭② ♠ét sè ➤Þ♥❤ ❧ý ✈Ị ➤✐Ĩ♠ ❜✃t ➤é♥❣ ❜é ➤➠✐ ❝đ❛ ➳♥❤ ①➵ α? ??ψ ✲❝♦✱ ➳♥❤ ①➵ α? ??❝❤✃♣ ♥❤❐♥✱ ➳♥❤ ①➵ α? ??ψ ✲❝♦ s✉② ré♥❣ ❧♦➵✐ ■✱ ➳♥❤ ①➵ α? ??ψ... ❣✐❛♥ ♠➟tr✐❝ t❤ø tù✱ ❝➳❝ ➳♥❤ ①➵ ❝♦✱ ➳♥❤ ①➵ ❦✐Ó✉ ①➵ α? ??ψ ✲❝♦✱ ➳♥❤ α? ??❝❤✃♣ ♥❤❐♥✱ ➳♥❤ ①➵ α? ??ψ ✲❝♦ s✉② ré♥❣✱ ➳♥❤ ①➵ α? ??ψ ✲❝♦ s✉② ré♥❣ ❧♦➵✐ ■✱ ➳♥❤ ①➵ α? ??ψ ✲❝♦ s✉② ré♥❣ ❧♦➵✐ ■■✱ ➳♥❤ ①➵ ❝ã tÝ♥❤ ❝❤✃t ➤➡♥ ➤✐Ö✉

Ngày đăng: 25/08/2021, 16:01

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
[2] A. Aghajani and M. Abbas and E. P. Kallehbasti (2012), "Coupled fixed point theorems in partially ordered metric spaces and application", Math.Commun., 17, 497-509 Sách, tạp chí
Tiêu đề: Coupled fixedpoint theorems in partially ordered metric spaces and application
Tác giả: A. Aghajani and M. Abbas and E. P. Kallehbasti
Năm: 2012
[3] H. Aydi, E. Karapinar, B. Samet, C. Rajic (2013), "Discussion on some coupled fixed point theorems", Fixed Point Theory Appl., 2013, 50, doi:10.1186/1687-1812-2013-50 Sách, tạp chí
Tiêu đề: Discussion on somecoupled fixed point theorems
Tác giả: H. Aydi, E. Karapinar, B. Samet, C. Rajic
Năm: 2013
[4] S. Banach (1922), "Sur les opÐrations dans les ensembles abstraits et leur applications aux Ðquations intÐgrales", Fund. Math., 3, 133-181 Sách, tạp chí
Tiêu đề: Sur les opÐrations dans les ensembles abstraits et leur applications aux Ðquations intÐgrales
Tác giả: S. Banach
Nhà XB: Fund. Math.
Năm: 1922
[5] V. Berinde (2002), Iterative approximation of fixed points, Editura Efe- meride, Baia Mare Sách, tạp chí
Tiêu đề: Iterative approximation of fixed points
Tác giả: V. Berinde
Nhà XB: Editura Efe-meride
Năm: 2002
[6] V. Berinde (2011), "Generalized coupled fixed point theorems for mixed monotone mappings in partially ordered metric spaces", Nonlinear Anal., 74, 7347-7355 Sách, tạp chí
Tiêu đề: Generalized coupled fixed point theorems for mixedmonotone mappings in partially ordered metric spaces
Tác giả: V. Berinde
Năm: 2011
[7] V. Berinde (2012), "Coupled fixed point theorems for α - ψ -contractive mixed monotone mappings in partially ordered metric spaces", Nonlinear Anal., 75, 3218-3228 Sách, tạp chí
Tiêu đề: Coupled fixed point theorems for α-ψ-contractivemixed monotone mappings in partially ordered metric spaces
Tác giả: V. Berinde
Năm: 2012
[8] T. G. Bhaskar, V. Lakshmikantham (2006), "Fixed point theorems in par- tially ordered metric spaces and applications", Nonlinear Anal., 65, 1379- 1393 Sách, tạp chí
Tiêu đề: Fixed point theorems in par-tially ordered metric spaces and applications
Tác giả: T. G. Bhaskar, V. Lakshmikantham
Năm: 2006
[9] B. S. Choudhury, K. Das, P. Das (2012), "Coupled coincidence point results for compatible mappings in partially ordered fuzzy metric spaces", Fuzzy Sets and Systems, 222, 84-97 Sách, tạp chí
Tiêu đề: Coupled coincidence point results for compatible mappings in partially ordered fuzzy metric spaces
Tác giả: B. S. Choudhury, K. Das, P. Das
Nhà XB: Fuzzy Sets and Systems
Năm: 2012
[10] B. S. Choudhury, A. Kundu (2010), "A Coupled coincidence point result in partially ordered metric spaces for compatible mappings", Nonlinear Anal., 73 (8), 2524-2531 Sách, tạp chí
Tiêu đề: A Coupled coincidence point resultin partially ordered metric spaces for compatible mappings
Tác giả: B. S. Choudhury, A. Kundu
Năm: 2010
[11] A. Harandi (2008), "A Coupled and tripled fixed point theory in partially ordered metric spaces with applications to initial value problem", Math.Comput. Model, doi:10.1016/j.mcm.2011.12.006, 57 (9–10), 2343-2348 Sách, tạp chí
Tiêu đề: A Coupled and tripled fixed point theory in partially ordered metric spaces with applications to initial value problem
Tác giả: A. Harandi
Nhà XB: Math.Comput. Model
Năm: 2008
[12] E. Karapinar, R. Agarwal (2013), "A note on ''Coupled fixed point theo- rems for α - ψ -contractive-type mappings in partially ordered metric spaces"Fixed Point Theory and Appl., 2013, 216, doi:10.1186/1687-1812-2013-216 Sách, tạp chí
Tiêu đề: A note on ''Coupled fixed point theo- rems for α - ψ -contractive-type mappings in partially ordered metric spaces
Tác giả: E. Karapinar, R. Agarwal
Nhà XB: Fixed Point Theory and Appl.
Năm: 2013
[13] E. Karapinar, B. Samet (2012), "Generalized α - ψ -contractive type mappings and related fixed point theorems with applications", Abstr. Appl. Anal., 2012, Article ID 793486, 17 pages Sách, tạp chí
Tiêu đề: Generalized α - ψ -contractive type mappings and related fixed point theorems with applications
Tác giả: E. Karapinar, B. Samet
Nhà XB: Abstr. Appl. Anal.
Năm: 2012
[14] P. Preeti, S. Kumar (2015), "Coupled fixed point for α - ψ -contractive in par- tially ordered metric spaces using compatible mappings", Appl. Math., 6, 1380-1388 Sách, tạp chí
Tiêu đề: Coupled fixed point for α - ψ -contractive in par- tially ordered metric spaces using compatible mappings
Tác giả: P. Preeti, S. Kumar
Nhà XB: Appl. Math.
Năm: 2015
[15] V. Lakshmikantham, L. Ciric (2009), "Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces", Nonlinear Anal., 70 (12), 4341-4349 Sách, tạp chí
Tiêu đề: Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces
Tác giả: V. Lakshmikantham, L. Ciric
Nhà XB: Nonlinear Anal.
Năm: 2009
[16] N. V. Luong, N. X. Thuan (2011), "Coupled fixed points in partially ordered metric spaces and application", Nonlinear Anal., 74, 983-992 Sách, tạp chí
Tiêu đề: Coupled fixed points in partially orderedmetric spaces and application
Tác giả: N. V. Luong, N. X. Thuan
Năm: 2011
[17] M. Mursaleen, S. A. Mohiuddine, R. P. Agarwal (2012), "Coupled fixed point theorems for α - ψ -contractive type mappings in partially ordered metric spaces", Fixed Point Theory Appl., 2012, 228, doi:10.1186/1687- 1812-2012-228 Sách, tạp chí
Tiêu đề: Coupled fixed point theorems for α - ψ -contractive type mappings in partially ordered metric spaces
Tác giả: M. Mursaleen, S. A. Mohiuddine, R. P. Agarwal
Nhà XB: Fixed Point Theory Appl.
Năm: 2012
[19] J. Nieto, R. Lãpez (2005), "Contractive mapping theorems in partially or- dered sets and applications to ordinary differential equations", Order, 22, 223-239 Sách, tạp chí
Tiêu đề: Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations
Tác giả: J. Nieto, R. Lãpez
Nhà XB: Order
Năm: 2005
[20] P. D. Proinov (2007), "A generalization of the Banach contraction principle with high order of convergence of successive approximations", Nonlinear Anal., 67, 2361-2369 Sách, tạp chí
Tiêu đề: A generalization of the Banach contraction principle with high order of convergence of successive approximations
Tác giả: P. D. Proinov
Nhà XB: Nonlinear Anal.
Năm: 2007
[21] B. Samet, C.Vetro, P. Vetro (2012), "Fixed point theorems for α - ψ - contractive type mappings", Nonlinear Anal., 75, 2154-2165 Sách, tạp chí
Tiêu đề: Fixed point theorems for α - ψ - contractive type mappings
Tác giả: B. Samet, C. Vetro, P. Vetro
Nhà XB: Nonlinear Anal.
Năm: 2012
[22] P. N. Dutta, B. S. Choudhury (2008), A generalization of contraction principle in metric spaces, Fixed Point Theory Appl., 2008, 8 pages, ID 406368 Khác

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w