Tài liệu tham khảo |
Loại |
Chi tiết |
[2] Boyd S., El Ghaoui L., Feron E. and Balakrishnan V. (1994), Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia |
Sách, tạp chí |
Tiêu đề: |
Linear Matrix Inequalities in System and Control Theory |
Tác giả: |
Boyd S., El Ghaoui L., Feron E., Balakrishnan V |
Nhà XB: |
SIAM |
Năm: |
1994 |
|
[3] Diethelm K. (2010), The Analysis of Fractional Differential Equations. An Application oriented Exposition Using Differential Operators of Caputo Type, Lecture Notes in Mathematics, 2004, Springer - Verlag, Berlin |
Sách, tạp chí |
Tiêu đề: |
The Analysis of Fractional Differential Equations. An Application oriented Exposition Using Differential Operators of Caputo Type |
Tác giả: |
Diethelm K |
Nhà XB: |
Springer - Verlag |
Năm: |
2010 |
|
[4] Duarte-Mermoud M.A., Aguila-Camacho N., Gallegos J.A. and Castro- Linares R. (2015), “Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems”, Communications in Nonlinear Science and Numerical Simulation, 22(1-3), 650–659 |
Sách, tạp chí |
Tiêu đề: |
Using general quadratic Lyapunov functions to proveLyapunov uniform stability for fractional order systems |
Tác giả: |
Duarte-Mermoud M.A., Aguila-Camacho N., Gallegos J.A. and Castro- Linares R |
Năm: |
2015 |
|
[5] Hilfer R. (2000), Applications of Fractional Calculus in Physics, World Science Publishing, Singapore |
Sách, tạp chí |
Tiêu đề: |
Applications of Fractional Calculus in Physics |
Tác giả: |
Hilfer R |
Nhà XB: |
World Science Publishing |
Năm: |
2000 |
|
[8] Li Y., Chen Y.Q. and Podlubny I. (2010), “Stability of fractional- order nonlinear dynamic systems: Lyapunov direct method and generalized Mit- tagLeffer stability” Computers and Mathematics with Applications, 59(5), 1810–1821 |
Sách, tạp chí |
Tiêu đề: |
Stability of fractional- ordernonlinear dynamic systems: Lyapunov direct method and generalized Mit-tagLeffer stability |
Tác giả: |
Li Y., Chen Y.Q. and Podlubny I |
Năm: |
2010 |
|
[9] Li M. and Wang J. (2017), “Finite time stability of fractional delay differ- ential equations” Applied Mathematics Letters, 64, 170–176 |
Sách, tạp chí |
Tiêu đề: |
Finite time stability of fractional delay differ-ential equations |
Tác giả: |
Li M. and Wang J |
Năm: |
2017 |
|
[10] Shuo Z, Chen Y.Q. and Yu Y. (2017) “A Survey of Fractional-Order Neural Network”, ASME 2017 International Design Engineering Technical Confer- ences and Computers and Information in Engineering Conference, Amer- ican Society of Mechanical Engineers |
Sách, tạp chí |
Tiêu đề: |
A Survey of Fractional-Order NeuralNetwork |
|
[11] Zhang S., Yu Y. and Yu J. (2017), “LMI conditions for global stability of fractional-order neural networks”, IEEE Transactions on Neural Networks and Learning Systems, 28(10), 2423–2433 |
Sách, tạp chí |
Tiêu đề: |
LMI conditions for global stability offractional-order neural networks |
Tác giả: |
Zhang S., Yu Y. and Yu J |
Năm: |
2017 |
|
[1] Hoàng Thế Tuấn, Về một số vấn đề định tính của hệ phương trình vi phân phân thứ, Luận án tiến sĩ toán học, Viện Toán học, 2017.Tiếng Anh |
Khác |
|
[6] Kaczorek T. (2011), Selected Problems of Fractional Systems Theory, Springer |
Khác |
|
[7] Kilbas A.A., Srivastava H.M. and Trujillo J.J (2006), Theory and Appli- cations of Fractional Differential Equations, Springer |
Khác |
|