Tài liệu tham khảo |
Loại |
Chi tiết |
[2] Boyd S., El Ghaoui L., Feron E. and Balakrishnan V. (1994), Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia |
Sách, tạp chí |
Tiêu đề: |
Linear Matrix Inequalities in System and Control Theory |
Tác giả: |
Boyd S., El Ghaoui L., Feron E., Balakrishnan V |
Nhà XB: |
SIAM |
Năm: |
1994 |
|
[3] Ding X., Cao J., Zhao X., and Alsaadi F.E. (2017) “Finite-time Stability of fractional-order complex-valued neural networks with time delays", Neural Processing Letters, 46(2), 561–580 |
Sách, tạp chí |
Tiêu đề: |
Finite-time Stability of fractional-order complex-valued neural networks with time delays |
Tác giả: |
Ding X., Cao J., Zhao X., Alsaadi F.E |
Nhà XB: |
Neural Processing Letters |
Năm: |
2017 |
|
[5] Duarte-Mermoud M.A., Aguila-Camacho N., Gallegos J.A. and Castro- Linares R. (2015), “Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems", Communications in Nonlinear Science and Numerical Simulation, 22(1-3), 650–659 |
Sách, tạp chí |
Tiêu đề: |
Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems |
Tác giả: |
Duarte-Mermoud M.A., Aguila-Camacho N., Gallegos J.A., Castro-Linares R |
Nhà XB: |
Communications in Nonlinear Science and Numerical Simulation |
Năm: |
2015 |
|
[9] Lazarevi´ c M. P. and Debeljkovi´ c D.L. (2005), “Finite-time stability anal- ysis of linear autonomous fractional order systems with delayed state", Asian Journal of Control, 7(4), 440–447 (2005) |
Sách, tạp chí |
Tiêu đề: |
Finite-time stability analysis of linear autonomous fractional order systems with delayed state |
Tác giả: |
Lazarevi´ c M. P., Debeljkovi´ c D.L |
Nhà XB: |
Asian Journal of Control |
Năm: |
2005 |
|
[10] Lazarevi´ c M. P. and Spasi´ c A.M., “Finite-time stability analysis of frac- tional order time-delay systems: Gronwall’s approach", Mathematical and Computer Modelling, Vol. 49, pp. 475–481 (2009) |
Sách, tạp chí |
Tiêu đề: |
Finite-time stability analysis of frac-tional order time-delay systems: Gronwall’s approach |
|
[11] Li Y., Chen Y.Q. and Podlubny I. (2010), “Stability of fractional–order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag–Leffler stability", Computers and Mathematics with Applications, 59(5), 1810–1821 |
Sách, tạp chí |
Tiêu đề: |
Stability of fractional–order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag–Leffler stability |
Tác giả: |
Li Y., Chen Y.Q., Podlubny I |
Nhà XB: |
Computers and Mathematics with Applications |
Năm: |
2010 |
|
[12] Li M. and Wang J. (2017), “Finite time stability of fractional delay differ- ential equations", Applied Mathematics Letters, 64, 170–176 |
Sách, tạp chí |
Tiêu đề: |
Finite time stability of fractional delay differ-ential equations |
Tác giả: |
Li M. and Wang J |
Năm: |
2017 |
|
[13] Ma Y.J., Wu B.W. and Wang Y.E. (2016), “Finite-time stability and finite- time boundedness of fractional order linear systems", Neurocomputing, 173, 2076–2082 |
Sách, tạp chí |
Tiêu đề: |
Finite-time stability and finite-time boundedness of fractional order linear systems |
Tác giả: |
Ma Y.J., Wu B.W. and Wang Y.E |
Năm: |
2016 |
|
[14] Wu R.C., Lu Y.F., and Chen L.P. (2015), “Finite-time stability of frac- tional delayed neural networks", Neurocomputing, 149, 700–707 |
Sách, tạp chí |
Tiêu đề: |
Finite-time stability of frac-tional delayed neural networks |
Tác giả: |
Wu R.C., Lu Y.F., and Chen L.P |
Năm: |
2015 |
|
[15] Yang X., Song Q.K., Liu Y., and Zhao Z.J. (2015), “Finite-time stability analysis of fractional-order neural networks with delay", Neurocomputing, 152, 19–26 |
Sách, tạp chí |
Tiêu đề: |
Finite-time stabilityanalysis of fractional-order neural networks with delay |
Tác giả: |
Yang X., Song Q.K., Liu Y., and Zhao Z.J |
Năm: |
2015 |
|
[16] Ye H., Gao J., and Ding Y. (2007), “A generalized Gronwall inequality and its application to a fractional differential equation”, J. Math. Anal. Appl., 328, 1075–1081 |
Sách, tạp chí |
Tiêu đề: |
A generalized Gronwall inequality and its application to a fractional differential equation |
Tác giả: |
Ye H., Gao J., Ding Y |
Nhà XB: |
J. Math. Anal. Appl. |
Năm: |
2007 |
|
[1] Hoàng Thế Tuấn, Về một số vấn đề định tính của hệ phương trình vi phân phân thứ, Luận án tiến sĩ toán học, Viện Toán học, 2017.Tiếng Anh |
Khác |
|
[4] Diethelm K. (2010), The Analysis of Fractional Differential Equations.An Applicationoriented Exposition Using Differential Operators of Caputo Type, Lecture Notes in Mathematics, Springer - Verlag, Berlin |
Khác |
|
[6] Hilfer R. (2000), Applications of Fractional Calculus in Physics, World Science Publishing, Singapore |
Khác |
|
[8] Kilbas A.A., Srivastava H.M. and Trujillo J.J (2006), Theory and Appli- cations of Fractional Differential Equations, Springer |
Khác |
|