1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Điều kiện cần và đủ cho nghiệm hữu hiệu của bài toán tối ưu đa mục tiêu qua dưới vi phân suy rộng

37 167 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 37
Dung lượng 563,57 KB

Nội dung

ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC SƯ PHẠM TRẦN THỊ NHÀN ĐIỀU KIỆN CẦN ĐỦ CHO NGHIỆM HỮU HIỆU CỦA BÀI TOÁN TỐI ƯU ĐA MỤC TIÊU QUA DƯỚI VI PHÂN SUY RỘNG LUẬN VĂN THẠC SĨ TOÁN HỌC Thái Nguyên - Năm 2015 ✐ ▲ê✐ ❝❛♠ ➤♦❛♥ ❚➠✐ ①✐♥ ❝❛♠ ➤♦❛♥ r➺♥❣ ❝➳❝ ❦Õt q✉➯ ♥❣❤✐➟♥ ❝ø✉ tr♦♥❣ ❧✉❐♥ ✈➝♥ ♥➭② ❧➭ tr✉♥❣ t❤ù❝ ✈➭ ❦❤➠♥❣ trï♥❣ ❧➷♣ ✈í✐ ❝➳❝ ➤Ị t➭✐ ❦❤➳❝✳ ❚➠✐ ❝ò♥❣ ①✐♥ ❝❛♠ ➤♦❛♥ r➺♥❣ ♠ä✐ sù ❣✐ó♣ ➤ì ❝❤♦ ✈✐Ư❝ t❤ù❝ ❤✐Ư♥ ❧✉❐♥ ✈➝♥ ♥➭② ➤➲ ➤➢ỵ❝ ❝➯♠ ➡♥ ✈➭ ❝➳❝ t❤➠♥❣ t✐♥ trÝ❝❤ ❞➱♥ tr♦♥❣ ❧✉❐♥ ✈➝♥ ➤➲ ➤➢ỵ❝ ❝❤Ø râ ♥❣✉å♥ ❣è❝✳ ❚❤➳✐ ◆❣✉②➟♥✱ t❤➳♥❣ ✹ ♥➝♠ ✷✵✶✺ ◆❣➢ê✐ ✈✐Õt ❧✉❐♥ ✈➝♥ ❚r➬♥ ❚❤Þ ◆❤➭♥ ✐✐ ▲ê✐ ❝➯♠ ➡♥ ▲✉❐♥ ✈➝♥ ➤➢ỵ❝ t❤ù❝ ❤✐Ư♥ ✈➭ ❤♦➭♥ t❤➭♥❤ t➵✐ tr➢ê♥❣ ➜➵✐ ❤ä❝ s➢ ♣❤➵♠ ✲ ➜➵✐ ❤ä❝ ❚❤➳✐ ◆❣✉②➟♥ ❞➢í✐ sù ọ ủ P ◗✉❛ ➤➞②✱ t➳❝ ❣✐➯ ①✐♥ ➤➢ỵ❝ ❣ư✐ ❧ê✐ ❝➯♠ ➡♥ s➞✉ s➽❝ ➤Õ♥ t❤➬② ❣✐➳♦✱ ♥❣➢ê✐ ❤➢í♥❣ ❞➱♥ ❦❤♦❛ ❤ä❝ ủ ì P t t×♥❤ ❤➢í♥❣ ❞➱♥ tr♦♥❣ s✉èt q✉➳ tr×♥❤ ♥❣❤✐➟♥ ❝ø✉ ❝đ❛ t➳❝ ❣✐➯✳ ➜å♥❣ t❤ê✐ t➳❝ ❣✐➯ ❝ò♥❣ ❝❤➞♥ t❤➭♥❤ ❝➯♠ ➡♥ ❝➳❝ t❤➬② ❝➠ tr♦♥❣ ❦❤♦❛ ❚♦➳♥✱ ❦❤♦❛ ❙❛✉ ➤➵✐ ❤ä❝ ✲ ❚r➢ê♥❣ ➜➵✐ ❤ä❝ s➢ ♣❤➵♠✱ ➜➵✐ ❤ä❝ ❚❤➳✐ ◆❣✉②➟♥✱ ➤➲ t➵♦ ♠ä✐ ➤✐Ị✉ ❦✐Ư♥ ➤Ĩ t➳❝ ❣✐➯ ❤♦➭♥ t❤➭♥❤ ❜➯♥ ❧✉❐♥ ✈➝♥ ♥➭②✳ ❚➳❝ ❣✐➯ ❝ò♥❣ ❣ư✐ ❧ê✐ ❝➯♠ ➡♥ ➤Õ♥ ❣✐❛ ➤×♥❤ ✈➭ ❝➳❝ ❜➵♥ tr♦♥❣ ❧í♣ ❈❛♦ ❤ä❝ ❚♦➳♥ ❑✷✶❜✱ ➤➲ ➤é♥❣ ✈✐➟♥ ❣✐ó♣ ➤ì t➳❝ ❣✐➯ tr♦♥❣ q✉➳ tr×♥❤ ❤ä❝ t❐♣ ✈➭ ❧➭♠ ❧✉❐♥ ✈➝♥✳ ▲✉❐♥ ✈➝♥ ❦❤➠♥❣ t❤Ĩ tr➳♥❤ ❦❤á✐ ♥❤÷♥❣ t❤✐Õ✉ sãt✱ t➳❝ rt ợ ỉ t tì ❝đ❛ ❝➳❝ t❤➬② ❝➠ ✈➭ ❜➵♥ ❜❒ ➤å♥❣ ♥❣❤✐Ư♣✳ ❚❤➳✐ ◆❣✉②➟♥✱ t❤➳♥❣ ✹ ♥➝♠ ✷✵✶✺ ◆❣➢ê✐ ✈✐Õt ❧✉❐♥ ✈➝♥ ❚r➬♥ ❚❤Þ ◆❤➭♥ ✐✐✐ ▼ơ❝ ❧ơ❝ ▲ê✐ ❝❛♠ ➤♦❛♥ ✐ ▲ê✐ ❝➯♠ ➡♥ ✐✐ ▼ô❝ ❧ô❝ ✐✐✐ ▼ë ➤➬✉ ✶ ✶ ✸ ➜✐Ị✉ ❦✐Ư♥ ❝➬♥ ❋r✐t③ ❏♦❤♥ ❝❤♦ ❝ù❝ t✐Ĩ✉ ②Õ✉ ✶✳✶ ❈➳❝ ❦✐Õ♥ t❤ø❝ ❜ỉ trỵ ✷ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸ ✶✳✶✳✶✳ ❉➢í✐ ✈✐ ♣❤➞♥ s✉② ré♥❣ ✶✳✶✳✷✳ ❈➳❝ ❞➢í✐ ✈✐ ♣❤➞♥ ❈❧❛r❦❡✲❘♦❝❦❛❢❡❧❧❛r✱ ❈❧❛r❦❡✱ ▼✐❝❤❡❧✲P❡♥♦t ✶✳✶✳✸✳ ❉➢í✐ ✈✐ ♣❤➞♥ s✉② ré♥❣ ❝❤Ý♥❤ q✉②✱ ❞➢í✐ ✈✐ ♣❤➞♥ s✉② ré♥❣ tè✐ t❤✐Ó✉ ✶✳✷ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ➜✐Ị✉ ❦✐Ư♥ ❝➬♥ ❋r✐t③ ❏♦❤♥ ❝❤♦ ❝ù❝ t✐Ó✉ P❛r❡t♦ ②Õ✉ ✼ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✵ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✸ ➜✐Ị✉ ❦✐Ư♥ ❝❤Ý♥❤ q✉② ✈➭ ➤✐Ị✉ ❦✐Ư♥ tè✐ ➢✉ ❑❛r✉s❤✲❑✉❤♥✲❚✉❝❦❡r ✷✹ ✷✳✶ ➜✐Ị✉ ❦✐Ư♥ ❝❤Ý♥❤ q✉② ✈➭ ➤✐Ị✉ ❦✐Ư♥ ❝➬♥ ❑❛r✉s❤✲❑✉❤♥✲❚✉❝❦❡r ✳ ✳ ✳ ✳ ✷✹ ✷✳✷ ➜✐Ị✉ ❦✐Ư♥ ➤đ ❝❤♦ ❝ù❝ t✐Ĩ✉ P❛r❡t♦ ②Õ✉ ✳ ❑Õt ❧✉❐♥ ✳ ✳ ✳ ✳ ✳ ✳ ❚➭✐ ❧✐Ö✉ t❤❛♠ ❦❤➯♦ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✽ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✵ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✶ ✶ ▼ë ➤➬✉ ✶✳ ▲ý ❞♦ ❝❤ä♥ ❧✉❐♥ ✈➝♥ ◆➝♠ ✶✾✾✹✱ ❉❡♠②❛♥♦✈ ❬✺❪ ➤➲ ➤➢❛ r❛ ❦❤➳✐ ♥✐Ư♠ ❞➢í✐ ✈✐ ♣❤➞♥ s✉② ré♥❣ ❝♦♠♣➝❝ ❧å✐✳ ❑❤➳✐ ♥✐Ư♠ ♥➭② ❧➭ ♠ét tỉ♥❣ q✉➳t ❤♦➳ ❝đ❛ ❦❤➳✐ ♥✐Ư♠ ❧å✐ tr➟♥ ✈➭ ❧â♠ ❞➢í✐ ✭①❡♠ ❬✻❪✮✳ ❈➳❝ ❦❤➳✐ ♥✐Ư♠ ❞➢í✐ ✈✐ ♣❤➞♥ s✉② ré♥❣ ➤ã♥❣✱ ❦❤➠♥❣ ❧å✐ ✈➭ ❏❛❝♦❜✐❛♥ ①✃♣ ①Ø ➤➢ỵ❝ ➤Ị ①✉✃t ❜ë✐ ❏❡②❛❦✉♠❛r ✈➭ ▲✉❝ tr♦♥❣ ❬✾❪ ✈➭ ❬✶✵❪✳ ❑❤➳✐ ♥✐Ư♠ ❞➢í✐ ✈✐ ♣❤➞♥ s✉② ré♥❣ ❧➭ tỉ♥❣ q✉➳t ❤♦➳ ❝đ❛ ♠ét sè ❝➳❝ ❦❤➳✐ ♥✐Ư♠ ❞➢í✐ ✈✐ ♣❤➞♥ ➤➲ ❜✐Õt ❝đ❛ ❈❧❛r❦❡ ❬✹❪✱ ▼✐❝❤❡❧✲P❡♥♦t ❬✶✼❪✱ ▼♦r❞✉❦❤♦✈✐❝❤ ❬✶✽❪✳ ▼ét ➤✐Ị✉ ❦✐Ư♥ ❝➬♥ ❋r✐t③ ❏♦❤♥ ❝❤♦ ❝ù❝ t✐Ĩ✉ ②Õ✉ ❝đ❛ ❜➭✐ t♦➳♥ q✉② ❤♦➵❝❤ ➤❛ ♠ơ❝ t✐➟✉ ỉ ợ r ▲✉❝ ❬✶✷❪✳ ➜✐Ị✉ ❦✐Ư♥ ❝➬♥ tè✐ ➢✉ ❋r✐t③ ❏♦❤♥ ❝❤♦ ❝ù❝ t✐Ĩ✉ ②Õ✉ ❞➢í✐ ♥❣➠♥ ♥❣÷ ❞➢í✐ ✈✐ ♣❤➞♥ s✉② ré♥❣ ➤➢ỵ❝ ➤➢❛ r❛ ❜ë✐ ❉✉tt❛✲ ❈❤❛♥❞r❛ ❬✼✱✽❪ ❝❤♦ ❜➭✐ t♦➳♥ tè✐ ➢✉ ➤❛ ♠ơ❝ t✐➟✉ ✈í✐ ❝➳❝ r➭♥❣ ❜✉é❝ ❜✃t ➤➻♥❣ t❤ø❝✳ ➜✐Ị✉ ❦✐Ư♥ ❝➬♥ ❝❤♦ ❝ù❝ t✐Ĩ✉ ②Õ✉ ✈➭ ❝ù❝ t✐Ĩ✉ P❛r❡t♦ ➤➢ỵ❝ ➤➢❛ r❛ ❜ë✐ ▲✉✉ ❬✶✺❪ ✈í✐ ❝➳❝ r➭♥❣ ❜✉é❝ ➤➻♥❣ t❤ø❝✱ ❜✃t ➤➻♥❣ t❤ø❝ ✈➭ r➭♥❣ ❜✉é❝ t❐♣✳ ❉ù❛ ✭✷✵✶✹✮ tr➟♥ ➤➲ ➤Þ♥❤ t❤✐Õt ❧Ý ❧❐♣ ▲❥✉st❡r♥✐❦ ❝➳❝ ➤✐Ị✉ ♠ë ❦✐Ư♥ ré♥❣ tè✐ ➢✉ ❝đ❛ ❝❤♦ ❏✐♠Ð♥❡③✲◆♦✈♦ ❝ù❝ t✐Ĩ✉ P❛r❡t♦ ✭✷✵✵✷✮✱ ②Õ✉ ❝đ❛ ❉✳❱✳▲✉✉ ❜➭✐ t♦➳♥ tè✐ ➢✉ ➤❛ ♠ô❝ t✐➟✉ ❝ã r➭♥❣ ❜✉é❝ ➤➻♥❣ t❤ø❝✱ ❜✃t ➤➻♥❣ t❤ø❝ ✈➭ r➭♥❣ ❜✉é❝ t❐♣ ❞➢í✐ ♥❣➠♥ ♥❣÷ ❞➢í✐ ✈✐ ♣❤➞♥ s✉② ré♥❣ ✭❝♦♥✈❡①✐❢✐❝❛t♦r✮✳ ➜➞② ❧➭ ➤Ị t➭✐ ➤❛♥❣ ➤➢ỵ❝ ♥❤✐Ị✉ t➳❝ ❣✐➯ tr♦♥❣ ✈➭ ♥❣♦➭✐ ♥➢í❝ q✉❛♥ t➞♠ ♥❣❤✐➟♥ ❝ø✉✳ ❈❤Ý♥❤ ✈× t❤Õ ❡♠ ❝❤ä♥ ➤Ị t➭✐ ✿ ➇➜✐Ị✉ ❦✐Ư♥ ❝➬♥ ✈➭ ➤đ ❝❤♦ ♥❣❤✐Ư♠ ❤÷✉ ❤✐Ư✉ ❝đ❛ ❜➭✐ t♦➳♥ tè✐ ➢✉ ➤❛ ♠ơ❝ t✐➟✉ q✉❛ ❞➢í✐ ✈✐ ♣❤➞♥ s✉② ré♥❣➈✳ ✷✳ P❤➢➡♥❣ ♣❤➳♣ ♥❣❤✐➟♥ ❝ø✉ ✷ ❙➢✉ t➬♠ ✈➭ ➤ä❝ t➭✐ ❧✐Ö✉ tõ ❝➳❝ s➳❝❤✱ t➵♣ ❝❤Ý t♦➳♥ ❤ä❝ tr♦♥❣ ♥➢í❝ ✈➭ q✉è❝ tÕ ❧✐➟♥ q✉❛♥ ➤Õ♥ ➤✐Ị✉ ❦✐Ư♥ tè✐ ➢✉ ❝❤♦ ❜➭✐ t♦➳♥ tè✐ ➢✉ ✈Ð❝ t➡✳ ◗✉❛ ➤ã✱ t×♠ ❤✐Ĩ✉ ✈➭ ♥❣❤✐➟♥ ❝ø✉ ✈Ị ✈✃♥ ➤Ị ♥➭②✳ ✸✳ ▼ơ❝ ➤Ý❝❤ ❝đ❛ ❧✉❐♥ ✈➝♥ ▲✉❐♥ ✈➝♥ tr×♥❤ ❜➭② ❝➳❝ ➤✐Ị✉ ❦✐Ư♥ ❝➬♥ ✈➭ ➤đ ❝❤♦ ♥❣❤✐Ư♠ ❤÷✉ ❤✐Ư✉ ❞➢í✐ ♥❣➠♥ ♥❣÷ ❞➢í✐ ✈✐ ♣❤➞♥ s✉② ré♥❣ tr♦♥❣ ❜➭✐ ❜➳♦ ❝ñ❛ ❉✳ ❱✳ ▲➢✉ ➤➝♥❣ tr♦♥❣ t➵♣ ❝❤Ý ❏♦✉r♥❛❧ ♦❢ ❖♣t✐♠✐③❛t✐♦♥ ❚❤❡♦r② ❛♥❞ ❆♣♣❧✐❝❛t✐♦♥s✱ ❱♦❧✳ ✶✻✵ ✭✷✵✶✹✮✱ ♣♣✳ ✺✶✵✲✺✷✻✳ ✹✳ ◆é✐ ❞✉♥❣ ❝ñ❛ ❧✉❐♥ ✈➝♥ ▲✉❐♥ ✈➝♥ ❜❛♦ ❣å♠ ♣❤➬♥ ♠ë ➤➬✉✱ ✷ ❝❤➢➡♥❣✱ ❦Õt ❧✉❐♥ ✈➭ ❞❛♥❤ ♠ơ❝ ❝➳❝ t➭✐ ❧✐Ư✉ t❤❛♠ ❦❤➯♦ ❈❤➢➡♥❣ ✶✿ ➜✐Ị✉ ❦✐Ư♥ ❝➬♥ ❋r✐t③ ❏♦❤♥ ❝❤♦ ❝ù❝ t✐Ĩ✉ ②Õ✉ ❚r×♥❤ ❜➭② ♠ét sè ❦✐Õ♥ t❤ø❝ ❝➡ ❜➯♥ ✈Ị ❞➢í✐ ✈✐ ♣❤➞♥ s✉② ré♥❣ ✈➭ ➤✐Ị✉ ❦✐Ư♥ ❝➬♥ ❋r✐t③ ❏♦❤♥ ❝❤♦ ❝ù❝ t✐Ĩ✉ P❛r❡t♦ ②Õ✉ ❝đ❛ ❜➭✐ t♦➳♥ tè✐ ➢✉ ➤❛ ♠ô❝ t✐➟✉ ❝ã r➭♥❣ ❜✉é❝ ➤➻♥❣ t❤ø❝✱ ❜✃t ➤➻♥❣ t❤ø❝ ✈➭ r➭♥❣ ❜✉é❝ t❐♣ ✈í✐ ❝➳❝ ❤➭♠ ▲✐♣s❝❤✐t③ ➤Þ❛ ♣❤➢➡♥❣✳ ❈❤➢➡♥❣ ✷✿ ➜✐Ị✉ ❦✐Ư♥ ❝❤Ý♥❤ q✉② ✈➭ ➤✐Ị✉ ❦✐Ư♥ tè✐ ➢✉ ❑❛r✉s❤✲❑✉❤♥✲❚✉❝❦❡r ❚r×♥❤ ❜➭② ❝➳❝ ➤✐Ị✉ ❦✐Ư♥ ❝❤Ý♥❤ q✉② ✈➭ ➤✐Ị✉ ❦✐Ư♥ ❝➬♥ ❑❛r✉s❤✲❑✉❤♥✲❚✉❝❦❡r ❝❤♦ ❜➭✐ t♦➳♥ tè✐ ➢✉ ➤❛ ♠ô❝ t✐➟✉ ❝ã r➭♥❣ ❜✉é❝ ➤➻♥❣ t❤ø❝✱ ❜✃t ➤➻♥❣ t❤ø❝ ✈➭ r➭♥❣ ❜✉é❝ t❐♣ ✈í✐ ❝➳❝ ❤➭♠ ▲✐♣s❝❤✐t③ ➤Þ❛ ♣❤➢➡♥❣ ❞➢í✐ ♥❣➠♥ ♥❣÷ ❞➢í✐ ✈✐ ♣❤➞♥ s✉② ré♥❣ ✈í✐ ❝➳❝ ❣✐➯ t❤✐Õt ✈Ò tÝ♥❤ ❧å✐ s✉② ré♥❣✱ ❝➳❝ ➤✐Ò✉ ❦✐Ư♥ ❝➬♥ tè✐ ➢✉ trë t❤➭♥❤ ❝➳❝ ➤✐Ị✉ ❦✐Ư♥ ➤đ tè✐ ➢✉✳ ✸ ❈❤➢➡♥❣ ✶ ➜✐Ị✉ ❦✐Ư♥ ❝➬♥ ❋r✐t③ ❏♦❤♥ ❝❤♦ ❝ù❝ t✐Ĩ✉ ②Õ✉ ❚r♦♥❣ ❝❤➢➡♥❣ ✶ ❝❤ó♥❣ t➠✐ tr×♥❤ ❜➭② ♠ét sè ❦✐Õ♥ t❤ø❝ ❝➡ ❜➯♥ ✈Ị ❞➢í✐ ✈✐ ♣❤➞♥ s✉② ré♥❣ ✈➭ ➤✐Ị✉ ❦✐Ư♥ ❝➬♥ ❋r✐t③ ❏♦❤♥ ❝❤♦ ❝ù❝ t✐Ĩ✉ P❛r❡t♦ ②Õ✉ ❝đ❛ ❜➭✐ t♦➳♥ tè✐ ➢✉ ➤❛ ♠ô❝ t✐➟✉ ❝ã r➭♥❣ ❜✉é❝ ➤➻♥❣ t❤ø❝✱ ❜✃t ➤➻♥❣ t❤ø❝ ✈➭ r➭♥❣ ❜✉é❝ t❐♣ ❞➢í✐ ♥❣➠♥ ♥❣÷ ❞➢í✐ ✈✐ ♣❤➞♥ s✉② ré♥❣✳ ❈➳❝ ❦Õt q✉➯ tr×♥❤ ❜➭② tr♦♥❣ ❝❤➢➡♥❣ ♥➭② ➤➢ỵ❝ t❤❛♠ ❦❤➯♦ tr♦♥❣ ❬✾❪✱ ❬✶✹❪✳ ✶✳✶ ❈➳❝ ❦✐Õ♥ t❤ø❝ ❜ỉ trỵ ✶✳✶✳✶✳ ❈❤♦ ❉➢í✐ ✈✐ ♣❤➞♥ s✉② ré♥❣ f trị tự rộ ợ ị tr➟♥ ❤➭♠ t❤❡♦ ♣❤➢➡♥❣ ❉✐♥✐ ❞➢í✐ ✈➭ tr➟♥ v ∈ Rn f− t➵✐ t➵✐ x¯ x¯ f ❝ñ❛ t➵✐ x¯ ∈ Rn f − (¯ x; v) := lim inf f (x + tv) − f (¯ x) , t f + (¯ x; v) := lim sup f (¯ x + tv) − f (¯ x) t t↓0 f f+ ✳ ◆❤➽❝ ❧➵✐ r➺♥❣ ➤➵♦ t❤❡♦ ♣❤➢➡♥❣ ➤➢ỵ❝ ①➳❝ ➤Þ♥❤ ♥❤➢ s❛✉✿ t↓0 ◆Õ✉ ✈➭ Rn f + (¯ x; v) = f − (¯ x; v) ✱ tì trị ó ợ ọ ❝đ❛ ❤➭♠ t❤❡♦ ♣❤➢➡♥❣ v ✈➭ ❦ý ❤✐Ư✉ ❧➭ f (¯ x; v) ✳ ❍➭♠ ♥Õ✉ tå♥ t➵✐ ➤➵♦ ❤➭♠ t❤❡♦ ♣❤➢➡♥❣ ❝ñ❛ ♥ã t➵✐ ❦❤➯ ✈✐ ❋rÐ❝❤❡t t➵✐ x¯ ✈í✐ ➤➵♦ ❤➭♠ ❋rÐ❝❤❡t ∇f (¯ x) f x¯ t❤× ❣ä✐ ❧➭ ❦❤➯ ✈✐ t❤❡♦ ♣❤➢➡♥❣ t❤❡♦ ♠ä✐ ♣❤➢➡♥❣✳ ◆Õ✉ f f (¯ x; v) = ∇f (¯ x, v) ❧➭ ✹ f ❚❤❡♦ ❬✾❪ ❤➭♠ ∂∗ f (¯ x) ✮ t➵✐ ➤➢ỵ❝ ❣ä✐ ❧➭ ❝ã ❞➢í✐ ✈✐ ♣❤➞♥ s✉② ré♥❣ tr➟♥ x¯ ∈ Rn ♥Õ✉ ∂ ∗ f (¯ x) ✭❤❛② (∂∗ f (¯ x)) ⊆ Rn f − (¯ x; v) ≤ sup inf (∀v ∈ Rn ), ξ, v (∀v ∈ Rn ) ξ∈∂∗ f (¯ x) ▼ét t❐♣ ➤ã♥❣ ♥Õ✉ ∂ ∗ f (¯ x) ❚❤❡♦ ∂ ∗ f (¯ x) ⊆ Rn ➤➢ỵ❝ ❣ä✐ ❧➭ ♠ét ❞➢í✐ ✈✐ ♣❤➞♥ s✉② ré♥❣ ❝đ❛ ➤å♥❣ t❤ê✐ ❧➭ ❞➢í✐ ✈✐ ♣❤➞♥ s✉② ré♥❣ tr➟♥ ✈➭ ❞➢í✐ ❝ñ❛ ❬✽❪ ❤➭♠ ∂ ∗ f (¯ x) ⊆ Rn t➵✐ f x¯ ➤➢ỵ❝ ♥Õ✉ ✭❤❛② ❞➢í✐ ✮ ❧➭ t❐♣ ➤ã♥❣ ✈➭ ξ, v ξ∈∂ ∗ f (¯ x) f + (¯ x; v) ≥ ∂ ∗ f (¯ x) ❣ä✐ ❧➭ ∂ ∗ f (¯ x) ❝ã ❞➢í✐ ✈✐ ♣❤➞♥ s✉② ré♥❣ ❜➳♥ f t➵✐ x¯ ❝❤Ý♥❤ f t➵✐ x¯ ✳ q✉② tr➟♥ ❧➭ t❐♣ ➤ã♥❣ ✈➭ f + (¯ x; v) ≤ sup (∀v ∈ Rn ) ξ, v ξ∈∂ ∗ f (¯ x) ✭✶✳✶✮ ❱Ý ❞ô ✶✳✶✳✶ ❈❤♦ ❤➭♠ f :R→R     x, f (x) := x4 − 4x3 + 4x2 ,   0, ợ x Q ∩ [0; +∞[, x ∈ Q ∩ ]−∞; 0], ❦❤✐ , tr♦♥❣ ❝➳❝ tr➢ê♥❣ ❤ỵ♣ ❦❤➳❝ tr♦♥❣ ➤ã Q ❧➭ t❐♣ ❝➳❝ sè ❤÷✉ tû✳ ❑❤✐ ➤ã   v, + f (0; v) =  0, ❦❤✐ v ≥ 0, ❦❤✐ v < 0, f − (0; v) = (∀v ∈ R) ❚❐♣ {0; 1} ❧➭ ❞➢í✐ ✈✐ ♣❤➞♥ s✉② ré♥❣ ❜➳♥ ❝❤Ý♥❤ q✉② tr➟♥ ❝đ❛ ♥ã ❝ò♥❣ ❧➭ ❞➢í✐ ✈✐ ♣❤➞♥ s✉② ré♥❣ tr➟♥ ❝đ❛ ré♥❣ ❞➢í✐ ❝ñ❛ ❚❤❡♦ ❬✾❪✱ f t➵✐ ♥Õ✉ f t➵✐ x¯ ✳ ❚❐♣ {0} f t➵✐ x¯ ✱ ❝❤♦ ♥➟♥ ❧➭ ❞➢í✐ ✈✐ ♣❤➞♥ s✉② x¯ ✳ ①➯② r❛ ➤➻♥❣ t❤ø❝ tr♦♥❣ f ( x) ợ ọ ❞➢í✐ ✈✐ ♣❤➞♥ s✉② ré♥❣ ❝❤Ý♥❤ q✉② tr➟♥✳ ❱í✐ ♠ét ❤➭♠ ▲✐♣s❝❤✐t③ ➤Þ❛ ♣❤➢➡♥❣✱ ❞➢í✐ ✈✐ ♣❤➞♥ ✺ ❈❧❛r❦❡ ✈➭ ❞➢í✐ ✈✐ ♣❤➞♥ ▼✐❝❤❡❧✲P❡♥♦t ❧➭ ♥❤÷♥❣ ❞➢í✐ ✈✐ ♣❤➞♥ s✉② ré♥❣ ❝đ❛ x¯ ✭①❡♠ ❬✾❪✮✳ f t➵✐ ❍➡♥ ♥÷❛ ✈í✐ ♠ét ❤➭♠ ▲✐♣s❝❤✐t③ ➤Þ❛ ♣❤➢➡♥❣ ❝❤Ý♥❤ q✉② tr♦♥❣ t❤❡♦ ♥❣❤Ü❛ ❈❧❛r❦❡ ❬✹❪✱ ❞➢í✐ ✈✐ ♣❤➞♥ ❈❧❛r❦❡ ❧➭ ♠ét ❞➢í✐ ✈✐ ♣❤➞♥ s✉② ré♥❣ ❝❤Ý♥❤ q✉② f tr➟♥ ✭①❡♠ ❬✼❪✮✳ ❈❤ó ý r➺♥❣✱ ♥Õ✉ ❤➭♠ tr➟♥ t➵✐ x¯ ❝ã ♠ét ❞➢í✐ ✈✐ ♣❤➞♥ s✉② ré♥❣ ❝❤Ý♥❤ q✉② t❤× ♥ã ❝ò♥❣ ❧➭ ❞➢í✐ ✈✐ ♣❤➞♥ s✉② ré♥❣ ❜➳♥ ❝❤Ý♥❤ q✉② tr➟♥ t➵✐ x¯ ➤ã ♥ã ➤➢ỵ❝ ❧➭ ❞➢í✐ ✈✐ ♣❤➞♥ s✉② ré♥❣ tr➟♥ t➵✐ x¯ ✱ ✈➭ ❞♦ ✳ ❱Ý ❞ô ✶✳✶✳✷ ét f :RR ợ  x2 cos π , x f (x) =  0, ❚❛ ❝ã f t➵✐ x¯ = t➢➡♥❣ ø♥❣ ❧➭ x = f t➵✐ f x¯ ∈ Q t❤❡♦ tÝ♥❤ t➵✐ x¯ ∈ Q t❤❡♦ Q Q ♥Õ✉ t➵✐ {0} ♣❤➞♥ ❈❧❛r❦❡ ✳ ❈➳❝ t❐♣ x¯ ✳ ❚❐♣ {0} ✈➭ ▼✐❝❤✐❧❡✲ {0} [−π; π] ✱ ✈➭ ❧➭ ❞➢í✐ s Q ế ỗ f (x) ≤ f (¯ x) ⇒ ∀t ∈ ]0, 1[ , ➤➢ỵ❝ ❣ä✐ ❧➭ tù❛ ❧å✐ tr➟♥ ✈➭ ✈✐ x¯ ❚❤❡♦ ❬✶✻❪ ♠ét ❤➭♠ ❣✐➳ trÞ t❤ù❝ ♠ë ré♥❣ ❣ä✐ ❧➭ tù❛ ❧å✐ t➵✐ ❉➢í✐ [−π; π] ❧➭ ❝➳❝ ❞➢í✐ ✈✐ ♣❤➞♥ s✉② ré♥❣ ❝ñ❛ ré♥❣ ❝❤Ý♥❤ q✉② tr➟♥ ❝ñ❛ ♥Õ✉ ±f f ①➳❝ ➤Þ♥❤ tr➟♥ t❐♣ x∈Q Q f Q ⊆ Rn ➤➢ỵ❝ ✱ f (tx + (1 − t)¯ x) ≤ f (¯ x) ❧➭ tù❛ ❧å✐ t➵✐ s✉② ré♥❣ ❞➢í✐ ❧å✐ tr➟♥ ♠ét t❐♣ ❧å✐ f ❧➭ tù❛ t ỗ r ỉ r r ế x¯ t❤❡♦ Q x∈Q f ✳ ❣ä✐ ❧➭ tù❛ t✉②Õ♥ ✳ ❧➭ ❧✐➟♥ tơ❝✱ tù❛ ❧å✐ ✈➭ ❝ã ♠ét ❞➢í✐ tì ỗ f (x) f (y) ⇒ ∃ξ (n) ∈ ∂∗ f (y), f ❦❤✐ ✳ {−π; π} ◆Õ✉ x = 0, f + (0; v) = f − (0; v) = 0, (∀v ∈ R) P❡♥♦t ❝ñ❛ f ❦❤✐ x, y ∈ Q ✱ lim (ξ (n) , x − y) ≤ n→∞ ❝ã ♠ét ❞➢í✐ ✈✐ ♣❤➞♥ s✉② ré♥❣ ❝❤Ý♥❤ q✉② tr➟♥ t➵✐ x¯ t❤× t❛ ❝ã ♠Ư♥❤ ➤Ị s❛✉ ➤➞②✳ ▼Ư♥❤ ➤Ị ✶✳✶✳✶ ●✐➯ sư f ❝ã ♠ét ❞➢í✐ ✈✐ ♣❤➞♥ s✉② ré♥❣ ❝❤Ý♥❤ q✉② tr➟♥ ∂ ∗ f (¯ x) t➵✐ x¯ ✈➭ f tù❛ ❧å✐ ✻ t➵✐ x¯ ∈ Q t❤❡♦ t❐♣ ❧å✐ Q✳ ❑❤✐ ➤ã✱ ∀x ∈ Q, f (x) ≤ f (¯ x) ⇒ ∀ξ ∈ ∂ ∗ f (¯ x), ξ, x − x¯ ≤ ❈❤ø♥❣ ♠✐♥❤ ❱× f x¯ ❧➭ tù❛ ❧å✐ t➵✐ t❤❡♦ Q ỗ xQ tỏ f (x) f (¯ x) ✱ t❛ ❝ã f + (¯ x; x − x¯) ≤ ❉♦ tÝ♥❤ ❝❤Ý♥❤ q✉② tr➟♥ ❝ñ❛ ❞➢í✐ ✈✐ ♣❤➞♥ s✉② ré♥❣ ♠➲♥ ∂ ∗ f (¯ x) ỗ xQ tỏ f (x) f (¯ x) ✱ t❛ ❝ã ξ, x − x¯ = f + (¯ x; x − x¯) ≤ sup ξ∈∂ ∗ f (¯ x) ✷ ❚õ ➤ã✱ t❛ ❝ã ➤✐Ò✉ ♣❤➯✐ ❝❤ø♥❣ ♠✐♥❤✳ ❚❤❡♦ ❬✷✵❪✱ ❤➭♠ t❤ù❝ ♠ë ré♥❣ tr➟♥ Q f ❝ã ♠ét ❞➢í✐ ✈✐ ♣❤➞♥ s✉② ré♥❣ ❞➢í✐ ❧å✐ ➤➢ỵ❝ ❣ä✐ ❧➭ ❣✐➯ ❧å✐ t✐Ư♠ ❝❐♥ ❞➢í✐ tr➟♥ ∃ξ (n) ∈ ∂∗ f (x), ❍➭♠ ❣✐➳ trÞ t❤ù❝ ♠ë ré♥❣ ❧➭ ❣✐➯ ❧å✐ t✐Ö♠ ❝❐♥ t➵✐ x¯ f Q ế ỗ x, y Q lim ξ (n) , y − x ≥ ⇒ f (y) ≥ f (x) n→∞ ❝ã ♠ét ❞➢í✐ ✈✐ ♣❤➞♥ s✉② ré♥❣ t❤❡♦ ∃ξ (n) ∈ conv∂ ∗ f ( x), Q ế ỗ xQ f (¯ x) t➵✐ x¯ ➤➢ỵ❝ ❣ä✐ t❛ ❝ã lim ξ (n) , x − x¯ ≥ ⇒ f (x) ≥ f (¯ x) n→∞ tr♦♥❣ ➤ã ❝♦♥✈ ❦Ý ❤✐Ö✉ ❜❛♦ ❧å✐ ❱Ý ❞ô ✶✳✶✳✸ ❈❤♦ ∂∗ f (x) f, g : R → R   x, x ≤ 0, f (x) :=  x, x > 0,   x ∈ Q,   x, g(x) := 2x, x ∈ (R\Q) ∩ ]−∞, 0] ,    x ∈ (R\Q) ∩ [0, ∞[ x, ✶✾ tr♦♥❣ ➤ã ➜✐Ị✉ λ = (λk )k∈J , µ = (µi )i∈I(¯x) , γ = (γj )j∈L ❦✐Ö♥ ❝➬♥ ❋r✐t③ ❏♦❤♥ ❝❤♦ ❝ù❝ t✐Ĩ✉ P❛r❡t♦ ②Õ✉ ➤Þ❛ ♣❤➢➡♥❣ ❝đ❛ ✭P✮ ❞➢í✐ ♥❣➠♥ ữ s rộ ợ t ể s❛✉✳ ➜Þ♥❤ ❧ý ✶✳✷✳✷ ●✐➯ sư r➺♥❣ x¯ ❧➭ ❝ù❝ t✐Ĩ✉ P❛r❡t♦ ②Õ✉ ➤Þ❛ ♣❤➢➡♥❣ ❝đ❛ ✭P✮ ✈➭ ❝➳❝ ❣✐➯ t❤✐Õt ❝đ❛ ➤Þ♥❤ ❧ý ✶✳✷✳✶ t❤♦➯ ♠➲♥✳ ❑❤✐ ➤ã tå♥ t➵✐ ¯ µ (λ, ¯) = (0, 0) ✈➭ γ¯ ∈ Rl s❛♦ ❝❤♦ ¯ k conv∂ ∗ fk (¯ λ x) + ∈ cl ¯ k ≥ (∀k ∈ J) , µ λ ¯i ≥ (∀i ∈ I (¯ x))✱ k∈J µ ¯i conv∂ ∗ gi (¯ x) + γ¯j ∇hj (¯ x) + N (C; x¯) j∈L i∈I(¯ x) ✭✶✳✶✼✮ ❈❤ø♥❣ ♠✐♥❤ ❚❛ ❝❤Ø r❛ r➺♥❣ ∈ clD (¯ x) ✭✶✳✶✽✮ ●✐➯ sư ♥❣➢ỵ❝ ❧➵✐ 0∈ / clD (¯ x) ❚❛ ❝ã t❐♣ D (¯ x) t❐♣ ❧å✐ rê✐ ♥❤❛✉ ❧➭ rỗ ó t ụ ị ❧ý t➳❝❤ ♠➵♥❤ ❝❤♦ ❝➳❝ D (¯ x) ✈➭ {0} ✭①❡♠ ❬✶✾❪✱ ❤Ö q✉➯ ✶✶✳✹✳✷✮✱ tå♥ t➵✐ v0 ∈ Rn , v0 = s❛♦ ❝❤♦ sup ξ, v0 < ✭✶✳✶✾✮ ξ∈D(¯ x) ❚❤❡♦ ➤Þ♥❤ ❧ý ✶✳✷✳✶✱ ❤Ư ✭✶✳✷✮ ✲ ✭✶✳✺✮ ❧➭ ❦❤➠♥❣ t➢➡♥❣ t❤Ý❝❤✳ ❑❤✐ ➤ã✱ ❜➺♥❣ ❝➳❝❤ ❝❤ä♥ λk = 1, λp = 0, (∀p ∈ J, p = k), µi = (∀i ∈ I(¯ x)), γ = ✈➭ = ζ ∈ N (C; x¯) ✱ tõ ✭✶✳✶✾✮ t❛ s✉② r❛ sup ξk , v0 < (∀k ∈ J) ✭✶✳✷✵✮ ηi , v0 < (∀i ∈ I(¯ x)) ✭✶✳✷✶✮ ξk ∈conv∂ ∗ fk (¯ x) ❚➢➡♥❣ tù ♥❤➢ tr➟♥✱ t❛ ❝ã sup ηi ∈conv∂ ∗ gi (¯ x) ✷✵ ❚❛ ❝❤Ø r❛ ∇hj (¯ x), v0 = ❚❤❐t ✈❐② ❝➳❝❤ ❧✃② ♥Õ✉ ✭✶✳✷✷✮ ❧➭ s❛✐✱ t❤× (∀j ∈ L) ∇hj0 (¯ x), v0 = ✈í✐ ✭✶✳✷✷✮ j0 ♥➭♦ ➤ã ∈ L ✳ ❇➺♥❣ ξs ∈ ∂ ∗ fs (¯ x) , λs = 1, λk = (∀k ∈ J, k = s) , µi = 0(∀i ∈ I(¯ x)), γj = (∀j ∈ L, j = j0 ) , = ζ ∈ N (C; x¯), tõ ✭✶✳✶✾✮ t❛ s✉② r❛ ξs , v0 + γj0 ∇hj0 (¯ x), v0 < ✭✶✳✷✸✮ ❚❛ ❝❤ó ý r➺♥❣ | ξs , v0 | < +∞ ❈❤♦ ♥Õ✉ γj0 ✈➭ ∇hj0 (¯ x), v0 > ➤đ ❧í♥ ♥Õ✉ ∇hj0 (¯ x), v0 < | ∇hj0 (¯ x), v0 | < +∞ ✱ ❝ß♥ γj0 < ✈í✐ ❣✐➳ trÞ t✉②Ưt ➤è✐ ➤đ ❧í♥ ✱ t❛ sÏ ➤✐ ➤Õ♥ ♠ét ♠➞✉ t❤✉➱♥ ✈í✐ ✭✶✳✷✸✮✳ ❉♦ ✈❐②✱ ✭✶✳✷✷✮ ❧➭ ➤ó♥❣✳ ❚✐Õ♣ t❤❡♦✱ t❛ ❝❤Ø r❛ r➺♥❣ v0 ∈ T (C; x¯) ❚❤❐t ✈❐②✱ ♥Õ✉ ✭✶✳✷✹✮ ❦❤➠♥❣ ➤ó♥❣ t❤× sÏ ❇➺♥❣ ❝➳❝❤ ❝❤♦ I(¯ x)), γ = ∃η0 ∈ N (C; x¯) ✭✶✳✷✹✮ s❛♦ ❝❤♦ α>0 t❛ ❝ã αη0 ∈ N (C; x¯) ✈➭ λs ξ0 , v0 + α η0 , v0 < η0 , v0 > ✳ λk = (∀k ∈ J, k = s) , λs > 0, ξs ∈ ∂ ∗ fs ( x) , ài = 0(i ì (η0 , v0 ) > ✈í✐ α ✭✶✳✷✺✮ ➤đ ❧í♥ t❛ ♥❤❐♥ ➤➢ỵ❝ ♠ét ♠➞✉ t❤✉➱♥ ✈í✐ ✭✶✳✷✺✮✳ ❉♦ ➤ã η0 , v0 ≤ 0, (∀η ∈ N (C; x¯)) ❈❤ó ý r➺♥❣ T (C; x¯) ❧➭ ♠ét ♥ã♥ ❧å✐ ➤ã♥❣✳ ❚õ ➤ã t❛ ❝ã v0 ∈ N (C; x¯) = T 00 (C; x¯) = T (C; x¯) ❑Õt ❤ỵ♣ ✭✶✳✷✵✮ ✲ ✭✶✳✷✷✮ ✈➭ ✭✶✳✷✹✮ t❛ s✉② r❛ ❤Ö ✭✶✳✻✮ ✲ ✭✶✳✶✵✮ ❝ã ♠ét ♥❣❤✐Ö♠ v0 , ✈➭ ❝ò♥❣ ❧➭ ♥❣❤✐Ư♠ ❝đ❛ ❤Ư ✭✶✳✷✮ ✲ ✭✶✳✺✮✳ ➜✐Ị✉ t ị ý ì (n) ✈❐② ✭✶✳✶✽✮ ➤ó♥❣ ✈➭ ❞♦ ➤ã tå♥ t➵✐ (n) 0, ηi (n) (n) λk ≥ 0, ξk ∈ conv∂ ∗ fk (¯ x) (∀k ∈ J) , µi (n) ∈ conv∂ ∗ gi (¯ x) (∀i ∈ I (¯ x)) , γj ∈ R (∀j ∈ L) ✈➭ ζ (n) ∈ N (C; x¯) ≥ ✈í✐ (n) λ(n) , µI(¯x) , γ (n) = (0, 0, 0) (n) (n) (n) (n) = lim n→∞ s❛♦ ❝❤♦ µi ηi λk ξk + k∈J (n) γj ∇hj (¯ x) + ξ (n) , + ✭✶✳✷✻✮ j∈L i∈I(¯ x) tr♦♥❣ ➤ã (n) λ(n) = λk (n) k∈J (n) , µI(¯x) = µi (n) i∈I(¯ x) , γ (n) = γj j∈L ì (n) (n) , àI(x) , (n) = (0, 0, 0) , t❛ ❝ã t❤Ó ①❡♠ ♥❤➢ (n) (λ(n) , µI(¯x) , γ (n) ) = (∀n) ❑❤➠♥❣ ♠✃t tÝ♥❤ tỉ♥❣ q✉➳t ❝ã t❤Ĩ ❣✐➯ sư ✈í✐ ¯ ≥ 0, µ λ ¯I(¯x) ≥ 0, γ¯ ∈ Rl ✈➭ (n) ¯ µ λ(n) , µI(¯x) , γ (n) → λ, ¯I(¯x) , γ¯ ¯ µ (λ, ¯I(¯x) , γ¯ ) = ✳ ❇ë✐ ✈× clA + clB ⊆ cl(A + B), ✈➭ tõ ✭✶✳✷✻✮ t❛ s✉② r❛ ¯ k clconv∂ ∗ fk (¯ λ x) + 0∈ k∈J µ ¯i clconv∂ ∗ gi (¯ x) i∈I(¯ x) γ¯j ∇hj (¯ x) + N (C; x¯) + j∈L ¯ k conv∂ ∗ fk (¯ λ x) + ⊆ cl k∈J µ ¯i conv∂ ∗ gi (¯ x) + γ¯j ∇hj (¯ x) + N (C; x¯) j∈L i∈I(¯ x) ✭✶✳✷✼✮ ❚❛ ❝ã ✭✶✳✷✼✮ ➤ó♥❣ ✈í✐ ¯ µ λ, ¯ = (0, 0) ✳ ❚❤❐t ✈❐② ♥Õ✉ , = (0, 0) tì = ✳ ❚✉② ♥❤✐➟♥✱ ❦Õt ❤ỵ♣ ✈í✐ ✭✶✳✷✼✮ t❛ ➤✐ ➤Õ♥ ♠➞✉ t❤✉➱♥ ✈í✐ ➤✐Ị✉ ❦✐Ư♥ ❝❤Ý♥❤ q✉② ✭❘❈✮✳ ❉♦ ➤ã ¯ µ λ, ¯ = (0, 0) ✳ ❙✉② r❛ ➤✐Ị✉ ♣❤➯✐ ❝❤ø♥❣ ♠✐♥❤✳ ✷ ✷✷ ❍Ư q✉➯ ✶✳✷✳✶ C = Rn ●✐➯ sö r➺♥❣ ✈➭ ❝➳❝ ❣✐➯ t❤✐Õt ❝đ❛ ➤Þ♥❤ ❧ý ✶✳✷✳✷ t❤♦➯ ♠➲♥ tr♦♥❣ ➤ã ➤✐Ị✉ ❦✐Ư♥ ❝❤Ý♥❤ q✉② ✭❘❈✮ tr♦♥❣ ♠Ư♥❤ ➤Ị ✶✳✷✳✶ ➤➢ỵ❝ t❤❛② t❤Õ ❜ë✐ ➤✐Ị✉ ❦✐Ư♥✿ ❤Ư ¯ k ≥ (∀k ∈ J), µ ∇h1 (¯ x), , ∇hl (¯ x) ❧➭ ➤é❝ ❧❐♣ t✉②Õ♥ tÝ♥❤✳ ❑❤✐ ➤ã✱ tå♥ t➵✐ λ ¯i ≥ ¯ µ ¯ = (0, 0) ✈➭ γ¯j ∈ R (∀j ∈ L) s❛♦ ❝❤♦ ✭✶✳✶✼✮ ➤ó♥❣✳ (∀i ∈ I(¯ x)) ✈í✐ λ, ❈❤ø♥❣ ♠✐♥❤ C = Rn ❱í✐ ✱ t❛ ❝ã N (C; x¯) = {0} ✳ ❉♦ ➤ã✱ ♥Õ✉ ∇h1 (¯ x), , ∇hl (¯ x) ❧➭ ➤é❝ ❧❐♣ t✉②Õ♥ tÝ♥❤ t❤× ➤✐Ị✉ ❦✐Ư♥ ❝❤Ý♥❤ q✉② ✭❘❈✮ t❤á❛ ♠➲♥✳ ❚❤❡♦ ➤Þ♥❤ ❧ý ✶✳✷✳✷ t❛ s✉② r❛ ✷ ➤✐Ị✉ ♣❤➯✐ ❝❤ø♥❣ ♠✐♥❤✳ ❚r♦♥❣ tr➢ê♥❣ ❤ỵ♣ t❐♣ D(¯ x) ❧➭ t❐♣ ➤ã♥❣✱ t❛ ♥❤❐♥ ➤➢ỵ❝ ❤Ư q✉➯ trù❝ t✐Õ♣ s❛✉ ➤➞② ❝đ❛ ➤Þ♥❤ ❧ý ✶✳✷✳✶✱ tr♦♥❣ ➤ã ❜❛♦ ➤ã♥❣ tr♦♥❣ ✭✶✳✶✼✮ ❝ã t❤Ĩ ❜á ➤➢ỵ❝✳ ❍Ư q✉➯ ✶✳✷✳✷ C = Rn ✳ ●✐➯ sư ❝➳❝ ❣✐➯ t❤✐Õt ❝đ❛ ➤Þ♥❤ ❧ý ✶✳✷✳✷ ➤ó♥❣ ✈➭ t❐♣ D(¯ x) ¯ k ≥ (∀k ∈ J), µ ¯ µ ❑❤✐ ➤ã ∃λ ¯i ≥ (∀i ∈ I(¯ x)) ✈í✐ λ, ¯ = (0, 0) ✈➭ ●✐➯ sö ➤ã♥❣✳ γ¯j ∈ R (∀j ∈ L) s❛♦ ❝❤♦ ¯ k conv∂ ∗ fk (¯ λ x) + 0∈ k∈J µ ¯i conv∂ ∗ gi (¯ x) + γ¯j ∇hj (¯ x) + N (C; x¯) j∈L i∈I(¯ x) ◆❤❐♥ ①Ðt ✶✳✷✳✷ ❚r♦♥❣ tr➢ê♥❣ ❤ỵ♣ (k ∈ J) ✈➭ C = Rn ✱ ❝ò♥❣ ♥❤➢ tr♦♥❣ ♥❤❐♥ ①Ðt ✸✳✶ tr♦♥❣ ❬✶✸❪✱ ♥Õ✉ ∂ ∗ gi (¯ x)(i ∈ (I(¯ x)) k∈J t❤× D(¯ x) ❜Þ ❝❤➷♥ ✈➭ t❤á❛ ♠➲♥ ➤✐Ị✉ ❦✐Ư♥ s❛✉ ➤➞②✿ conv∂ ∗ fk (¯ x) ∪ 0∈ / conv ❧➭ ∂ ∗ fk (¯ x) conv∂ ∗ gi (¯ x) + lin {∇hj (¯ x) : j ∈ L} , i∈I(¯ x) t❐♣ ➤ã♥❣✱ conv∂ ∗ fk (¯ x) (k ∈ J) tr♦♥❣ ✈➭ ➤ã ❧✐♥ ❦Ý ❤✐Ö✉ ❜❛♦ conv∂ ∗ gi (¯ x)(i ∈ (I(¯ x)) t✉②Õ♥ tÝ♥❤✳ conv∂ ∗ fk (¯ x) ∪ k∈J conv∂ ∗ gi (¯ x) i∈I(¯ x) ✈❐② t❛ ❝ã ❧➭ ❝♦♠♣➝❝ ✈➭ ❞♦ ➤ã t❐♣ s❛✉ ❝ò♥❣ ❝♦♠♣➝❝✿ conv ❚❤❐t ✷✸ ❉♦ ➤ã✱ conv∂ ∗ fk (¯ x) ∪ E(¯ x) := conv kJ t ó ữ ì conv gi (¯ x) +lin {∇hj (¯ x) : j ∈ L} i∈I(¯ x) 0∈ / E(¯ x) ✈➭ D(¯ x) = coneE(¯ x), ❝❤♦ ♥➟♥ D(¯ x) ❧➭ t❐♣ ➤ã♥❣✱ tr♦♥❣ ➤ã coneE(¯ x) ❧➭ ♥ã♥ s✐♥❤ ❜ë✐ E(¯ x) ét ề ệ t ợ tr ị ❧ý ✶✳✷✳✷✱ ❝➳❝ ❤Ö q✉➯ ✶✳✷✳✶✱ ✶✳✷✳✷ ✈➭ ♠ét ✈➭✐ ề ệ tố trì ữ ∂ ∗ f (¯ x) ❧➭ tèt ❤➡♥ ❝➳❝ ➤✐Ò✉ ❦✐Ư♥ tè✐ ➢✉ ❞➢í✐ ♥❣➠♥ ♥❣÷ ❝➳❝ ❞➢í✐ ✈✐ ♣❤➞♥ ♥❤➢ ❝➳❝ ❞➢í✐ ✈✐ ♣❤➞♥ ❈❧❛r❦❡✱ ▼♦r❞✉❦❤♦✈✐❝❤ ✈➭ ▼✐❝❤❡❧✲P❡♥♦t✳ ✷✹ ❈❤➢➡♥❣ ✷ ➜✐Ị✉ ❦✐Ư♥ ❝❤Ý♥❤ q✉② ✈➭ ➤✐Ị✉ ❦✐Ư♥ tè✐ ➢✉ ❑❛r✉s❤✲❑✉❤♥✲❚✉❝❦❡r ❚r♦♥❣ ❝❤➢➡♥❣ ✷ ❝❤ó♥❣ t❛ sÏ tr×♥❤ ❜➭② ❝➳❝ ➤✐Ị✉ ❦✐Ư♥ ❝❤Ý♥❤ q✉② ✈➭ ➤✐Ị✉ ❦✐Ư♥ ❝➬♥ ❑❛r✉s❤✲❑✉❤♥✲❚✉❝❦❡r✱ ➤✐Ị✉ ❦✐Ư♥ ➤đ ❝❤♦ ❝ù❝ t✐Ĩ✉ P❛r❡t♦ ②Õ✉ ❝đ❛ ❜➭✐ t♦➳♥ tè✐ ➢✉ ➤❛ ♠ô❝ t✐➟✉ ❝ã r➭♥❣ ❜✉é❝ ➤➻♥❣ t❤ø❝✱ ❜✃t ➤➻♥❣ t❤ø❝ ✈➭ r➭♥❣ ❜✉é❝ t❐♣ ❞➢í✐ ♥❣➠♥ ữ s rộ ết q trì ❜➭② tr♦♥❣ ❝❤➢➡♥❣ ♥➭② ➤➢ỵ❝ t❤❛♠ ❦❤➯♦ tr♦♥❣ ❬✶✹❪✳ ✷✳✶ ➜✐Ị✉ ❦✐Ư♥ ❝❤Ý♥❤ q✉② ✈➭ ➤✐Ị✉ ❦✐Ư♥ ❝➬♥ ❑❛r✉s❤✲❑✉❤♥✲ ❚✉❝❦❡r ❈❤➢➡♥❣ ✶ ➤➲ tr×♥❤ ❜➭② ➤✐Ị✉ ❦✐Ư♥ ❝➬♥ ❋r✐t③ ❏♦❤♥ ✭✶✳✶✼✮ ✈í✐ ❣✐➯ t❤✐Õt ✶✳✷✳✶ ✈➭ ❣✐➯ t❤✐Õt ❝đ❛ ♠Ư♥❤ ➤Ị ✶✳✷✳✶✱ tr♦♥❣ ➤ã ➤✐Ị✉ ❦✐Ư♥ ❝❤Ý♥❤ q✉② ✭❘❈✮ ➤ó♥❣✿ 0∈ γj ∇hj (¯ x) + N (C; x¯) ⇒ γ1 = = γl = j∈L ❚r♦♥❣ tr➢ê♥❣ ợ C = Rn tì ề ệ trở t ➤✐Ị✉ ❦✐Ư♥✿ ❤Ư ❧➭ ➤é❝ ❧❐♣ t✉②Õ♥ tÝ♥❤✳ ❈❤ó ý r➺♥❣ tr♦♥❣ ➤✐Ị✉ ❦✐Ư♥ ❝➬♥ ✭✶✳✶✼✮ t❛ ❝ã ➜Ĩ ♥❤❐♥ ợ ề ệ ệ ữ ệ tr ó ➤✐Ị✉ ❦✐Ư♥ ❝❤Ý♥❤ q✉② s❛✉ ➤➞② ♠➭ t❛ ❦ý ❤✐Ư✉ ❧➭ ✭❈◗✶✮✿ ❝➳❝ sè ak > (k ∈ J, k = s) , bi > (i ∈ I (¯ x)) ∇h1 , , ∇hl ¯ µ λ, ¯ = (0, 0) ¯=0 λ ✱ t❛ ➤➢❛ ✈➭♦ ∃s ∈ J d0 ∈ T (C, x¯) s❛♦ ❝❤♦ ✱ ✳ ✱ ✈➭ ✷✺ ξk , d0 ≤ −ak (∀ξk ∈ conv∂ ∗ fk (¯ x) , ∀k ∈ J, k = s) ; ηi ; d0 ≤ −bi ✭✐✮ (∀ηi ∈ conv∂ ∗ gi (¯ x) , ∀i ∈ I (¯ x)) ; ✭✐✐✮ ∇hj (¯ x) , d0 = (∀j ∈ L) ❈❤ó♥❣ t❛ ❝ï♥❣ ➤➢❛ ✈➭♦ ➤✐Ị✉ ❦✐Ư♥ ❝❤Ý♥❤ q✉② ✭❈◗✷✮✿ ❱í✐ ♠ä✐ ✈➭ λk ≥ (k ∈ J, k = s) ; µi ≥ (∀i ∈ I (¯ x)) ✱ ❦❤➠♥❣ ➤å♥❣ t❤ê✐ ❜➺♥❣ ✵✱ γj ∈ R (∀j ∈ L) ✱ t❛ ❝ã µi conv∂ ∗ gi (¯ x) λk conv∂ ∗ fk (¯ x) + 0∈ / cl k∈J,k=s i∈I(¯ x) γj ∇hj (¯ x) + N (C; x¯) + j∈L ❚r♦♥❣ ♣❤➬♥ t✐Õ♣ t❤❡♦ t❛ tr×♥❤ ❜➭② ♠è✐ q✉❛♥ ❤Ư ❣✐÷❛ ✭❈◗✶✮ ✈➭ ✭❈◗✷✮✳ ▼Ư♥❤ ➤Ị ✷✳✶✳✶ ●✐➯ sư r➺♥❣ fk ✈➭ gi ❝ã ❝➳❝ ❞➢í✐ ✈✐ ♣❤➞♥ s✉② ré♥❣ tr➟♥ ∂ ∗ fk (¯ x) ✈➭ ∂ gi ( x) t x ỗ k J, k = s, i ∈ I (¯ x)✱ h ❦❤➯ ✈✐ ❋rÐ❝❤❡t t➵✐ x¯ ✈➭ C ✭❈◗✶✮ ❦Ð♦ t❤❡♦ ✭❈◗✷✮ ❧➭ ❧å✐✳ ❑❤✐ ➤ã (∀s ∈ J)✳ ❈❤ø♥❣ ♠✐♥❤ ●✐➯ sư ♥❣➢ỵ❝ ❧➵✐ r➺♥❣ ✭❈◗✶✮ ➤ó♥❣✱ ♥❤➢♥❣ ✭❈◗✷✮ s❛✐✱ ❝ã ♥❣❤Ü❛ ❧➭ (∀i ∈ I (¯ x)) ✈í✐ (λ(s) , µ) = (0, 0), tr♦♥❣ ➤ã ∃λk ≥ (∀k ∈ J, k = s) ; µ (λ(s) = (λk )k∈J,k=s, µ = (µi )i∈I(¯x) ), ξk(n) ∈ conv∂ ∗ fk (¯ x) (∀k ∈ J, k = s) , (n) ηi ∈ conv∂ ∗ gi (¯ x) (∀i ∈ I (¯ x)) , γj ∈ R (∀j ∈ L) ✈➭ ζ (n) ∈ N (C; x¯) s❛♦ ❝❤♦ (n) lim n→∞ (n) λk ξk + k∈J,k=s ❚õ ✭❈◗✶✮ s✉② r❛ µi ηi s❛♦ ❝❤♦ (n) = lim n→∞ j∈L i∈I(¯ x) ∃d0 ∈ T (C; x¯) γj ∇hj (¯ x) + ζ (n) + (n) λk ξk , d0 + k∈J,k=s µi ηi , d0 i∈I(¯ x) γj ∇hj (¯ x), d0 + ζ (n) , d0 + j∈L = ✷✻ (n) ≤ lim n ì ((s) , à) = (0, 0) kJ,k=s ài ηi , d0 ✭✷✳✶✮ i∈I(¯ x) tõ ➤✐Ị✉ ❦✐Ư♥ ✭✐✮ tr♦♥❣ ✭❈◗✶✮ s✉② r❛ (n) (n) lim n→∞ (n) λk ξk , d0 + µi ηi , d0 λk ξk , d0 + k∈J,k=s i∈I(¯ x) λk ak − ≤− k∈J,k=s µi bi < i∈I(¯ x) ✷ ➜✐Ị✉ ♥➭② ♠➞✉ t❤✉➱♥ ✈í✐ ✭✷✳✶✮✳ ❉♦ ➤ã t❛ ❝ã ➤✐Ị✉ ♣❤➯✐ ❝❤ø♥❣ ♠✐♥❤✳ ▼ét ➤✐Ị✉ ❦✐Ư♥ ❝➬♥ ❑❛r✉s❤✲❑✉❤♥✲❚✉❝❦❡r ❝❤♦ ♥❣❤✐Ư♠ ữ ệ ó tể ợ t ể s ị ❧ý ✷✳✶✳✶ x¯ ●✐➯ sư ❧➭ ❝ù❝ t✐Ĩ✉ P❛r❡t♦ ②Õ✉ ➤Þ❛ ♣❤➢➡♥❣ ❝đ❛ ✭P✮✳ ●✐➯ sư t✃t ❝➯ ❝➳❝ ❣✐➯ t❤✐Õt ❝đ❛ ➤Þ♥❤ ❧ý ✶✳✷✳✷ t❤♦➯ ♠➲♥ ✈➭ ❣✐➯ sư ➤✐Ị✉ ❦✐Ư♥ ❝❤Ý♥❤ q✉② ✭❈◗✶✮ ❤♦➷❝ ✭❈◗✷✮ ➤ó♥❣ ✭✈í✐ s ∈ J ✮✳ ❑❤✐ ➤ã✱ tå♥ t➵✐ ¯ s > 0, λ ¯ k ≥ 0(∀k ∈ J, k = s), µ λ ¯i ≥ 0(∀i ∈ I(¯ x)), γ¯j ∈ R(∀j ∈ L) s❛♦ ❝❤♦ ¯ k conv∂ ∗ fk (¯ λ x) + ∈ cl k∈J µ ¯i conv∂ ∗ gi (¯ x) i∈I(¯ x) γ¯j ∇hj (¯ x) + N (C; x¯) + ✭✷✳✷✮ j∈L ❈❤ø♥❣ ♠✐♥❤ ➳ ♣ ❞ơ♥❣ ➤Þ♥❤ ❧ý ✶✳✷✳✷ t❛ s✉② r❛ ¯ k ≥ (∀k ∈ J) , µ ∃ λ ¯i ≥ (∀i ∈ I (¯ x)) ¯ µ ¯ µ ¯ k ) , (¯ (λ, ¯) = (0, 0) (λ, ¯) = (λ k∈J µi )i∈I(¯ x) ¯s = λ ◆Õ✉ ✱ t❤× tõ ✭❈◗✶✮ ❤♦➷❝ ✭❈◗✷✮ t❛ s✉② ✈➭ r❛ γ¯ ∈ Rl ♠➞✉ ✈í✐ s❛♦ ❝❤♦ ✭✷✳✷✮ ➤ó♥❣✳ t❤✉➱♥ ✈í✐ ✭✷✳✷✮✳ ❱× ✈❐② ¯s > λ ✳ ✷ ❚õ ➤ã✱ t❛ s✉② r❛ ➤✐Ò✉ ♣❤➯✐ ❝❤ø♥❣ ♠✐♥❤✳ ◆❤❐♥ ①Ðt ✷✳✶✳✶ ❚❛ ➤➢❛ ✈➭♦ ➤✐Ị✉ ❦✐Ư♥ ❝❤Ý♥❤ q✉② ✭❈◗✸✮ ②Õ✉ ❤➡♥ ❤➵♥ ❝❤Õ ✭❈◗✶✮✿ tå♥ t➵✐ d0 ∈ ✷✼ T (C, x¯) ✈➭ ❝➳❝ sè bi > (i ∈ I (¯ x)) s❛♦ ❝❤♦ ➤✐Ị✉ ❦✐Ư♥ ✭✐✐✮ tr♦♥❣ ✭❈◗✶✮ ➤ó♥❣ ✈➭ t❤á❛ ♠➲♥ ➤✐Ị✉ ❦✐Ư♥ s❛✉✿ ✭✐✬✮ ηi , d0 ≤ −bi (∀ηi ∈ conv∂ ∗ gi (¯ x) , ∀i ∈ I(¯ x)) ❚❛ ❝ò♥❣ ➤➢❛ ✈➭♦ ➤✐Ị✉ ❦✐Ư♥ ❝❤Ý♥❤ q✉② ✭❈◗✹✮ ②Õ✉ ❤➡♥ ❤➵♥ ❝❤Õ ✭❈◗✷✮✿ ✈í✐ ♠ä✐ µi ≥ (∀i ∈ I (¯ x)) ✱ ❦❤➠♥❣ ➤å♥❣ t❤ê✐ ❜➺♥❣ ✵✱ ✈➭ µi conv∂ ∗ gi (¯ x) + 0∈ / cl γj ∈ R (∀j ∈ L) ✱ γj ∇hj (¯ x) + N (C; x¯) j∈L i∈I(¯ x) ❇➺♥❣ ❧❐♣ ❧✉❐♥ t➢➡♥❣ tù ♥❤➢ tr♦♥❣ ❝❤ø♥❣ ♠✐♥❤ ❝đ❛ ♠Ư♥❤ ➤Ị ✷✳✶✳✶✱ t❛ s✉② r❛ r é t ữ ế tr ị ❧ý ✷✳✶✳✶ ✭❈◗✶✮ ✈➭ ✭❈◗✷✮ ✭✈í✐ ♥➭♦ ➤ã ∈J s ✮ t➢➡♥❣ ø♥❣ ➤➢ỵ❝ t❤❛② t❤Õ ❜ë✐ ✭❈◗✸✮ ✈➭ ✭❈◗✹✮✱ t❛ t❤✉ ➤➢ỵ❝ ➤✐Ị✉ ❦✐Ư♥ ¯k > λ ✳ ➜✐Ị✉ ❦✐Ư♥ ♥➭② ②Õ✉ ❤➡♥ ➤✐Ị✉ ❦✐Ư♥ ❝➬♥ ✭✷✳✷✮ ✈í✐ ➤✐Ị✉ ❦✐Ư♥ ¯s > λ ✳ k∈J ❈➳❝ ❣✐➯ t❤✐Õt s❛✉ ❧➭ ❝➬♥ t❤✐Õt ➤Ĩ ❞➱♥ ➤✐Ị✉ ❦✐Ư♥ ❝➬♥ ✈í✐ ❝➳❝ ❤Ư sè ▲❛❣r❛♥❣❡ t➢➡♥❣ ø♥❣ ✈í✐ ❝➳❝ t❤➭♥❤ ♣❤➬♥ ❝đ❛ ❤➭♠ ♠ơ❝ t✐➟✉ ❧➭ ❞➢➡♥❣✳ ●✐➯ t❤✐Õt ✷✳✶✳✶ ỗ kJ í q tr t i ∈ I(¯ x) ✱ ❝➳❝ ❤➭♠ ∂ ∗ fk (¯ x) tr×♥❤ ✈➭ ❜➭② ∂ ∗ gi (¯ x) ♠ét ➤✐Ị✉ fk t➵✐ x¯ ❦✐Ư♥ ✈➭ gi ❝ã ❝➳❝ ❞➢í✐ ✈✐ ♣❤➞♥ s✉② ré♥❣ ❜➳♥ ❀ ❝➳❝ ❤➭♠ ❝➬♥ gi (i ∈ / I(¯ x)) ❧✐➟♥ tô❝ t➵✐ ❑❛r✉s❤✲❑✉❤♥✲❚✉❝❦❡r ❝❤♦ ❝ù❝ x¯ ✳ t✐Ĩ✉ P❛r❡t♦ ②Õ✉ ➤Þ❛ ♣❤➢➡♥❣ ✈í✐ ❝➳❝ ♥❤➞♥ tư ▲❛❣r❛♥❣❡ ❞➢➡♥❣ t➢➡♥❣ ø♥❣ ✈í✐ ❝➳❝ t❤➭♥❤ ♣❤➬♥ ❝đ❛ ❤➭♠ ♠ơ❝ t✐➟✉✳ ➜Þ♥❤ ❧ý ✷✳✶✳✷ ●✐➯ sư x¯ ❧➭ ❝ù❝ t✐Ĩ✉ P❛r❡t♦ ②Õ✉ ➤Þ❛ ♣❤➢➡♥❣ ❝đ❛ ✭P✮✳ ●✐➯ sư ❝➳❝ ❣✐➯ t❤✐Õt ❝đ❛ ➤Þ♥❤ ❧ý ✶✳✷✳✷ t❤♦➯ ♠➲♥ tr♦♥❣ ➤ã ❣✐➯ t❤✐Õt ✶✳✷✳✶ ➤➢ỵ❝ t❤❛② t❤Õ ❜ë✐ ❣✐➯ t❤✐Õt ✷✳✶✳✶✳ ●✐➯ sư r➺♥❣ ➤✐Ị✉ ❦✐Ư♥ ❝❤Ý♥❤ q✉② ✭❈◗✶✮ ❤♦➷❝ ✭❈◗✷✮ ✭✈í✐ ♠ä✐ ➤ã✱ tå♥ t➵✐ s ∈ J ✮ ➤ó♥❣✳ ¯ k > 0(∀k ∈ J), µ λ ¯i ≥ (∀i ∈ I (¯ x)) , γ¯j ∈ R (∀j ∈ L) s❛♦ ❝❤♦ ¯ k conv∂ ∗ fk (¯ λ x) + ∈ cl k∈J µ ¯i conv∂ ∗ gi (¯ x) i∈I(¯ x) γ¯j ∇hj (¯ x) + N (C; x¯) + jL sJ ỗ (s) ➳♣ ❞ơ♥❣ ➤Þ♥❤ ❧ý ✷✳✶✳✶ t❛ s✉② r❛ tå♥ t➵✐ (s) (s) (∀k ∈ J, k = s), µi ≥ (∀i ∈ I (¯ x)) , γj ∈ R (∀j ∈ L) (s) (s) k∈J s❛♦ ❝❤♦ (s) µi ∂ ∗ gi (¯ x) + λk ∂ ∗ fk (¯ x) + ∈ cl (s) λs > 0, λk ≥ γj ∇hj (¯ x) + N (C; x¯) j∈L i∈I(¯ x) ✭✷✳✸✮ ❈❤ó ý r➺♥❣ cl (A) + cl (B) ⊆ cl (A + B) ✳ ▲✃② s = 1, , r tr♦♥❣ ✭✷✳✸✮ ✈➭ ❝é♥❣ ❤❛✐ ✈Õ ❝đ❛ ❝➳❝ ❜❛♦ ❤➭♠ t❤ø❝ ♥❤❐♥ ➤➢ỵ❝✱ t❛ s✉② r❛ 0∈ s∈J ⊆ cl i∈I(¯ x) ¯ k ∂ ∗ fk (¯ λ x) + µ ¯i ∂ ∗ gi (¯ x) + ✈➭ γ¯j = s∈J j∈L γ¯j ∇hj (¯ x) + N (C; x¯) , (s) s∈J,s=k (s) γj γj ∇hj (¯ x) + N (C; x¯) j∈L i∈I(¯ x) ¯ k = λ(s) λ s + (s) µi ∂ ∗ gi (¯ x) + k∈J k∈J tr♦♥❣ ➤ã (s) (s) λk ∂ ∗ fk (¯ x) + cl λk > (∀k ∈ J), µ ¯i = (s) s∈J µi ≥ ( ∀i ∈ I (¯ x)) ∈ R (∀j ∈ L) ✷ ❚õ ➤ã✱ t❛ s✉② r❛ ♣❤➯✐ ❝❤ø♥❣ ♠✐♥❤✳ ✷✳✷ ➜✐Ò✉ ❦✐Ư♥ ➤đ ❝❤♦ ❝ù❝ t✐Ĩ✉ P❛r❡t♦ ②Õ✉ ❚r♦♥❣ ♣❤➬♥ ♥➭②✱ t❛ ❝ã t❤Ĩ t❤✃② r➺♥❣ ➤✐Ị✉ ❦✐Ư♥ ❝➬♥ ❑❛r✉s❤✲❑✉❤♥✲❚✉❝❦❡r sÏ trë t❤➭♥❤ ➤✐Ị✉ ❦✐Ư♥ ➤đ ❦❤✐ t❛ ➤➢❛ ✈➭♦ ♠ét ✈➭✐ ❣✐➯ t❤✐Õt ❧å✐ s✉② ré♥❣✳ ➜Þ♥❤ ❧ý ✷✳✷✳✶ ●✐➯ sư x¯ ❧➭ ♠ét ➤✐Ĩ♠ ❝❤✃♣ ♥❤❐♥ ➤➢ỵ❝ ❝đ❛ ❜➭✐ t♦➳♥ ✭P✮✳ ●✐➯ sư r➺♥❣ fk ❞➢í✐ ✈✐ ♣❤➞♥ s✉② ré♥❣ ❝❤Ý♥❤ q✉② tr➟♥ ∂ ∗ fk (¯ x) t➵✐ x¯, ∀k ∈ J, gi ❝ã ♠ét ❝ã ♠ét ❞➢í✐ ✈✐ ♣❤➞♥ s✉② ré♥❣ ∂ ∗ gi (¯ x) t➵✐ x¯, ∀i ∈ I (¯ x)✱ ✈➭ h ❧➭ ❦❤➯ ✈✐ ❋rÐ❝❤❡t t➵✐ x¯✳ ❍➡♥ ♥÷❛✱ ❣✐➯ sư r➺♥❣ ✭✐✮ ¯ k ≥ (∀k ∈ J) ✈í✐ λ = (λk )k∈J = 0, µ ∃λ ¯i ≥ (∀i ∈ I (¯ x)) ✈➭ γ¯j ∈ R (∀j ∈ L) s❛♦ ❝❤♦ ¯ k conv∂ ∗ fk (¯ λ x) + ∈ cl k∈J µ ¯i conv∂ ∗ gi (¯ x) i∈I(¯ x) ✷✾ γ¯j ∇hj (¯ x) + N (C; x¯) , + ✭✷✳✹✮ j∈L ✭✐✐✮ f ❧➭ ❣✐➯ ❧å✐ t✉②Õ♥ tÝ♥❤ t➵✐ ❑❤✐ ➤ã Rn+ x¯ t❤❡♦ ❈❀ gi ✲ t✐Ư♠ ❝❐♥ ✈➠ ❤➢í♥❣ t➵✐ hj ❧➭ tù❛ ❧å✐ ✈➭ ❧➭ tù❛ x¯ t❤❡♦ ❈ (∀i ∈ I (¯ x) , j ∈ L)❀ ❈ ❧➭ t❐♣ ❧å✐✳ x¯ ❧➭ ❝ù❝ t✐Ĩ✉ P❛r❡t♦ ②Õ✉ ❝đ❛ ✭P✮✳ ❈❤ø♥❣ ♠✐♥❤ ❚õ ✭✷✳✹✮ s✉② r❛ tå♥ t➵✐ (∀i ∈ I (¯ x)) ✈➭ n→∞ gi ζ¯(n) ∈ N (C; x¯) k∈J s❛♦ ❝❤♦ (n) ¯ k ξ¯(n) + λ k lim ❇ë✐ ✈× (n) x) (∀k ∈ J) , η¯i ∈ conv∂ ∗ gi (¯ x) ξ¯k(n) ∈ conv∂ ∗ fk (¯ µ ¯i η¯i γ¯j ∇hj (¯ x) + ζ¯(n) + ✭✷✳✺✮ j∈L i∈I(¯ x) ❧➭ ❞➢í✐ ✈✐ ♣❤➞♥ s✉② ré♥❣ ❝❤Ý♥❤ q✉② tr➟♥ ∀i ∈ I (¯ x) ✱ tõ ♠Ư♥❤ ➤Ị ✶✳✶✳✶ t❛ s✉② r❛ ✈í✐ ♠ä✐ ηi , x − x¯ ≤ ❞♦ = ∂ ∗ gi (¯ x) ∀i ∈ M t➵✐ x¯ t❤❡♦ M ✱ ✈í✐ ♠ä✐ ✱ (∀ηi ∈ ∂ ∗ gi (¯ x)) , gi (x) − gi (¯ x) ≤ 0(∀x ∈ M ) ✳ ➜✐Ò✉ ♥➭② ❞➱♥ ➤Õ♥ (∀ηi ∈ conv∂ ∗ gi (¯ x)) ηi , x − x¯ ≤ ❉♦ ➤ã✱ (n) η¯i , x − x¯ ≤ ❱× hj (j ∈ L) ❧➭ tù❛ t✉②Õ♥ tÝ♥❤ t➵✐ x¯ t❤❡♦ (∀x ∈ M ) C ∇hj (¯ x) , x − x¯ = ❱× C ❧å✐ ♥➟♥ t❛ ❝ã ♥➟♥ t❛ ❝ã (∀x ∈ M ) x − x¯ ∈ T (C; x¯) ∀x ∈ C ζ¯(n) , x − x¯ ≤ ✭✷✳✻✮ ✭✷✳✼✮ ✳ ❱× ✈❐②✱ (∀x ∈ M ) ✭✷✳✽✮ ❑Õt ❤ỵ♣ ✭✷✳✺✮ ✲ ✭✷✳✾✮ t❛ s✉② r❛ ¯ k ξ¯(n) , x − x¯ ≥ λ k lim n→∞ ❱× fk ❝ã ♠ét ❞➢í✐ ✈✐ ♣❤➞♥ s✉② ré♥❣ q✉② t➽❝ ✹✳✶✱ ✹✳✷ ❬✾❪ t❛ s✉② r❛ ✭✷✳✾✮ k∈J ¯T f λ ¯ k ≥ ∀k ∈ J ∂ ∗ fk (¯ x) x¯ λ ¯ k ∂ ∗ fk (¯ λ x) ❝ã t➵✐ k∈J ✈➭ ✱ t❤❡♦ ❝➳❝ ❧➭ ♠ét ❞➢í✐ ✈✐ ♣❤➞♥ s✉② ✸✵ ré♥❣ t➵✐ ¯T f λ x¯ ✳ ❙ư ❞ơ♥❣ tÝ♥❤ ❣✐➯ ❧å✐ ❧➭ ❣✐➯ ❧å✐ t✐Ư♠ ❝❐♥ t➵✐ x¯ n R+ t❤❡♦ M ✲ t✐Ö♠ ❝❐♥ ✈➠ ❤➢í♥❣ ❝đ❛ x¯ ✱ t❛ s✉② r❛ r➺♥❣ ✳ ❉♦ ➤ã tõ ✭✷✳✾✮ t❛ ❝ã ¯ f (x) ≥ λ, ¯ f (¯ λ, x) ❚õ ➤ã s✉② r❛ f (∀x ∈ M ) ❧➭ ❝ù❝ t✐Ó✉ P❛r❡t♦ ②Õ✉ ❝đ❛ ✭P✮✳ ➜ã ❧➭ ➤✐Ị✉ ♣❤➯✐ ❝❤ø♥❣ ♠✐♥❤✳ ✷ ✸✶ ❑Õt ❧✉❐♥ ▲✉❐♥ ✈➝♥ ➤➲ tr×♥❤ ❜➭② ❝➳❝ ❦Õt q✉➯ ✈Ị ➤✐Ị✉ ❦✐Ư♥ tè✐ ➢✉ ❝đ❛ ❉✳ ❱✳ ▲➢✉ ✭✷✵✶✹✮ ❝❤♦ ♥❣❤✐Ư♠ ❤÷✉ ❤✐Ư✉ ②Õ✉ ❝đ❛ ❜➭✐ t♦➳♥ tè✐ ➢✉ ❝ã r➭♥❣ ❜✉é❝ ➤➻♥❣ t❤ø❝✱ ❜✃t ➤➻♥❣ t❤ø❝ ✈➭ r➭♥❣ ❜✉é❝ t❐♣ ✈í✐ ❝➳❝ ❤➭♠ ▲✐♣s❝❤✐t③ ➤Þ❛ ♣❤➢➡♥❣ ❞➢í✐ ♥❣➠♥ ♥❣÷ ❞➢í✐ ✈✐ ♣❤➞♥ s✉② ré♥❣✱ ❜❛♦ ❣å♠✿ ✲ ❈➳❝ ❦✐Õ♥ t❤ø❝ ✈Ị ❞➢í✐ ✈✐ ♣❤➞♥ s✉② ré♥❣ ❝đ❛ ❏❡②❛❦✉♠❛r✲▲✉❝ ✭✶✾✾✾✮❀ ✲ ❈➳❝ ➤✐Ị✉ ❦✐Ư♥ ❝➬♥ ❋r✐t③ ❏♦❤♥ ❝❤♦ ❝ù❝ t✐Ĩ✉ P❛r❡t♦ ②Õ✉ ➤Þ❛ ♣❤➢➡♥❣❀ ✲ ❈➳❝ ➤✐Ị✉ ❦✐Ư♥ ❝❤Ý♥❤ q✉②❀ ✲ ❈➳❝ ➤✐Ị✉ ❦✐Ư♥ ❝➬♥ ❑❛r✉s❤✲❑✉❤♥✲❚✉❝❦❡r ❝❤♦ ❝ù❝ t✐Ĩ✉ P❛r❡t♦ ②Õ✉ ➤Þ❛ ♣❤➢➡♥❣❀ ✲ ❈➳❝ ➤✐Ị✉ ❦✐Ư♥ ➤đ ❝❤♦ ❝ù❝ t✐Ĩ✉ P❛r❡t♦ ②Õ✉✳ ▲ý t❤✉②Õt ❝➳❝ ➤✐Ị✉ ❦✐Ư♥ tè✐ ➢✉ ❝❤♦ ♥❣❤✐Ư♠ ❤÷✉ ❤✐Ư✉ ❝đ❛ ❜➭✐ t♦➳♥ tè✐ ➢✉ ➤❛ ♠ơ❝ t✐➟✉ ❦❤➠♥❣ tr➡♥ ❞➢í✐ ♥❣➠♥ ♥❣÷ ❝➳❝ ❞➢í✐ ✈✐ ♣❤➞♥ ❧➭ ➤Ị t➭✐ ➤➲ ✈➭ ➤❛♥❣ ➤➢ỵ❝ ♥❤✐Ị✉ t➳❝ ❣✐➯ q✉❛♥ t➞♠ ♥❣❤✐➟♥ ❝ø✉ ♣❤➳t tr✐Ĩ♥✳ ✸✷ ❚➭✐ ❧✐Ö✉ t❤❛♠ ❦❤➯♦ ❚➭✐ ❧✐Ö✉ ❚✐Õ♥❣ ❱✐Öt❪ ❬ ❬✶❪ ỗ P ĩ tt ỗ ❱➝♥ ▲➢✉ ✭✶✾✾✾✮✱ ●✐➯✐ tÝ❝❤ ▲✐♣s❝❤✐t③✱ ◆❳❇ ❦❤♦❛ ❤ä❝ ✈➭ ❦Ü t❤✉❐t ❍➭ ◆é✐✳ ❚➭✐ ❧✐Ö✉ ❚✐Õ♥❣ ❆♥❤❪ ❬ ❬✸❪ ❆✉❜✐♥✱ ❏✳P✳✱ ❈❡❧❧✐♥❛✱ ❆✳ ✭✶✾✽✹✮✿ ❉✐❢❢❡r❡♥t✐❛❧ ■♥❝❧✉s✐♦♥s✱ ❙♣r✐♥❣❡r✱ ❇❡r❧✐♥✳ ❬✹❪ ❈❧❛r❦❡✱ ❋✳❍✳ ✭✶✾✽✸✮✿ ❖♣t✐♠✐③❛t✐♦♥ ❛♥❞ ◆♦♥s♠♦♦t❤ ❆♥❛❧②s✐s✱ ❲✐❧❡② ■♥t❡r✲ s❝✐❡♥❝❡✱ ◆❡✇ ❨♦r❦✳ ❬✺❪ ❉❡♠②❛♥♦✈✱ ❱✳❋✳ ✭✶✾✾✹✮✿ ❈♦♥✈❡①✐❢✐❝❛t✐♦♥ ❛♥❞ ❝♦♥❝❛✈✐❢✐❝❛t✐♦♥ ♦❢ ❛ ♣♦s✐t✐✈❡❧② ❤♦♠♦❣❡♥❡♦✉s ❢✉♥❝t✐♦♥ ❜② t❤❡ s❛♠❡ ❢❛♠✐❧② ♦❢ ❧✐♥❡❛r ❢✉♥❝t✐♦♥s✳ ❯♥✐✈❡rs✐❛ ❞✐ P✐s❛✱ ❘❡♣♦rt ✸✱ ✷✵✽✱ ✽✵✷✳ ❬✻❪ ❉❡♠②❛♥♦✈✱ ❱✳❋✳✱ ❘✉❜✐♥♦✈✱ ❆✳▼✳ ✭✶✾✾✺✮✿ ❈♦♥str✉❝t✐✈❡ ◆♦♥s♠♦♦t❤ ❆♥❛❧②s✐s✱ ❱❡r❧❛❣ P❡t❡r ▲❛♥❣✱ ❋r❛♥❦❢✉rt✳ ❬✼❪ ❉✉tt❛✱ ❏✳✱ ❈❤❛♥❞r❛✱ ❙✳ ✭✷✵✵✹✮✿ ❈♦♥✈❡①✐❢✐❝❛t♦rs✱ ❣❡♥❡r❛❧✐③❡❞ ❝♦♥✈❡①✐t② ❛♥❞ ✈❡❝t♦r ♦♣t✐♠✐③❛t✐♦♥✳ ❖♣t✐♠✐③❛t✐♦♥ ✺✸✱ ✼✼✲✾✹✳ ❬✽❪ ❉✉tt❛✱ ❏✳✱ ❈❤❛♥❞r❛✱ ❙✳ ✭✷✵✵✷✮✿ ❈♦♥✈❡①✐❢✐❝❛t♦rs✱ ❣❡♥❡r❛❧✐③❡❞ ❝♦♥✈❡①✐t② ❛♥❞ ♦♣t✐♠❛❧✐t② ❝♦♥❞✐t✐♦♥s✳ ❏✳ ❖♣t✐♠✳ ❚❤❡♦r② ❆♣♣❧✳ ✶✶✸✱ ✹✶✲✻✺✳ ❬✾❪ ❏❡②❛❦✉♠❛r✱ ❱✳✱ ▲✉❝✱ ❉✳❚✳ ✭✶✾✾✾✮✿ ◆♦♥s♠♦♦t❤ ❝❛❧❝✉❧✉s✱ ♠✐♥✐♠❛❧✐t②✱ ❛♥❞ ♠♦♥♦t♦♥✐❝✐t② ♦❢ ❝♦♥✈❡①✐❢✐❝❛t♦rs✳ ❏✳ ❖♣t✐♠✳ ❚❤❡♦r② ❆♣♣❧✳ ✶✵✶✱ ✺✾✾✲✻✷✶✳ ✸✸ ❬✶✵❪ ❏❡②❛❦✉♠❛r✱ ❱✳✱ ▲✉❝✱ ❉✳❚✳ ✭✶✾✾✽✮✿ ❆♣♣r♦①✐♠❛t❡ ❏❛❝♦❜✐❛♥ ♠❛tr✐❝❡s ❢♦r ♥♦♥✲ s♠♦♦t❤ ❝♦♥t✐♥✉♦✉s ♠❛♣s ❛♥❞ C1 ✲ ♦♣t✐♠✐③❛t✐♦♥✱ ❙■❆▼ ❏✳ ❈♦♥tr♦❧ ❖♣t✐♠✳ ✸✻✱ ✶✽✶✺✲✶✽✸✷✳ ❬✶✶❪ ❏✐♠Ð♥❡③✱ ❇✳✱ ◆♦✈♦✱ ❱✳ ✭✷✵✵✷✮✿ ❆ ❢✐♥✐t❡ ❞✐♠❡♥s✐♦♥❛❧ ❡①t❡♥s✐♦♥ ♦❢ ▲②✉st❡r♥✐❦ t❤❡♦r❡♠ ✇✐t❤ ❛♣♣❧✐❝❛t✐♦♥s t♦ ♠✉❧t✐♦❜❥❡❝t✐✈❡ ♦♣t✐♠✐③❛t✐♦♥✱ ❏✳ ▼❛t❤✳ ❆♥❛❧✳ ❆♣♣❧✳ ✷✼✵✱ ✸✹✵✲✸✺✻✳ ❬✶✷❪ ▲✉❝✱ ❉✳ ❚✳ ✭✷✵✵✷✮✿ ❆ ♠✉❧t✐♣❧✐❡r r✉❧❡ ❢♦r ♠✉❧t✐♦❜❥❡❝t✐✈❡ ♣r♦❣r❛♠♠✐♥❣ ♣r♦❜✲ ❧❡♠s ✇✐t❤ ❝♦♥t✐♥✉♦✉s ❞❛t❛✳ ❙■❆▼ ❏✳ ❖♣t✐♠✳ ✶✸✱ ✶✻✽✲✶✼✽✳ ❬✶✸❪ ▲✉✉✱ ❉✳ ❱✳ ✭✷✵✶✷✮✿ ◆❡❝❡ss❛r② ❝♦♥❞✐t✐♦♥s ❢♦r ❡❢❢✐❝✐❡♥❝② ✐♥ t❡r♠s ♦❢ t❤❡ ▼✐❝❤❡❧✲P❡♥♦t s✉❜❞✐❢❢❡r❡♥t✐❛❧s✱ ❖♣t✐♠✐③❛t✐♦♥ ✻✶✱ ✶✵✾✾✲✶✶✶✼✳ ❬✶✹❪ ▲✉✉✱ ❉✳ ❱✳ ✭✷✵✶✹✮✿ ◆❡❝❡ss❛r② ❛♥❞ s✉❢❢✐❝✐❡♥t ❝♦♥❞✐t✐♦♥s ❢♦r ❡❢❢✐❝✐❡♥❝② ✈✐❛ ❝♦♥✈❡①✐❢✐❝❛t♦rs✱ ❏✳ ❖♣t✐♠✳ ❚❤❡♦r② ❆♣♣❧✳ ✶✻✵✱ ✺✶✵✲✺✷✻✳ ❬✶✺❪ ▲✉✉✱ ❉✳ ❱✳ ✭✷✵✶✹✮✿ ❈♦♥✈❡①✐❢✐❝❛t♦rs ❛♥❞ ♥❡❝❡ss❛r② ❝♦♥❞✐t✐♦♥s ❢♦r ❡❢❢✐❝✐❡♥❝②✱ ❖♣t✐♠✐③❛t✐♦♥ ✻✸✱ ✸✷✶✲✸✸✺✳ ❬✶✻❪ ▼❛♥❣❛ss❛r✐❛♥✱ ❖✳▲✳ ✭✶✾✻✾✮✿ ◆♦♥❧✐♥❡❛r Pr♦❣r❛♠♠✐♥❣✳ ▼❝●r❛✇✲❍✐❧❧✱ ◆❡✇ ❨♦r❦✳ ❬✶✼❪ ▼✐❝❤❡❧✱ P✳✱ P❡♥♦t✱ ❏✳ ✲P✳ ✭✶✾✽✹✮✿ ❈❛❧❝✉❧ s♦✉s✲❞✐❢❢Ðr❡♥t✐❡❧ ♣♦✉r ❞❡s ❢♦♥❝t✐♦♥s ❧✐♣s❝❤✐t③✐❡♥♥❡s ❡t ♥♦♥❧✐♣s❝❤✐t③✐❡♥♥❡s✱ ❈✳❘✳ ▼❛t❤✳ ❆❝❛❞✳ ❙❝✐✳ ✶✷✱ ✷✻✾✲✷✼✷✳ ❬✶✽❪ ▼♦r❞✉❦❤♦✈✐❝❤✱ ❇✳❙✳✱ ❙❤❛♦✱ ❨✳ ✭✶✾✾✺✮✿ ❖♥ ♥♦♥❝♦♥✈❡① s✉❜❞✐❢❢❡r❡♥t✐❛❧ ❝❛❧❝✉✲ ❧✉s ✐♥ ❇❛♥❛❝❤ s♣❛❝❡s✱ ❏✳ ❈♦♥✈❡① ❆♥❛❧✳ ✷✱ ✷✶✶✲✷✷✽✳ ❬✶✾❪ ❘♦❝❦❛❢❡❧❧❛r✱ ❘✳❚✳ ✭✶✾✼✵✮ ✿ ❈♦♥✈❡① ❆♥❛❧②s✐s✱ Pr✐❝❡t♦♥ ❯♥✐✈❡rs✐t② Pr❡ss✱ Pr✐♥❝❡t♦♥✳ ❬✷✵❪ ❨❛♥❣✱ ❳✳◗✳ ✭✷✵✵✺✮✿ ❈♦♥t✐♥✉♦✉s ❣❡♥❡r❛❧✐③❡❞ ❝❤❛r❛❝t❡r✐③❛t✐♦♥s✳ ❖♣t✐♠✐③❛t✐♦♥ ✺✹✱ ✹✾✺✲✺✵✻✳ ❝♦♥✈❡① ❢✉♥❝t✐♦♥s ❛♥❞ t❤❡✐r

Ngày đăng: 27/11/2017, 14:45

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
[4] Clarke, F.H. (1983): Optimization and Nonsmooth Analysis, Wiley Inter- science, New York Sách, tạp chí
Tiêu đề: Optimization and Nonsmooth Analysis
Tác giả: F.H. Clarke
Nhà XB: Wiley Inter-science
Năm: 1983
[5] Demyanov, V.F. (1994): Convexification and concavification of a positively homogeneous function by the same family of linear functions. Universia di Pisa, Report 3, 208, 802 Sách, tạp chí
Tiêu đề: Convexification and concavification of a positively homogeneous function by the same family of linear functions
Tác giả: Demyanov, V.F
Nhà XB: Universia di Pisa
Năm: 1994
[6] Demyanov, V.F., Rubinov, A.M. (1995): Constructive Nonsmooth Analysis, Verlag Peter Lang, Frankfurt Sách, tạp chí
Tiêu đề: Constructive Nonsmooth Analysis
Tác giả: Demyanov, V.F., Rubinov, A.M
Nhà XB: Verlag Peter Lang
Năm: 1995
[8] Dutta, J., Chandra, S. (2002): Convexificators, generalized convexity and optimality conditions. J. Optim. Theory Appl. 113, 41-65 Sách, tạp chí
Tiêu đề: Convexificators, generalized convexity and optimality conditions
Tác giả: Dutta, J., Chandra, S
Nhà XB: J. Optim. Theory Appl.
Năm: 2002
[10] Jeyakumar, V., Luc, D.T. (1998): Approximate Jacobian matrices for non- smooth continuous maps and C 1 - optimization, SIAM J. Control Optim.36, 1815-1832 Sách, tạp chí
Tiêu đề: Approximate Jacobian matrices for non- smooth continuous maps and C 1 - optimization
Tác giả: Jeyakumar, V., Luc, D.T
Nhà XB: SIAM J. Control Optim.
Năm: 1998
[11] JimÐnez, B., Novo, V. (2002): A finite dimensional extension of Lyusternik theorem with applications to multiobjective optimization, J. Math. Anal.Appl. 270, 340-356 Sách, tạp chí
Tiêu đề: A finite dimensional extension of Lyusternik theorem with applications to multiobjective optimization
Tác giả: JimÐnez, B., Novo, V
Nhà XB: J. Math. Anal. Appl.
Năm: 2002
[12] Luc, D. T. (2002): A multiplier rule for multiobjective programming prob- lems with continuous data. SIAM J. Optim. 13, 168-178 Sách, tạp chí
Tiêu đề: A multiplier rule for multiobjective programming prob- lems with continuous data
Tác giả: Luc, D. T
Nhà XB: SIAM J. Optim.
Năm: 2002
[14] Luu, D. V. (2014): Necessary and sufficient conditions for efficiency via convexificators, J. Optim. Theory Appl. 160, 510-526 Sách, tạp chí
Tiêu đề: Necessary and sufficient conditions for efficiency via convexificators
Tác giả: Luu, D. V
Nhà XB: J. Optim. Theory Appl.
Năm: 2014
[16] Mangassarian, O.L. (1969): Nonlinear Programming. McGraw-Hill, New York Sách, tạp chí
Tiêu đề: Nonlinear Programming
Tác giả: O.L. Mangassarian
Nhà XB: McGraw-Hill
Năm: 1969
[18] Mordukhovich, B.S., Shao, Y. (1995): On nonconvex subdifferential calcu- lus in Banach spaces, J. Convex Anal. 2, 211-228 Sách, tạp chí
Tiêu đề: On nonconvex subdifferential calculus in Banach spaces
Tác giả: B.S. Mordukhovich, Y. Shao
Nhà XB: J. Convex Anal.
Năm: 1995
[19] Rockafellar, R.T. (1970) : Convex Analysis, Priceton University Press, Princeton Sách, tạp chí
Tiêu đề: Convex Analysis
Tác giả: R.T. Rockafellar
Nhà XB: Princeton University Press
Năm: 1970
[20] Yang, X.Q. (2005): Continuous generalized convex functions and their characterizations. Optimization 54, 495-506 Sách, tạp chí
Tiêu đề: Continuous generalized convex functions and their characterizations
Tác giả: Yang, X.Q
Nhà XB: Optimization
Năm: 2005
[1] Đỗ Văn Lưu, Phan Huy Khả (2000), Giải tích lồi, NXB khoa học và kĩ thuật Hà Nội Khác
[2] Đỗ Văn Lưu (1999), Giải tích Lipschitz, NXB khoa học và kĩ thuật Hà Nội.[Tài liệu Tiếng Anh] Khác
[3] Aubin, J.P., Cellina, A. (1984): Differential Inclusions, Springer, Berlin Khác
[7] Dutta, J., Chandra, S. (2004): Convexificators, generalized convexity and vector optimization. Optimization 53, 77-94 Khác
[9] Jeyakumar, V., Luc, D.T. (1999): Nonsmooth calculus, minimality, and monotonicity of convexificators. J. Optim. Theory Appl. 101, 599-621 Khác
[13] Luu, D. V. (2012): Necessary conditions for efficiency in terms of the Michel-Penot subdifferentials, Optimization 61, 1099-1117 Khác
[15] Luu, D. V. (2014): Convexificators and necessary conditions for efficiency, Optimization 63, 321-335 Khác
[17] Michel, P., Penot, J. -P. (1984): Calcul sous-diffÐrentiel pour des fonctions lipschitziennes et nonlipschitziennes, C.R. Math. Acad. Sci. 12, 269-272 Khác

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w