1. Trang chủ
  2. » Giáo Dục - Đào Tạo

(LUẬN án TIẾN sĩ) hàm dạng i với nhiều đối số ma trận và tích chập suy rộng của phép biến đổi i

107 14 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Hàm dạng I với nhiều đối số ma trận và tích chập suy rộng của phép biến đổi I
Tác giả Trịnh Tuân
Người hướng dẫn PGS. TS. Nguyễn Xuân Thảo, GS. TSKH. Nguyễn Văn Mậu
Trường học Đại học Quốc gia Hà Nội
Chuyên ngành Toán Giải tích
Thể loại luận án tiến sĩ
Năm xuất bản 2009
Thành phố Hà Nội
Định dạng
Số trang 107
Dung lượng 782,56 KB

Nội dung

Đại học Quốc gia Hà Nội Trờng Đại học khoa häc tù nhiªn Trịnh Tuân Hàm dạng I với nhiều đối số ma trận tích chập suy rộng phép biến đổi I luận án Tiến sĩ Toán học Hà Nội - 2009 TIEU LUAN MOI download : skknchat@gmail.com Đại học Quốc gia Hà Nội Trờng Đại học khoa học tự nhiên Trịnh Tuân Hàm dạng I với nhiều đối số ma trận tích chập suy rộng phép biến đổi I Chuyên ngành: Toán Giải tích M số: 62.46.01.01 Tập thể hớng dẫn khoa học: PGS TS Nguyễn Xuân Thảo GS TSKH Nguyễn Văn Mậu luận án Tiến sĩ Toán học Hµ Néi - 2009 TIEU LUAN MOI download : skknchat@gmail.com ▼ơ❝ ❧ơ❝ ❉❛♥❤ ♠ơ❝ ❝➳❝ ❦Ý ❤✐Ư✉ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ❉❛♥❤ ♠ô❝ ❝➳❝ ❤➭♠ ✈➭ ❤➭♠ ➤➷❝ ❜✐Öt ▼ë ➤➬✉ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ I ❈❤➢➡♥❣ ✶ ✿ ❍➭♠ ❞➵♥❣ ✶✳✶ ❍➭♠ ❞➵♥❣ I ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✻ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✸ ✈í✐ ♥❤✐Ị✉ ➤è✐ sè ♠❛ tr❐♥ ✷✺ ✈í✐ ♥❤✐Ị✉ ➤è✐ sè ♠❛ tr❐♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✺ ✶✳✷ ❚Ý❝❤ ❝❤❐♣ ➤è✐ ✈í✐ ♣❤Ð♣ ❜✐Õ♥ ➤ỉ✐ ❑Õt ❧✉❐♥ ❝❤➢➡♥❣ ✶ M ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹✶ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹✺ ❈❤➢➡♥❣ ✷ ✿ P❤Ð♣ ❜✐Õ♥ ➤æ✐ I ✈➭ tÝ❝❤ ❝❤❐♣ s✉② ré♥❣ ➤è✐ ✈í✐ ♣❤Ð♣ ❜✐Õ♥ ➤ỉ✐ I ✹✻ ✷✳✶ P❤Ð♣ ❜✐Õ♥ ➤æ✐ I ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹✼ ✷✳✷ ❚Ý❝❤ ❝❤❐♣ s✉② ré♥❣ ➤è✐ ✈í✐ ♣❤Ð♣ ❜✐Õ♥ ➤æ✐ ❑Õt ❧✉❐♥ ❝❤➢➡♥❣ ✷ I ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✺✸ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✻✽ ❈❤➢➡♥❣ ✸ ✿ ❈➳❝ tÝ❝❤ ❝❤❐♣ s✉② ré♥❣ ✈í✐ ❤➭♠ trä♥❣ ➤è✐ ✈í✐ ❝➳❝ ♣❤Ð♣ ❜✐Õ♥ ➤ỉ✐ tÝ❝❤ ♣❤➞♥ ❑♦♥t♦r♦✈✐❝❤ ✲ ▲❡❜❡❞❡✈ ♥❣➢ỵ❝ ✈➭ ❝♦s✐♥❡ (K −1 )✱ ❋♦✉r✐❡r s✐♥❡ (Fs ) (Fc ) ✻✾ ✸✳✶ ❚Ý❝❤ ❝❤❐♣ s✉② ré♥❣ ✈í✐ ❤➭♠ trä♥❣ ➤è✐ ✈í✐ ❝➳❝ ♣❤Ð♣ ❜✐Õ♥ ➤ỉ✐ tÝ❝❤ ♣❤➞♥ K −1 ✱ Fs ✱ Fc ✈➭ ø♥❣ ❞ơ♥❣ ❣✐➯✐ ♠ét ❧í♣ ❤Ư ♣❤➢➡♥❣ tr×♥❤ tÝ❝❤ ♣❤➞♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✼✵ ✸✳✷ ❚Ý❝❤ ❝❤❐♣ s✉② ré♥❣ ✈í✐ ❤➭♠ trä♥❣ ➤è✐ ✈í✐ ❝➳❝ ♣❤Ð♣ ❜✐Õ♥ ➤ỉ✐ tÝ❝❤ ♣❤➞♥ Fc ✱ K −1 ✈➭ ø♥❣ ❞ơ♥❣ ❣✐➯✐ ♠ét sè ❤Ư ♣❤➢➡♥❣ tr×♥❤ tÝ❝❤ ♣❤➞♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✽✷ ❑Õt ❧✉❐♥ ❝❤➢➡♥❣ ✸ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ❑Õt ❧✉❐♥ ❝❤✉♥❣ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ❉❛♥❤ ♠ô❝ ❝➠♥❣ tr×♥❤ ❝➠♥❣ ❜è ❚➭✐ ❧✐Ư✉ t❤❛♠ ❦❤➯♦ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✾✼ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✾✽ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✵✵ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✵✶ ✶ TIEU LUAN MOI download : skknchat@gmail.com ❉❛♥❤ ♠ơ❝ ❝➳❝ ❦Ý ❤✐Ư✉ • N = {1, 2, } ❧➭ t❐♣ sè tù ♥❤✐➟♥❀ Z ❧➭ t❐♣ sè ♥❣✉②➟♥ • R+ = {x|x > 0}✿ t❐♣ ❝➳❝ sè t❤ù❝ ❞➢➡♥❣✳ √ • ω = −i✱ i2 = −1 • (f ∗ g)(x)✿ tÝ❝❤ ❝❤❐♣ ❝đ❛ ❤❛✐ ❤➭♠ f γ • (f ∗ g)(x)✿ tÝ❝❤ ❝❤❐♣ ❝đ❛ ❤❛✐ ❤➭♠ f k • (f ∗ g)(x)✿ tÝ❝❤ ❝❤❐♣ ❝ñ❛ ❤❛✐ ❤➭♠ f ✈➭ g ✈➭ g ✈í✐ ❤➭♠ trä♥❣ ✈➭ g t❤❡♦ ❝❤Ø sè γ(x) k✳ • F ✿ ♣❤Ð♣ ❜✐Õ♥ ➤ỉ✐ tÝ❝❤ ♣❤➞♥ ❋♦✉r✐❡r +∞ (F f )(y) = √ 2π f (x)e−iyx dx, y ∈ R −∞ • Fc ✿ ♣❤Ð♣ ❜✐Õ♥ ➤æ✐ tÝ❝❤ ♣❤➞♥ ❋♦✉r✐❡r ❝♦s✐♥❡ +∞ (Fc f )(y) = π f (x) cos(xy)dx, y > 0 • Fs ✿ ♣❤Ð♣ ❜✐Õ♥ ➤æ✐ tÝ❝❤ ♣❤➞♥ ❋♦✉r✐❡r s✐♥❡ +∞ (Fs f )(y) = π f (x) sin(xy)dx, y > 0 • M ✿ ♣❤Ð♣ ❜✐Õ♥ ➤ỉ✐ tÝ❝❤ ♣❤➞♥ ▼❡❧❧✐♥ +∞ f ∗ (x) = (M f )(y) = f (x)xy−1 dx • M −1 ✿ ♣❤Ð♣ ❜✐Õ♥ ➤ỉ✐ ▼❡❧❧✐♥ ♥❣➢ỵ❝ c+i∞ (M −1 g)(x) = 2πi g(s)x−s ds c−i∞ ✷ TIEU LUAN MOI download : skknchat@gmail.com ✸ • L✿ ♣❤Ð♣ ❜✐Õ♥ ➤ỉ✐ ▲❛♣❧❛❝❡ +∞ e−xy f (x)dx (Lf )(y) = • L−1 ✿ ♣❤Ð♣ ❜✐Õ♥ ➤ỉ✐ ▲❛♣❧❛❝❡ ♥❣➢ỵ❝ c+i∞ (L−1 f )(x) = 2πi exy f (y)dy c−i∞ −α • (xα Λ−1 + x )(.)✿ ♣❤Ð♣ ❜✐Õ♥ ➤æ✐ ▲❛♣❧❛❝❡ ❜✐Õ♥ ❞➵♥❣ 2πi −α (xα Λ−1 + x )f (x) = f ∗ (s)x−s ds Γ(s + α) σ tr♦♥❣ ➤ã Re(α) > − ✳ • H ✿ ♣❤Ð♣ ❜✐Õ♥ ➤æ✐ ❍✐❧❜❡rt +∞ (Hf )(y) = π f (x) dx x−y −∞ • H −1 ✿ ♣❤Ð♣ ❜✐Õ♥ ➤ỉ✐ ❍✐❧❜❡rt ♥❣➢ỵ❝ +∞ (H −1 f )(x) = π f (y) dy x−y −∞ • S ✿ ♣❤Ð♣ ❜✐Õ♥ ➤æ✐ ❙t✐❡❧t❥❡s +∞ f (x) dx x+y (Sf )(y) = • K ✿ ♣❤Ð♣ ❜✐Õ♥ ➤ỉ✐ ❑♦♥t♦r♦✈✐❝❤ ✲ ▲❡❜❡❞❡✈ +∞ (Kf )(y) = Kix (y)f (x) dx, y > 0 TIEU LUAN MOI download : skknchat@gmail.com ✹ • K −1 ❧➭ ♣❤Ð♣ ❜✐Õ♥ ➤ỉ✐ ❑♦♥t♦r♦✈✐❝❤ ✲ ▲❡❜❡❞❡✈ ♥❣➢ỵ❝ +∞ (K −1 f )(x) = x sh(πx) π Kix (y)y −1 f (y)dy, x > 0 tr♦♥❣ ➤ã • Kix ❧➭ ❤➭♠ ▼❛❝❞♦♥❛❧❞✳ P❤Ð♣ ❜✐Õ♥ ➤ỉ✐ M✿ (det Z)ρ− Mρ (f ) = m+1 f (Z)dZ, Z>0 tr♦♥❣ ➤ã • Re ρ > P❤Ð♣ ❜✐Õ♥ ➤æ✐ m−1 G (α)1,p (β)1,p n (Gf )(x) =Gm pq = 2πi f (t) (x) ψ(s)f ∗ (s)x−s ds σ n tr♦♥❣ ➤ã Gm p q ❧➭ ❤➭♠ G− ▼❡✐❥❡r✱ σ = s ∈ C : Re(s) = ,0 n j=1 p ✈➭ j=1 q Γ(1 − βj − s) Γ(αj + s) j=n+1 • q; Γ(1 − αj − s) Γ(βj + s) f∗ m n m ψ(s) = p; j=m+1 ❧➭ ❜✐Õ♥ ➤æ✐ ▼❡❧❧✐♥ ❝ñ❛ f ✈➭  Re(β ) + > 0, j = 1, m; j Re(αj ) + > 0, j = n + 1, p; 2 − Re(αj ) > 0, − Re(βj ) > 0, j = 1, n m + 1, q ❚Ý❝❤ ♣❤➞♥ ▼❡❧❧✐♥ ✲ ❇❛r♥❡s ①➳❝ ➤Þ♥❤ ♥❤➢ s❛✉✿ γ+i∞ f (z) = 2πi Γ(a1 + A1 s) Γ(an + An s) Γ(c1 + C1 s) Γ(cp + Cp s) γ−i∞ Γ(b1 − B1 s) Γ(bn − Bn s) s z ds Γ(d1 − D1 s) Γ(dq − Dq s) tr♦♥❣ ➤ã γ ❧➭ t❤ù❝✱ Aj , Bj , Cj , Dj ❞➢➡♥❣✳ × TIEU LUAN MOI download : skknchat@gmail.com ✺ +∞ |f (x)|dx < +∞} • L(R+ ) = {f (x) : +∞ |δ(x)||f (x)|dx < +∞}✿ ❦❤➠♥❣ ❣✐❛♥ ✈í✐ trä♥❣ • L(R+ , δ(x)) = {f (x) : δ • M−1 c,γ (L) = f (x) : f (x) = 2πi f ∗ (s)x−s ds σ ✈í✐ σ = s s❛♦ ❝❤♦ Re s = f (x) ✈➭ |s|γ f ∗ (s)eπc|s| ∈ L(σ)✳ ✈➭ f ∗ (s) ❧➭ ♣❤Ð♣ ❜✐Õ♥ ➤ỉ✐ ▼❡❧❧✐♥ ❝đ❛ TIEU LUAN MOI download : skknchat@gmail.com ❉❛♥❤ ♠ơ❝ ❤➭♠ ✈➭ ❤➭♠ ➤➷❝ ❜✐Ưt ex + e−x ch x = ❀ ex − e−x ❀ • sh x =     1, • sign(x) = • x>0 0,    −1, x=0 x Γ(z) = • ❍➭♠ q− ●❛♠♠❛ ①➳❝ ➤Þ♥❤ ♥❤➢ s❛✉ Γq (x) ≡ tr♦♥❣ ➤ã (x, q)∞ ❧➭ (q; q)∞ (1 − q)1−x , x (q ; q) q ỗ ị + (1 aq k ) (a; q)∞ = k=0 • ❍➭♠ s✐➟✉ ❜é✐ +∞ r Fs = r Fs (a1 , ar ; b1 , bs ; z) = k=0 • (a1 )k (ar )k z k (b1 )k (bs )k k! ❍➭♠ ❇❡ss❡❧ ❧♦➵✐ ♠ét +∞ (−1)m ( z2 )ν+2m Jν (x) = m!Γ(ν + m + 1) m=0 • ❍➭♠ ❇❡ss❡❧ ❜✐Õ♥ ❞➵♥❣ ❧♦➵✐ ❜❛ ✭❤➭♠ ▼❛❝❞♦♥❛❧❞✮ Kν (z) = π I−ν (x) − Iν (z) sin(νπ) tr♦♥❣ ➤ã +∞ ( z2 )ν+2m Iν (z) = m!Γ(ν + m + 1) m=0 ✻ TIEU LUAN MOI download : skknchat@gmail.com ✼ • ❍➭♠ ▼❛❝❞♦♥❛❧❞ ❞➵♥❣ tÝ❝❤ ♣❤➞♥ +∞ e−x ch u cos τ u du, x > 0, τ Kiτ (x) = 0 n • Gm pq ❧➭ ❤➭♠ G− ▼❡✐❥❡r✱ a1 , , ap b , , bq Gm.n x p,q m = 2πi n Γ(bj − s) j=1 p L xs ds, Γ(1 − bj + s) Γ(aj − s) j=m+1 j=n+1 • Γ(1 − aj + s) j=1 q ψ2 = ψ2 (a; c1 , , cn ; −Z1 , , −Zn ) ❧➭ ❤➭♠ s❛♦ ❝❤♦ ➯♥❤ q✉❛ ♣❤Ð♣ ❜✐Õ♥ ➤ỉ✐ M ❝đ❛ ♥ã ợ ị s M (2 ) =M1 , ,ρn [ψ2 (a; c1 , , cn ; −Z1 , , −Zn )] n n { = Γp (cj )} Γp (a − ρ1 − · · · − ρn ){ j=1 Γp (ρj )} j=1 n Γp (a) Γp (cj − ρj )} { j=1 ✈í✐ Re(bj − ρ, cj − ρj , ρj , a − ρ1 − · · · − ρn ) > p−1 , j = 1, , n✱ ë ➤➞② ♣❤➬♥ t❤ù❝ ể t ĩ tự ủ ỗ t ề ❧í♥ ❤➡♥ • p−1 ❍➭♠ φ2 = φ2 (b1 , , bn ; c; −Z1 , , −Zn ) ❧➭ ❤➭♠ s❛♦ ❝❤♦ M − ♣❤Ð♣ ❜✐Õ♥ ➤ỉ✐ ❝đ❛ ♥ã ①➳❝ ➤Þ♥❤ ♥❤➢ s❛✉✿ n Γp (c) M (φ2 ) = n { Γp (bj )} { Γp (bj − ρj )Γp (ρj )} j=1 Γp (c − ρ1 − · · · − ρn ) j=1 TIEU LUAN MOI download : skknchat@gmail.com ✽ • ❈➳❝ ❤➭♠ ▲❛✉r✐❝❡❧❧❛✿ ❍➭♠ fA = fA (a, b1 , , bn ; c1 , , cn ; −Z1 , , −Zn ) t❤á❛ ♠➲♥ ♣❤➢➡♥❣ tr×♥❤ tÝ❝❤ ♣❤➞♥ s❛✉ ❣ä✐ ❧➭ ❤➭♠ ▲❛✉r✐❝❡❧❧❛ |T1 |b1 − ··· M (fA ) = T1 >0 p+1 |Tn |bn − p+1 Tn >0 ×fA (a, b1 , , bn ; c1 , , cn ; −T1 , , −Tn )dT1 dTn n j=1 Γp (cj ) = Γp (a) n j=1 Γp (bj n j=1 Γp (bj ) n j=1 Γp (ρj ) Γp (a − ρ1 − · · · − ρn ) × − ρj ) n j=1 Γp (cj − ρj ) • q− ♠ị Eq (x) ✭①❡♠ ❬✶✵❪✮ ❧➭ ❤➭♠ ①➳❝ ➤Þ♥❤ ❜ë✐ +∞ Eq (z) = q n(n−1) zn n n=0 (1 − qi) i=0 • q− tÝ❝❤ ♣❤➞♥ ❧➭ f (x)dq x ①➳❝ ➤Þ♥❤ ❜ë✐ +∞ f (q i )q i , f (x)dq x = (1 − q) i=0 • ❍➭♠ trơ ♣❛r❛❜♦❧✐❝ ✭❍➭♠ ❲❡❜❡r✮ ✈✐ ♣❤➞♥ ❲❡❜❡r y (z) + ν + Dν (z)✱ ❧➭ ♥❣❤✐Ư♠ ❝đ❛ ♣❤➢➡♥❣ tr×♥❤ 1 − z y(z) = 0, ợ ị D (z) = 2ν/2+1/4 z −1/2 Wν/2+1/4,−1/4 z TIEU LUAN MOI download : skknchat@gmail.com ✾✶ ❈❤ø♥❣ ♠✐♥❤✳ ●✐➯ sư ❤Ư ✭✸✳✷✳✶✾✱ ✸✳✷✳✷✵✮ ❝ã ♥❣❤✐Ư♠ tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ L(R+ )✳ ❑❤✐ ➤ã sư ❞ơ♥❣ ➤Þ♥❤ ♥❣❤Ü❛ ❝đ❛ tÝ❝❤ ❝❤❐♣ s✉② ré♥❣ ✭✸✳✷✳✶✮ t❛ ✈✐Õt ❤Ư (3.2.19, 3.2.20) ❞➢í✐ ❞➵♥❣ s❛✉✳ γ f (x) + λ1 (ϕ ∗ g)(x) = h(x), λ2 (ψ ∗ f )(x) + g(x) = k(x), Fc x > ❙ư ❞ơ♥❣ ➤➻♥❣ t❤ø❝ ♥❤➞♥ tư ❤♦➳ ❝đ❛ ❝➳❝ tÝ❝❤ ❝❤❐♣ ✭✸✳✷✳✶✮ ✈➭ tÝ❝❤ ❝❤❐♣ ✭✸✳✶✳✶✵✮ t❛ ➤➢ỵ❝ (Fc f )(y) + λ1 γ(y)(K −1 ϕ)(y)(Fc g)(y) = (Fc h)(y), λ2 (Fc ψ)(y)(Fc f )(y) + (Fc g)(y) = (Fc k)(y), ∀y > ▲➵✐ ❝ã λ1 γ(y)(K −1 ϕ)(y) = ∆= λ2 (Fc ψ)(y) γ = − λ1 λ2 Fc (ϕ ∗ ψ)(y) = 0, ∀y > 0, (Fc h)(y) λ1 γ(y)(K −1 ϕ)(y) ∆1 = (Fc k)(y) γ = (Fc h)(y) − λ1 Fc (ϕ ∗ k)(y), ∆2 = (Fc h)(y) λ2 (Fc ψ)(y) (Fc k)(y) = (Fc k)(y) − λ2 Fc (h ∗ ψ)(y) Fc ❉♦ ➤ã γ [(Fc h)(y) − λ1 Fc (ϕ ∗ k)(y)] ∆   γ λ1 λ2 Fc (ϕ ∗ ψ)(y) γ   = 1+ [(F h)(y) − λ F (ϕ ∗ k)(y)] c c γ − λ1 λ2 Fc (ϕ ∗ ψ)(y) (Fc f )(y) = TIEU LUAN MOI download : skknchat@gmail.com ✾✷ ❚❤❡♦ ➤Þ♥❤ ❧ý ❲✐❡♥❡r✲▲Ð✈② ✭①❡♠ ❬✷❪✮✱ tå♥ t➵✐ ❞✉② ♥❤✃t ❤➭♠ s❛♦ ❝❤♦ l(x) ∈ L(R+ ) γ λ1 λ2 Fc ((ϕ ∗ ψ)(y) γ − λ1 λ2 Fc ((ϕ ∗ ψ)(y) = (Fc l)(y) ❱❐② γ (Fc f )(y) = [1 + (Fc l)(y)][(Fc h)(y) − λ1 Fc (ϕ ∗ k)(y)] γ γ = (Fc h)(y) − λ1 Fc (ϕ ∗ k)(y) + Fc (l ∗ h)(y) − λ1 Fc (l ∗ (ϕ ∗ k))(y), Fc y > Fc ❙✉② r❛ γ γ f (x) = h(x) − λ1 (ϕ ∗ k)(x) + (l ∗ h)(x) − λ1 (l ∗ (ϕ ∗ k))(x) ◆❤ê sù tå♥ t➵✐ ❝ñ❛ tÝ❝❤ ❝❤❐♣ ✸✳✷✳✶ ❞➱♥ ➤Õ♥ Fc (· ∗ ·) Fc Fc tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ L(R+ ) ✈➭ ➤Þ♥❤ ❧ý f (x) ∈ L(R+ )✳ ❚➢➡♥❣ tù (Fc g)(y) =[1 + (Fc l)(y)][(Fc k)(y) − λ2 Fc (h ∗ ψ)(y)] Fc =(Fc k)(y) − λ2 Fc (h ∗ ψ)(y) + Fc (l ∗ k)(y) Fc − λ2 Fc (l ∗ (h ∗ ψ))(y), Fc Fc Fc y > 0, ✈➭ g(x) = k(x) + (l ∗ k)(x) − λ2 (h ∗ ψ)(x) − λ2 (l ∗ (h ∗ ψ))(x) Fc ◆❤ê sù tå♥ t➵✐ ❝ñ❛ tÝ❝❤ ❝❤❐♣ Fc (· ∗ ·) Fc Fc tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ Fc L(R+ ) ❞➱♥ ➤Õ♥ g(x) ∈ L(R+ )✳ ❙ư ❞ơ♥❣ ➤➻♥❣ t❤ø❝ ♥❤➞♥ tư ❤♦➳ (3.2.2) ❝đ❛ tÝ❝❤ ❝❤❐♣ s✉② ré♥❣ ♠í✐ ➤➢ỵ❝ ①➞② ❞ù♥❣ ✈➭ ❝➳❝ ➤➻♥❣ t❤ø❝ ♥❤➞♥ tư ❤♦➳ ❝đ❛ ❝➳❝ tÝ❝❤ ❝❤❐♣ ❦❤➳❝ ➤➲ ❜✐Õt t❛ ❦✐Ĩ♠ tr❛ ➤➢ỵ❝ f✱ g ị tr t ệ trì ✭✸✳✷✳✶✾✱ ✸✳✷✳✷✵✮✳ ▼Ư♥❤ ➤Ị ➤➢ỵ❝ ❝❤ø♥❣ ♠✐♥❤ ①♦♥❣✳ TIEU LUAN MOI download : skknchat@gmail.com ✾✸ ❜✮ ❳Ðt ❤Ư ♣❤➢➡♥❣ tr×♥❤ tÝ❝❤ ♣❤➞♥ +∞ θ1 (x, u)g(u)du = h(x), x > 0, ✭✸✳✷✳✷✹✮ θ2 (x, v)f (v)dv + g(x) = k(x), x > 0, ✭✸✳✷✳✷✺✮ f (x) + λ1 +∞ λ2 tr♦♥❣ ➤ã λ1 , λ2 ❧➭ √ ❝➳❝ sè ♣❤ø❝❀ + x3 ✱ k, ψ, h ∈ L(R+ )❀ ϕ, ξ ∈ L R+ , √ x3 f ✈➭ g ❧➭ ❝➳❝ ➮♥ ❤➭♠ ❝➬♥ t×♠✱ ✈➭ +∞ θ1 (x, u) = 4π −u ch(x+v) e + e−u ch(x−v) ϕ(v)dv, u +∞ +∞ θ2 (x, v) = π2 √ ψ(z)ξ(u) sign(z − x) sh(|z − x| + v)e−u ch(|z−x|+v) 2π 0 + sign(z − x) sh(|z − x| − v)e−u ch(|z−x|−v) + sh(z + x + v)e−u ch(z+x+v) + sh(z + x − v)e−u ch(z+x−v) dudz ▼Ư♥❤ ➤Ị s❛✉ ➤➞② ❦❤➻♥❣ ➤Þ♥❤ sù tå♥ t➵✐ ♥❣❤✐Ư♠ ❝đ❛ ❤Ư ✭✸✳✷✳✷✹✱ ✸✳✷✳✷✺✮ ✈➭ ❝❤♦ ❝✃✉ tró❝ ♥❣❤✐Ư♠ ❞➢í✐ ❞➵♥❣ ➤ã♥❣✳ ▼Ư♥❤ ➤Ị ✸✳✷✳✺✳ ●✐➯ sö r➺♥❣ γ γ1 − λ1 λ2 Fc (ϕ ∗ (ξ ∗ ψ) (y) = 0, ∀y > ❑❤✐ ➤ã tå♥ t➵✐ ❞✉② ♥❤✃t ♥❣❤✐Ö♠ tr♦♥❣ ✭✸✳✷✳✷✻✮ L(R+ ) ❝đ❛ ❤Ư ♣❤➢➡♥❣ tr×♥❤ (3.2.24, 3.2.25) ❝❤♦ ❜ë✐ γ γ f (x) = h(x) − λ1 (ϕ ∗ k)(x) + (l ∗ h)(x) − λ1 l ∗ (ϕ ∗ k) (x), Fc Fc ✭✸✳✷✳✷✼✮ γ1 γ1 g(x) = k(x) − λ2 h ∗ (ξ ∗ ψ) (x) + (l ∗ k)(x) − λ2 l ∗ h ∗ (ξ ∗ ψ) (x), Fc Fc Fc Fc ✭✸✳✷✳✷✽✮ TIEU LUAN MOI download : skknchat@gmail.com ✾✹ tr ó l L(R+ ) ợ ị ❜ë✐ γ γ1 λ1 λ2 Fc ϕ ∗ (ξ ∗ ψ) (y) (Fc l)(y) = ✈➭ tÝ❝❤ ❝❤❐♣ γ γ1 , − λ1 λ2 Fc ϕ ∗ (ξ ∗ ψ) (y) γ1 (· ∗ ·) ợ ị ứ sử ❤Ư ♣❤➢➡♥❣ tr×♥❤ (3.2.24, 3.2.25) ❝ã ♥❣❤✐Ư♠ tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ L(R+ )✳ ❑❤✐ ➤ã ❤Ư ❝ã t❤Ĩ ➤➢ỵ❝ ✈✐Õt ❧➵✐ ♥❤➢ s❛✉ γ f (x) + λ1 (ϕ ∗ g)(x) = h(x), λ2 ψ ∗ Fs,c γ1 ξ∗f x > 0, (x) + g(x) = k(x), x > ❙ư ❞ơ♥❣ ❝➳❝ ➤➻♥❣ t❤ø❝ ♥❤➞♥ tư ❤♦➳ ➤è✐ ✈í✐ ❝➳❝ tÝ❝❤ ❝❤❐♣ ✭✸✳✷✳✶✮✱ ✭✸✳✶✳✶✹✮✱ ✭✸✳✶✳✶✮✱ ✭✸✳✶✳✶✶✮ ✈➭ ✭✸✳✶✳✷✮ t❛ ❝ã (Fc f )(y) + λ1 γ(y)(K −1 ϕ)(y)(Fc g)(y) = (Fc h)(y), λ2 γ1 (y)(Fs ψ)(y)(K −1 ξ)(y) (Fc f )(y) + (Fc g)(y) = (Fc k)(y), y > ❍Ư tr➟♥ t➢➡♥❣ ➤➢➡♥❣ ✈í✐ (Fc f )(y) + λ1 γ(y)(K −1 ϕ)(y)(Fc g)(y) = (Fc h)(y), γ1 λ2 Fc (ξ ∗ ψ)(y)(Fc f )(y) + (Fc g)(y) = (Fc k)(y), y > ❚❛ ❝ã ∆= λ1 γ(y)(K −1 ϕ)(y) γ1 λ2 Fc (ξ ∗ ψ)(y) γ1 = − λ1 λ2 γ(y)(K −1 ϕ)(y)Fc (ξ ∗ ψ)(y) γ γ1 =1 − λ1 λ2 Fc ϕ ∗ (ξ ∗ ψ) (y) = 0, ∀y > ❚õ ➤ã s✉② r❛ γ γ1 λ1 λ2 Fc ϕ ∗ (ξ ∗ ψ) (y) =1+ γ γ1 ∆ − λ1 λ2 Fc ϕ ∗ (ξ ∗ ψ) (y) TIEU LUAN MOI download : skknchat@gmail.com ✾✺ ❚❤❡♦ ➤Þ♥❤ ❧ý ❲✐❡♥❡r✲▲Ð✈② ✭①❡♠ ❬✷❪✮✱ tå♥ t➵✐ ❞✉② ♥❤✃t ♠ét ❤➭♠ l ∈ L(R+ ) s❛♦ ❝❤♦ γ γ1 λ1 λ2 Fc ϕ ∗ (ξ ∗ ψ) (y) (Fc l)(y) = γ γ1 , − λ1 λ2 Fc ϕ ∗ (ξ ∗ ψ) (y) (Fc h)(y) λ1 γ(y)(K −1 ϕ)(y) ∆1 = (Fc k)(y) γ = (Fc h)(y) − λ1 Fc (ϕ ∗ k)(y) ❙✉② r❛ γ (Fc f )(y) = + (Fc l)(y) (Fc h)(y) − λ1 Fc (ϕ ∗ k)(y) γ γ = (Fc h)(y) − λ1 Fc (ϕ ∗ k)(y) + Fc (l ∗ h)(y) − λ1 Fc (l ∗ (ϕ ∗ k) (y) ❱❐② Fc Fc γ γ f (x) = h(x) − λ1 (ϕ ∗ k)(x) + (l ∗ h) − λ1 (l ∗ (ϕ ∗ k))(x) ◆❤ê sù tå♥ t➵✐ ❝ñ❛ tÝ❝❤ ❝❤❐♣ ✸✳✷✳✶ ❞➱♥ ➤Õ♥ Fc (· ∗ ·) Fc Fc tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ L(R+ ) ✈➭ ➤Þ♥❤ ❧ý f (x) ∈ L(R+ )✳ ❚➢➡♥❣ tù✱ ∆2 = (Fc h)(y) γ1 λ2 Fc (ξ ∗ ψ)(y) (Fc k)(y) γ1 = (Fc k)(y) − λ2 Fc (h ∗ (ξ ∗ ψ)(y) Fc ❙✉② r❛ γ1 (Fc g)(y) = [1 + (Fc l)(y)] (Fc k)(y) − λ2 Fc h ∗ (ξ ∗ ψ) (y) Fc γ1 = (Fc k)(y) − λ2 Fc (h ∗ (ξ ∗ ψ))(x) + Fc (l ∗ k)(x) Fc γ1 Fc − λ2 Fc l ∗ (h ∗ (ξ ∗ ψ)))(y) Fc Fc ❱❐② γ1 γ1 g(x) = k(x) − λ2 (h ∗ (ξ ∗ ψ))(x) + (l ∗ k)(x) − λ2 l ∗ (h ∗ (ξ ∗ ψ)))(x) Fc Fc Fc Fc TIEU LUAN MOI download : skknchat@gmail.com ✾✻ ◆❤ê sù tå♥ t➵✐ ❝ñ❛ tÝ❝❤ ❝❤❐♣ ➤Õ♥ γ1 (· ∗ ·) ✈➭ (· ∗ ·) tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ L(R+ ) ❞➱♥ Fc g(x) ∈ L(R+ )✳ ❉Ô ❞➭♥❣ ❦✐Ĩ♠ tr❛ f ✱ g ①➳❝ ➤Þ♥❤ ♥❤➢ tr➟♥ ➤ó♥❣ ❧➭ ♥❣❤✐Ư♠ ❝đ❛ ❤Ư ♣❤➢➡♥❣ tr×♥❤ ✭✸✳✷✳✷✹✮ ✲ ✭✸✳✷✳✷✺✮✳ ▼Ư♥❤ ➤Ị ➤➢ỵ❝ ❝❤ø♥❣ ♠✐♥❤ ①♦♥❣✳ ◆❤❐♥ ①Ðt ✸✳✷✳✶✳ ❚r♦♥❣ ♠ét sè ❦Õt q✉➯ ➤➲ ❜✐Õt ë ❬✶✹✱ ✸✺✱ ✹✼✱ ✺✵✱ ✺✶✱ ✺✸✱ ✺✹✱ ✺✺✱ ✺✻❪✱ ❝➳❝ tÝ❝❤ ❝❤❐♣ ➤➢ỵ❝ ①➞② ❞ù♥❣ tr➢í❝ ➤➞② ➤Ị✉ ❝ã ❝ï♥❣ ♠ét ➤➷❝ ➤✐Ĩ♠ ❧➭ tr♦♥❣ ➤➻♥❣ t❤ø❝ ♥❤➞♥ tư ❤ã❛ ❝đ❛ ♥ã ❝❤Ø ❝ã ❞✉② ♥❤✃t ♠ét ♣❤Ð♣ ❜✐Õ♥ ➤æ✐ tÝ❝❤ ♣❤➞♥ t❤❛♠ ❣✐❛ ❤♦➷❝ ❝➳❝ ♣❤Ð♣ ❜✐Õ♥ ➤æ✐ tÝ❝❤ ♣❤➞♥ t❤❡♦ ❝❤Ø sè t❤✉é❝ ❝ï♥❣ ♠ét ❤ä t❤❛♠ ❣✐❛✳ ❈➳❝ tÝ❝❤ ❝❤❐♣ s✉② ré♥❣ ✈í✐ ❤➭♠ trä♥❣ ➤è✐ ✈í✐ ❝➳❝ ♣❤Ð♣ ❜✐Õ♥ ➤ỉ✐ tÝ❝❤ ♣❤➞♥ Fc K −1 ✱ Fs ✱ ➤➢ỵ❝ ①➞② ❞ù♥❣ ë ➤➞② ❧➭ ❦❤➳❝ ❤♦➭♥ t♦➭♥ ✈í✐ ❝➳❝ tÝ❝❤ ết trớ ó ỗ tr t❤ø❝ ♥❤➞♥ tư ❤ã❛ ❝đ❛ ❝❤ó♥❣ ❝ã ♥❤✐Ị✉ ♣❤Ð♣ ❜✐Õ♥ ➤æ✐ tÝ❝❤ ♣❤➞♥ ❦❤➳❝ ♥❤❛✉ t❤❛♠ ❣✐❛✳ ❈➳❝ tÝ❝❤ ❝❤❐♣ s✉② ré♥❣ ♥➭② ❦❤➠♥❣ ❣✐❛♦ ❤♦➳♥ ✈➭ ❦❤➠♥❣ ❦Õt ❤ỵ♣ ữ ệ trì tí ợ ự ë ➤➞② ♥❤➺♠ ♠ô❝ ➤Ý❝❤ ♠✐♥❤ ❤ä❛ ❝❤♦ ø♥❣ ❞ô♥❣ ❝đ❛ ❝➳❝ tÝ❝❤ ❝❤❐♣ s✉② ré♥❣ ♠í✐ ♥❤❐♥ ➤➢ỵ❝✳ ❈➳❝ ệ ề ợ t ể s ỗ ệ trì tÝ❝❤ ♣❤➞♥ ➤➲ ❦❤➻♥❣ ➤Þ♥❤ sù tå♥ t➵✐ ❞✉② ♥❤✃t ♥❣❤✐Ư♠ ❝đ❛ ❤Ư tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ❤➭♠ L(R+ ) ✈➭ ❝❤♦ ❝✃✉ tró❝ ♥❣❤✐Ư♠ ❞➢í✐ ❞➵♥❣ ➤ã♥❣✱ ❜✐Ĩ✉ ❞✐Ơ♥ t❤➠♥❣ q✉❛ tÝ❝❤ ❝❤❐♣ s✉② ré♥❣ ♠í✐ ✈➭ ❝➳❝ tÝ❝❤ ❝❤❐♣✱ tÝ❝❤ ❝❤❐♣ s✉② ré♥❣ ➤➲ ❜✐Õt tr➢í❝ ➤ã✳ ❈➬♥ ♣❤➯✐ r ữ ệ trì tí ❝❤Ø ❝ã t❤Ĩ ❣✐➯✐ ➤➢ỵ❝ ❜➺♥❣ ❝➠♥❣ ❝ơ tÝ❝❤ ❝❤❐♣ s✉② ré♥❣ ♠í✐ ♥❤❐♥ ➤➢ỵ❝✳ TIEU LUAN MOI download : skknchat@gmail.com ❑Õt ❧✉❐♥ ❝❤➢➡♥❣ ✸ ❑Õt q✉➯ ❝❤Ý♥❤ ❝ñ❛ ❝❤➢➡♥❣ ủ ã ự ợ tí ❝❤❐♣ s✉② ré♥❣ ♠í✐ ✈í✐ ❤➭♠ trä♥❣ ➤è✐ ✈í✐ ❝➳❝ ♣❤Ð♣ ❜✐Õ♥ ➤æ✐ tÝ❝❤ ♣❤➞♥ (Fs , K −1 , Fc )❀ (Fc , K −1 , Fs )❀ (Fc , K −1 ) ❝ï♥❣ ✈í✐ ❝➳❝ tÝ♥❤ ❝❤✃t ❝đ❛ ❝❤ó♥❣ ❝ị♥❣ ♥❤➢ ♠ét sè ♠è✐ ❧✐➟♥ ❤Ư ✈í✐ ❝➳❝ tÝ❝❤ ❝❤❐♣ ➤➲ ❜✐Õt✳ • ø♥❣ ❞ơ♥❣ ❝➳❝ tÝ❝❤ ❝❤❐♣ s✉② ré♥❣ ♠í✐ ♥➭② ✈➭♦ ❣✐➯✐ ♠ét sè ❤Ư ♣❤➢➡♥❣ tr×♥❤ tÝ❝❤ ♣❤➞♥ ❦✐Ĩ✉ tÝ❝❤ ❝❤❐♣ s✉② ré♥❣✱ ♥❣❤✐Ư♠ ♥❤❐♥ ➤➢ỵ❝ ❞➢í✐ ❞➵♥❣ ➤ã♥❣✳ ✾✼ TIEU LUAN MOI download : skknchat@gmail.com ❑Õt ❧✉❐♥ ❝❤✉♥❣ ◆❤÷♥❣ ❦Õt q✉➯ ❝❤Ý♥❤ ❝đ❛ ❧✉❐♥ ➳♥ ❧➭ ✶✳ ❳➞② ❞ù♥❣ ➤➢ỵ❝ ❤➭♠ ❞➵♥❣ I ✈í✐ ♥❤✐Ò✉ ➤è✐ sè ♠❛ tr❐♥✱ tõ ➤ã ➤✐ ♥❣❤✐➟♥ ❝ø✉ ❝➳❝ tÝ♥❤ ❝❤✃t ❝đ❛ ❝❤ó♥❣✳ ❳➞② ❞ù♥❣ ➤➢ỵ❝ tÝ❝❤ ❝❤❐♣ ➤è✐ ✈í✐ ♣❤Ð♣ ❜✐Õ♥ ➤ỉ✐ M ❝đ❛ ❤❛✐ ❤➭♠ f, g ✈í✐ ♥❤✐Ị✉ ➤è✐ sè ♠❛ tr❐♥✱ ✈➭ ø♥❣ ❞ơ♥❣ ➤Ĩ ❣✐➯✐ ♣❤➢➡♥❣ tr×♥❤ tÝ❝❤ ♣❤➞♥ ❦✐Ĩ✉ tÝ❝❤ ❝❤❐♣✳ ✷✳ ❳➞② ❞ù♥❣ ♣❤Ð♣ ❜✐Õ♥ ➤æ✐ I✱ ❝❤Ø r❛ ❦❤➠♥❣ ❣✐❛♥ ❤➭♠ ❝❤♦ sù tå♥ t➵✐ ❝đ❛ ❝➳❝ ♣❤Ð♣ ❜✐Õ♥ ➤ỉ✐ ♥➭②✱ ♥❤❐♥ ➤➢ỵ❝ ♣❤Ð♣ ❜✐Õ♥ ➤ỉ✐ ♥❣➢ỵ❝ ✈➭ ❝❤ø♥❣ ♠✐♥❤ ợ ữ ó ❚õ ➤ã ➤✐ ①➞② ❞ù♥❣ tÝ❝❤ ❝❤❐♣ s✉② ré♥❣ ➤è✐ ✈í✐ ♣❤Ð♣ ❜✐Õ♥ ➤ỉ✐ I ✈➭ I −1 ✱ ♥❣❤✐➟♥ ❝ø✉ ❝➳❝ tÝ♥❤ ❝❤✃t ❝đ❛ ❝❤ó♥❣✳ ❚r♦♥❣ tr➢ê♥❣ ❤ỵ♣ ➤➷t ❜✐Ưt ❝đ❛ ❝➳❝ t❤❛♠ sè rk = ri = rj = 1✳ ◆❤❐♥ ➤➢ỵ❝ ❝➳❝ ➤➻♥❣ t❤ø❝ ♥❤➞♥ tư ❤ã❛ ✈í✐ sù t❤❛♠ ❣✐❛ ❝đ❛ ♣❤Ð♣ ❜✐Õ♥ ➤ỉ✐ H ✈➭ I ✳ ❳➞② ❞ù♥❣ t❤Ý ❞ô ♠✐♥❤ ❤ä❛ ❝❤♦ sù tå♥ t➵✐ ❝ñ❛ ❝➳❝ t✐❝❤ ❝❤❐♣ s✉② ré♥❣ ❝ñ❛ ♣❤Ð♣ ❜✐Õ♥ ➤æ✐ I ✈➭ I −1 tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ❤➭♠ ❝❤Ø r❛ ✱ ♥❤ê ♠ét sè ❤➭♠ ➤➷❝ ❜✐Öt ❦❤➳❝ ú t ợ ệ ữ tí tr ữ trờ ợ ỉ sè k = 3, 4, 5, 6✳ ✸✳ ❈❤ä♥ ❜❛ ♣❤Ð♣ ❜✐Õ♥ ➤æ✐ tÝ❝❤ ♣❤➞♥ Fs ✱ K −1 ✱ Fc ➤Ĩ ①➞② ❞ù♥❣ tÝ❝❤ ❝❤❐♣ s✉② ré♥❣ ✈í✐ ❤➭♠ trä♥❣ ➤è✐ ✈í✐ ❜❛ ♣❤Ð♣ ❜✐Õ♥ ➤ỉ✐ tÝ❝❤ ♣❤➞♥ ♥➭② ♥❤➢ ❧➭ ♠ét tr➢ê♥❣ ❤ỵ♣ ➳♣ ❞ơ♥❣ ❝❤♦ ❧Ý t❤✉②Õt tæ♥❣ q✉➳t ë ❝❤➢➡♥❣ ✶ ✈➭ ❝❤➢➡♥❣ ✷✳ ◆❣❤✐➟♥ ❝ø✉ sù tå♥ t➵✐ ❝ñ❛ ❝➳❝ tÝ❝❤ ❝❤❐♣ s✉② ré♥❣ ♥➭②✳ ➜➷❝ ❜✐Ưt ø♥❣ ❞ơ♥❣ ❝➳❝ tÝ❝❤ ❝❤❐♣ ♠í✐ ♥➭② ✈➭♦ ❣✐➯✐ ♠ét sè ❧í♣ ❤Ư ♣❤➢➡♥❣ tr×♥❤ tÝ❝❤ ♣❤➞♥ ❦✐Ĩ✉ tÝ❝❤ ❝❤❐♣ ▲✉❐♥ ➳♥ ♠ë r❛ ♠ét sè ✈✃♥ ➤Ò ❝ã t❤Ĩ t✐Õ♣ tơ❝ ♥❣❤✐➟♥ ❝ø✉✿ ✶✳ ◆❣❤✐➟♥ ❝ø✉ ➤✐Ị✉ ❦✐Ư♥ tå♥ t➵✐ ❝đ❛ ❤➭♠ ❞➵♥❣ I ✈í✐ ♥❤✐Ị✉ ➤è✐ sè ♠❛ tr❐♥✱ t❤❐♠ ❝❤Ý ♥❣❛② ❝➯ tr➢ê♥❣ ❤ỵ♣ r✐➟♥❣ ❧➭ ❤➭♠ H ✈í✐ ♥❤✐Ị✉ ➤è✐ sè ♠❛ tr❐♥✳ ✷✳ ❳➞② ❞ù♥❣ ♣❤Ð♣ ❜✐Õ♥ ➤ỉ✐ tÝ❝❤ ♣❤➞♥ ❝❤♦ ❧í♣ ❤➭♠ ❤➭♠ ❞➵♥❣ I I ♥❤✐Ò✉ ❜✐Õ♥ sè ✈➭ ♥❤✐Ò✉ ❜✐Õ♥ sè✱ tõ ➤ã ♥❣❤✐➟♥ ❝ø✉ tÝ❝❤ ❝❤❐♣ s✉② ré♥❣ t❤❡♦ ✾✽ TIEU LUAN MOI download : skknchat@gmail.com ✾✾ ❝❤Ø sè ➤è✐ ✈í✐ ❝➳❝ ♣❤Ð♣ ❜✐Õ♥ ➤ỉ✐ tÝ❝❤ ♣❤➞♥ ♥➭② ❝ị♥❣ ♥❤➢ ➤❛ ❝❤❐♣ ❝ñ❛ ♥ã✳ (f ∗ g) ❝ñ❛ ❜é ❜❛ ♣❤Ð♣ ❜✐Õ♥ ➤æ✐ tÝ❝❤ ♣❤➞♥ Fs ✱ K −1 ✱ Fc t❛ ❝ã t❤Ĩ ❝è ➤Þ♥❤ ♠ét tr♦♥❣ ❤❛✐ f g ể ỗ tí ❝❤❐♣ s✉② ré♥❣ ❝ø✉ ♣❤Ð♣ ❜✐Õ♥ ➤ỉ✐ tÝ❝❤ ♣❤➞♥ ❦✐Ĩ✉ tÝ❝❤ ❝❤❐♣ s✉② ré♥❣ ❝ị♥❣ ♥❤➢ ➤❛ ❝❤❐♣ ❝đ❛ ❜❛ ♣❤Ð♣ ❜✐Õ♥ ➤ỉ✐ tÝ❝❤ ♣❤➞♥ ♥➭②✳ ➜➷❝ ❜✐Ưt ø♥❣ ❞ơ♥❣ ❝➳❝ tÝ❝❤ ❝❤❐♣ s✉② ré♥❣ ❝❤♦ ♥❤ã♠ ❝➳❝ ♣❤Ð♣ ❜✐Õ♥ ➤ỉ✐ tÝ❝❤ ♣❤➞♥ Fs ✱ K −1 ✱ Fc ➤Ĩ ❣✐➯✐ ♠ét sè ❧í♣ ♣❤➢➡♥❣ tr×♥❤ tÝ❝❤ ♣❤➞♥ ✈í✐ ♥❤➞♥ ❚♦❡♣❧✐t③ ✰ ❍❛♥❦❡❧ ❞➢í✐ ❞➵♥❣ ♥❣❤✐Ư♠ ➤ã♥❣✳ TIEU LUAN MOI download : skknchat@gmail.com ❉❛♥❤ ♠ơ❝ ❝➳❝ ❝➠♥❣ tr×♥❤ ❝đ❛ t➳❝ ❣✐➯ ❧✐➟♥ q✉❛♥ ➤Õ♥ ❧✉❐♥ ➳♥ ➤➲ ➤➢ỵ❝ ❝➠♥❣ ❜è ✶✳ ◆❣✉②❡♥ ❳✉❛♥ ❚❤❛♦ ❛♥❞ ❚r✐♥❤ ❚✉❛♥ ✭✷✵✵✸✮✱ ❖♥ t❤❡ ●❡♥❡r❛❧✐③❡❞ ❈♦♥✲ ✈♦❧✉t✐♦♥ ❢♦r I ✲tr❛♥s❢♦r♠✱ ❆❝t❛ ▼❛t❤❡♠❛t✐❝❛ ❱✐❡t♥❛♠✐❝❛✳ ❱♦❧✳✷✽✱ ◆♦✳ ✷✱ ✶✺✾✲✶✼✹✳ ✷✳ ◆❣✉②❡♥ ❳✉❛♥ ❚❤❛♦ ❛♥❞ ❚r✐♥❤ ❚✉❛♥ ✭✷✵✵✹✮✱ ❇❛s✐❝ ❆♥❛❧♦❣✉❡ ♦❢ I− ❋✉♥❝t✐♦♥ ♦❢ ❙❡✈❡r❛❧ ▼❛tr✐① ❆r❣✉♠❡♥ts✳ ❱✐❡t♥❛♠ ❏♦✉r♥❛❧ ♦❢ ▼❛t❤❡♠❛t✲ ✐❝s ✳ ❱♦❧✳ ✸✷✱ ◆♦✳ ✹✱ ✹✶✾ ✲ ✹✸✶✳ ✸✳ ◆❣✉②❡♥ ❳✉❛♥ ❚❤❛♦ ❛♥❞ ❚r✐♥❤ ❚✉❛♥ ✭✷✵✵✺✮✱ ❖♥ t❤❡ ●❡♥❡r❛❧✐③❡❞ ❈♦♥✈♦❧✉t✐♦♥s ♦❢ t❤❡ ■♥t❡❣r❛❧ ❑♦♥t♦r♦✈✐❝❤ ✲ ▲❡❜❡❞❡✈✱ ❋♦✉r✐❡r s✐♥❡ ❛♥❞ ❝♦s✐♥❡ ❚r❛♥s❢♦r♠s✱ ❆♥♥❛❧❡s ❯♥✐✈✳ ❙❝✐✳ ❇✉❞❛♣❡st✱ ❙❡❝t✳ ❈♦♠♣✳ ❱♦❧✳ ✷✺✱ ✸✼✲✺✶✳ ✹✳ ❚r✐♥❤ ❚✉❛♥ ✭✷✵✵✼✮✱ ❖♥ t❤❡ ❣❡♥❡r❛❧✐③❡❞ ❝♦♥✈♦❧✉t✐♦♥ ✇✐t❤ ❛ ✇❡✐❣❤t ❢✉♥❝t✐♦♥ ❢♦r t❤❡ ❋♦✉r✐❡r ❈♦s✐♥❡ ❛♥❞ t❤❡ ■♥✈❡rs❡ ❑♦♥t♦r♦✈✐❝❤ ✲ ▲❡❜❡✲ ❞❡✈ ✐♥t❡❣r❛❧ tr❛♥❢♦r♠❛t✐♦♥s✳ ◆♦♥❧✐♥❡❛r ❋✉♥❝t✐♦♥❛❧ ❆♥❛❧②s✐s ❛♥❞ ❆♣♣❧✐✲ ❝❛t✐♦♥s✳ ❑♦r❡❛✳ ❱♦❧✳✶✷✱ ◆♦✳✷✱ ✸✷✺ ✲ ✸✹✶✳ ✶✵✵ TIEU LUAN MOI download : skknchat@gmail.com ❚➭✐ ❧✐Ö✉ t❤❛♠ ❦❤➯♦ ❬✶❪ ▼✳ ❆❜r❛♠♦✇✐t③ ❛♥❞ ■✳ ❆✳ ❙t❡❣✉♥ ✭✶✾✻✹✮✱ ❍❛♥❞❜♦♦❦ ♦❢ ▼❛t❤❡♠❛t✐❝❛❧ ❋✉♥❝✲ t✐♦♥s ✇✐t❤ ❋♦r♠✉❧❛s✱ ●r❛♣❤s ❛♥❞ ▼❛t❤❡♠❛t✐❝❛❧ ❚❛❜❧❡s✱ ◆❛t✳ ❇✉r✳ ❙t❛♥ ❛♣♣❧✳ ▼❛t❤✳ ❙❡r✳ ✺✺✳ ❬✷❪ ◆✳ ■✳ ❆❝❤✐❡③❡r ✭✶✾✻✺✮✱ ▲❡❝t✉r❡s ♦♥ ❆♣♣r♦①✐♠❛t✐♦♥ ❚❤❡♦r②✱ ❙❝✐❡♥❝❡ ♣✉❜❧✐s❤✲ ✐♥❣ ❍♦✉s❡✱ ▼♦s❝♦✇✳ ❬✸❪ ❋✳ ❆❧✲▼✉s❛❧❧❛♠ ❛♥❞ ❱✉ ❑✐♠ ❚✉❛♥ ✭✷✵✵✶✮✱ ❡t❡rs✿ ❊①✐st❡♥❝❡✳ ❬✹❪ H ✲❢✉♥❝t✐♦♥ ✇✐t❤ ❝♦♠♣❧❡① ♣❛r❛♠✲ ■♥t❡r♥❛t✳ ❏✳ ▼❛t❤✳ ▼❛t❤✳ ❙❝✐✳ ❍✳ ❇❛t❡♠❛♥ ❛♥❞ ❆✳ ❊r❞❡❧②✐ ✭✶✾✺✸✮✱ ✷✺ ✭✷✵✵✶✮✱ ♥♦✳ ✾✱ ✺✼✶✲✺✽✻✳ ❍✐❣❤❡r ❚r❛♥s❝❡♥❞❡♥t❛❧ ❋✉♥❝t✐♦♥s✱ ▼❝ ●r❛✇✲❍✐❧❧✱ ◆❡✇ ❨♦r❦✱ ❱✳✶✳ ❬✺❪ ❍✳ ❇❛t❡♠❛♥ ❛♥❞ ❆✳ ❊r❞❡❧②✐ ✭✶✾✺✹✮✱ ❚❛❜❧❡s ♦❢ ■♥t❡❣r❛❧ ❚r❛♥s❢♦r♠s✱ ▼❝✳●r❛✇✲ ❍✐❧❧✱ ◆❡✇ ❨♦r❦✱ ❱✳✶✱ ✷✳ ❬✻❪ ❘✳ ●✳ ❇✉s❝❤♠❛♥ ✭✶✾✼✽✮✱ H ✲❢✉♥❝t✐♦♥ ♦❢ t✇♦ ✈❛r✐❛❜❧❡s ■✱ ■♥❞✐❛♥✳ ▼❛t❤✳ ❏✳ ✷✵✱ ✶✸✾✲✶✺✸✳ ❬✼❪ ❘✳ ●✳ ❇✉s❝❤♠❛♥ ✭✶✾✼✾✮✱ ❏✳ ❬✽❪ H ✲❢✉♥❝t✐♦♥ ♦❢ N ✲ ✈❛r✐❛❜❧❡s ✱ ✶✵✱ ✽✶✲✽✽✳ ❨✉✳ ❆✳ ❇r②❝❤❦♦✈✱ ❍✳ ❏✳ ●❧❛❡s❦❡ ❛♥❞ ❖✳ ■✳ ▼❛r✐❝❤❡✈ ✭✶✾✽✸✮✱ ❋❛❝t♦r✐③❛t✐♦♥ ♦❢ ✐♥t❡❣r❛❧ tr❛♥s❢♦r♠❛t✐♦♥s ♦❢ ❝♦♥✈♦❧✉t✐♦♥ t②♣❡✱ ❆♥❛❧✳ ❱■◆■❚■✳ ❬✾❪ ❈✳ ❋♦① ✭✶✾✻✶✮✱ ❚❤❡ ●✳ ●❛s♣❡r✱ ■t♦❣✐ ◆❛✉❦✐ ✐ ❚❡❝❤♥✐❦✐✳ ▼❛t❤✳ ❱✳✷✶✱ ✸✲✹✶✳ ✭■♥ ❘✉ss✐❛♥✮✳ ❆♠❡r✳ ▼❛t❤✳ ❙♦❝✳ ❬✶✵❪ ❘❛♥❝❤✐✳ ❯♥✐✈✳ ▼❛t❤✳ G ❛♥❞ H ✲❢✉♥❝t✐♦♥s ❛s s②♠♠❡tr✐❝❛❧ ❋♦✉r✐❡r ❦❡r♥❡❧s✱ ❚r❛♥✳ ✾✽✱ ✸✾✺✲✲✹✷✾✳ ▼✳ ❘❛❤♠❛♥ ✭✶✾✾✵✮✱ ❇❛s✐❝ ❍②♣❡r❣❡♦♠❡tr✐❝ ❙❡r✐❡s✱ ❈❛♠❜r✐❞❣❡ ❯♥✐✈❡rs✐t② Pr❡ss✳ ❬✶✶❪ ❲✳ ❍❛❤♥ ✭✶✾✹✾✮✱ ❇❡✐tr❛❣❡ ③✉r t❤❡♦r✐❡ ❞❡r ❍❡✐♥❡s❝❤❡♥ ❘❡✐❤❡♥✱ t❡❣r❛❧❡ ❞❡r ❤②♣❡r❣❡♦♠❡tr✐s❝❤❡♥ ▲❛♣❧❛❝❡ tr❛♥s❢♦r♠❛t✐♦♥✱ q ✲❉✐❢❢❡r❡♥③❡♥❧❡✐❝❤✉♥❣✱ ❉❛s ▼❛t❤✳ ◆❛❝❤r✳ q ❉✐❡ ✷✹ ✐♥✲ ✲❛♥❛❧♦❣❡♥ ❞❡r ✷✱ ✸✹✵✲✲✸✼✾✳ ✶✵✶ TIEU LUAN MOI download : skknchat@gmail.com ✶✵✷ ❬✶✷❪ ◆❣✉②❡♥ ❚❤❛♥❤ ❍❛✐✱ ❖✳ ■✳ ▼❛r✐❝❤❡✈ ❛♥❞ ❘✳●✳ ❇✉s❝❤♠❛♥ ✭✶✾✾✷✮✳ ❚❤❡♦r② ♦❢ t❤❡ ❣❡♥❡r❛❧ H ✲ ❢✉♥❝t✐♦♥ ♦❢ t✇♦ ✈❛r✐❛❜❧❡s✳ ❘♦❝❦② ▼♦✉♥t❛✐♥ ❏✳ ♦❢ ▼❛t❤✳ ❱♦❧✳ ✷✷✳ ◆✳ ✹✳ ✶✸✶✼ ✲ ✶✸✷✼✳ ❬✶✸❪ ■✳ ■✳ ❍✐r❝❤♠❛♥ ❛♥❞ ❖✳ ❱✳ ❲✐❞❞❡r ✭✶✾✺✺✮✱ ❚❤❡ ❈♦♥✈♦❧✉t✐♦♥ ❚r❛♥s❢♦r♠s✱ Pr✐♥❝❡t♦♥✱ ◆❡✇ ❏❡rs❡②✳ ❬✶✹❪ ❱✳ ❆✳ ❑❛❦✐❝❤❡✈ ✭✶✾✻✼✮✱ ❖♥ t❤❡ ❝♦♥✈♦❧✉t✐♦♥ ❢♦r ✐♥t❡❣r❛❧ tr❛♥s❢♦r♠s✱ ❇❙❙❘✱ ❙❡r✳ ❋✐③✳ ▼❛t✳ ❬✶✺❪ ■③✈✳ ❆◆ ◆✳✷✱ ✹✽✲✺✼✳ ✭■♥ ❘✉ss✐❛♥✮✳ ❱✳ ❆✳ ❑❛❦✐❝❤❡✈✱ ◆❣✉②❡♥ ❳✉❛♥ ❚❤❛♦ ❛♥❞ ◆❣✉②❡♥ ❚❤❛♥❤ ❍❛✐ ✭✶✾✾✻✮✱ ❈♦♠♣♦✲ s✐t✐♦♥ ♠❡t❤♦❞ t♦ ❝♦♥str✉❝t✐♥❣ ❝♦♥❝♦❧✉✐♦♥s ❢♦r t❤❡ ✐♥t❡❣r❛❧ tr❛♥s❢♦r♠✳ ❚r❛♥s✳ ❙♣❡❝✐❛❧ ❋✉♥❝✳ ❬✶✻❪ ❱✳ ✹✳ ✷✸✺ ✲ ✷✹✷✳ ❱✳ ❆✳ ❑❛❦✐❝❤❡✈ ❛♥❞ ◆❣✉②❡♥ ❳✉❛♥ ❚❤❛♦ ✭✶✾✾✹✮✱ ❖♥ t❤❡ ❣❡♥❡r❛❧✐③❡❞ ❝♦♥✈♦❧✉✲ t✐♦♥ ❢♦r ❬✶✼❪ H ✲tr❛♥s❢♦r♠s✱ ■③✈✳ ❱✉③♦✈ ▼❛t✳ ❱✳ ■③✈✳ ❱✉③♦✈✳ ▼❛t✱ ◆♦✳✶✱ ✸✶✲✹✵✳ ✭■♥ ❘✉ss✐❛♥✮✳ ❆✳ ❑❛❦✐❝❤❡✈ ❛♥❞ ◆❣✉②❡♥ ❳✉❛♥ ❚❤❛♦ ✭✷✵✵✵✮✱ ❆ ❜❛s✐❝ ❛♥❛❧♦❣✉❡ ♦❢ t❤❡ ❢✉♥❝t✐♦♥ ♦❢ ♦♥❡ ❛♥❞ t✇♦ ✈❛r✐❛❜❧❡s✱ ❬✶✾❪ ◆♦✳ ✽✱ ✷✶✲✷✽✳ ✭■♥ ❘✉ss✐❛♥✮✳ ❱✳ ❆✳ ❑❛❦✐❝❤❡✈ ❛♥❞ ◆❣✉②❡♥ ❳✉❛♥ ❚❤❛♦ ✭✶✾✾✽✮✱ ❖♥ t❤❡ ❞❡s✐❣♥ ♠❡t❤♦❞ ❢♦r t❤❡ ❣❡♥❡r❛❧✐③❡❞ ✐♥t❡❣r❛❧ ❝♦♥✈♦❧✉t✐♦♥✱ ❬✶✽❪ ■♥t❡❣r✳ ❨✳ ▲✳ ▲✉❦❡ ✭✶✾✻✾✮✱ ■③✈✳ ❱✉③♦✈ ▼❛t✳ H ✲ ✷✽✲✸✹✳ ❚❤❡ ❙♣❡❝✐❛❧ ❋✉♥❝t✐♦♥s ❛♥❞ t❤❡✐r ❆♣r♦①✐♠❛t✐♦♥s✳ ❱♦❧✳ ■ ❛♥❞ ■■✳ ❆❝❛❞❡♠✐❝ Pr❡ss✳ ◆❡✇ ❨♦r❦✳ ❬✷✵❪ ❖✳ ■✳ ▼❛r✐❝❤❡✈ ✭✶✾✽✸✮✱ ❍❛♥❞❜♦♦❦ ♦❢ ■♥t❡❣r❛❧ ❚r❛♥s❢♦r♠s ♦❢ ❍✐❣❤❡r ❚r❛♥✲ s❝❡♥❞❡♥t❛❧ ❋✉♥❝t✐♦♥s✳ ❚❤❡♦r② ❛♥❞ ❆❧❣♦r✐t❤♠✐❝ ❚❛❜❧❡s✳ ❬✷✶❪ ❖✳ ■✳ ▼❛r✐❝❤❡✈ ❛♥❞ ❱✉ ❑✐♠ ❚✉❛♥ ✭✶✾✽✺✮✱ ❚❤❡ ❢❛❝t♦r✐③❛t✐♦♥ ♦❢ ✐♥ t✇♦ s♣❛❝❡s ♦❢ ❢✉♥❝t✐♦♥s✳ ❬✷✷❪ ◆❡✇ ❨♦r❦✳ ❈♦♠♣❧❡① ❆♥❛❧✳ ❛♥❞ ❆♣♣❧✳ ❱❛r♥❛✳ ❆✳ ▼✳ ▼❛t❤❛✐ ❛♥❞ ❘✳ ❑✳ ❙❛①❡♥❛✱ ✭✶✾✼✸✮ G ✲tr❛♥s❢♦r♠ ✹✶✽ ✲ ✹✸✸✳ ●❡♥❡r❛❧✐③❡❞ ❍②♣❡r❣❡♦♠❡tr✐❝ ❋✉♥❝✲ t✐♦♥s ✇✐t❤ ❆♣♣❧✐❝❛t✐♦♥s ✐♥ ❙t❛t✐st✐❝s ❛♥❞ P❤②s✐❝❛❧ ❙❝✐❡♥❝❡s✱ ▲❡❝t✉r❡ ◆♦t❡s ◆♦✳ ✸✹✽✳ ❙♣r✐♥❣❡r✲❱❡r❧❛❣✱ ❍❡✐❞❡❧❜❡r❣ ❛♥❞ ◆❡✇ ❨♦r❦✳ ❬✷✸❪ ❆✳ ▼✳ ▼❛t❤❛✐ ✭✶✾✾✸✮✱ ▲❛✉r✐❝❡❧❧❛ ❢✉♥❝t✐♦♥ ♦❢ r❡❛❧ s②♠♠❡tr✐❝ ♣♦s✐t✐✈❡ ❞❡❢✐♥✐t❡ ♠❛tr✐❝❡s✳ ■♥❞✐❛♥✳ ❏✳ P✉r❡✳ ❆♣♣❧✳ ▼❛t❤✳ ✷✹✱ ✺✶✸✲✺✸✶✳ TIEU LUAN MOI download : skknchat@gmail.com ✶✵✸ ❬✷✹❪ ❆✳ ▼✳ ▼❛t❤❛✐ ✭✶✾✾✺✮✱ ❙♣❡❝✐❛❧ ❢✉♥❝t✐♦♥ ♦❢ ♠❛tr✐① ❛r❣✉♠❡♥ts ✲■■■✳ ❆❝❛❞✳ ❙❝✐✳ ■♥❞✐❛✳ ❆✳ ❬✷✺❪ ❆✳ Pr♦❝✳ ◆❛t✳ ✻✺✱ ✸✻✼✲✸✾✸✳ ▼✳ ▼❛t❤❛✐ ❛♥❞ ❘✳ ❑✳ ❙❛①❡♥❛ ✭✶✾✼✽✮✱ ✐♥ ❙t❛t✐st✐❝s ❛♥❞ ❖t❤❡r ❉✐s❝✐♣❧✐♥❡✱ ❚❤❡ H ✲❋✉♥❝t✐♦♥ ✇✐t❤ ❆♣♣❧✐❝❛t✐♦♥s ❲✐❧❡② ❋❛st❡r♥ ▲✐♠✐t❡❞✱ ◆❡✇ ❉❡❧❧✐ ❇❛♥✲ ❣❛❧♦r❡ ❇♦♠❜❛②✳ ❬✷✻❪ ◆✐❡❧s❡♥ ◆✐❡❧s ❍❛♥❞❜✉❝❤ ❞❡r ❚❤❡♦r✐❡ ❞❡r ●❛♠♠❛✲❢✉♥❦t✐♦♥✳ ✭✶✾✵✻✮✱ ❇✳ ❈✳ ❚❡✉❜♥❡r✱ ▲❡✐♣③✐❣✳ ❬✷✼❪ ❆✳ P✳ Pr✉❞♥✐❦♦✈✱ ❨✉✳ ❆✳ ❇r✉❝❤❦♦✈ ❛♥❞ ❖✳ ■✳ ▼❛r✐❝❤❡✈ ✭✶✾✽✻✮✱ ❙❡r✐❡s✱ ❱✳✸✿ ▼♦r❡ ❙♣❡❝✐❛❧ ❋✉♥❝t✐♦♥s✱ ■♥t❡❣r❛❧ ❛♥❞ ●♦r❞♦♥ ❛♥❞ ❇r❡❛❝❤ ❙❝✐❡♥❝❡ P✉❜❧✐s❤✲ ❡rs✱ ◆❡✇ ❨♦r❦✳ ❬✷✽❪ ▼✳ ❙❛✐❣♦ ❛♥❞ ❙✳ ❇✳ ❨❛❦✉❜♦✈✐❝❤ ✭✶✾✾✶✮✱ ❖♥ t❤❡ t❤❡♦r② ♦❢ ❝♦♥✈♦❧✉t✐♦♥ ✐♥t❡❣r❛❧s G ❢♦r ❬✷✾❪ ✲tr❛♥s❢♦r♠s✱ ❋✉❦✉♦❦❛✿ ❯♥✐✈✳ ❙❝✐✳ ❘❡♣♦rt✳ ✷✶✱ ✶✽✶✲✶✾✸✳ ❙✳ ●✳ ❙❛♠❦♦✱ ❆✳ ❆✳ ❑✐❧❜❛s ❛♥❞ ❖✳ ■✳ ▼❛r✐❝❤❡✈ ✭✶✾✽✼✮✱ ■♥t❡❣r❛❧ ❛♥❞ ❉❡r✐✈❛t✐✈❡ ♦❢ ❋r❛❝t✐♦♥❛❧ ❖r❞❡r ❛♥❞ ❙❡✈❡r❛❧ ❚❤❡✐r ❆♣♣❧✐❝❛t✐♦♥✱ ❬✸✵❪ ▼✐♥s❦✳ ✭■♥ ❘✉ss✐❛♥✮✳ ❘✳ ❑✳ ❙❛①❡♥❛ ✭✶✾✽✷✮✱ ❋♦r♠❛❧ s♦❧✉t✐♦♥ ♦❢ ❝❡rt❛✐♥ ♥❡✇ ♣❛✐r ♦❢ ❞✉❛❧ ✐♥t❡❣r❛❧ ❡q✉❛t✐♦♥s ✐♥✈♦❧✈✐♥❣ H− ❢✉♥❝t✐♦♥s✳ Pr♦❝✳ ◆❛t✳ ❆❝❛❞✳ ❙❝✐✳ ■♥❞✐❛ ❙❡❝t✳ ❆✱ ◆♦✳ ✺✷✱ ✸✻✻ ✲ ✸✼✺✳ ❬✸✶❪ ❘✳ ❑✳ ❙❛①❡♥❛✱ ❢✉♥❝t✐♦♥✱ ❬✸✷❪ ❘✳ ❑✉♠❛r ▼❛t❡♠❛t✐❝❤❡ ✭✶✾✾✺✮✱ ❆ ❜❛s✐❝ ❛♥❛❧♦❣✉❡ ♦❢ ❣❡♥❡r❛❧✐③❡❞ H ✲ ✺✵✱ ✷✻✸✲✷✼✶✳ ❘✳ ❑✳ ❙❛①❡♥❛✱ ❘✳ ❆✳ ❑✉♠❛r✱ ✭✶✾✾✵✮✱ ❈❡rt❛✐♥ ❢✐♥✐t❡ ❡①♣❛♥s✐♦♥s ❛ss♦❝✐❛t❡❞ ✇✐t❤ ❛ ❜❛s✐❝ ❛♥❛❧♦❣✉❡ ♦❢ ❬✸✸❪ ❆✳ ❘✳ ❑✳ ❙❛①❡♥❛✱ ●✳ G ❘❡✈✳ ❚❡❝✳ ■♥❣✳ ❯♥✐✈✳ ❩✉❧✐❛✳ ❈✳ ▼♦❞✐✱ ❛♥❞ ❙✳ H ✲❢✉♥❝t✐♦♥✱ ❬✸✹❪ ■✳ ◆✳ ❙♥❡❞❞♦♥ ✭✶✾✺✶✮✱ ❬✸✺❪ ❍✳ t❤❡ ✲ ❢✉♥❝t✐♦♥✳ ❱✳ ✶✸✱ ✶✶✶ ✲ ✶✶✻✳ ▲✳ ❑❛❧❧❛ ✭✶✾✽✸✮✱ ❆ ❜❛s✐❝ ❛♥❛❧♦❣✉❡ ♦❢ ❋♦①✬s ❘❡✈✳ ❚❡❝✳ ■♥❣✳ ❯♥✐✈✳ ❩✉❧✐❛✳ ✻✱ ✶✸✾✲✶✹✸✳ ❋♦✉r✐❡r ❚r❛♥s❢♦r♠✱ ▼❝●r❛② ❍✐❧❧✱ ◆❡✇ ❨♦r❦✳ ▼✳ ❙r✐✈❛st❛✈❛ ❛♥❞ ❱✉ ❑✐♠ ❚✉❛♥ ✭✶✾✾✺✮✱ ❆ ♥❡✇ ❝♦♥✈♦❧✉t✐♦♥ t❤❡♦r❡♠ ❢♦r ❙t✐❡❧t❥❡s ❡q✉❛t✐♦♥✱ tr❛♥s❢♦r♠ ❆r❝❤✳ ▼❛t❤✳ ❛♥❞ ✐ts ❛♣♣❧✐❝❛t✐♦♥ t♦ ❛ ❝❧❛ss ♦❢ s✐♥❣✉❧❛r ✐♥t❡❣r❛❧ ✻✹✱ ✶✹✹✲✶✹✾✳ TIEU LUAN MOI download : skknchat@gmail.com ✶✵✹ ❬✸✻❪ ◆❣✉②❡♥ ❳✉❛♥ ❚❤❛♦ ✭✶✾✾✾✮✱ ❇❛s✐❝ ❛♥❛❧♦❣✉❡ ♦❢ ❆r❣✉♠❡♥ts✳ H ✲ ❢✉♥❝t✐♦♥ ♦❢ ❙❡✈❡r❛❧ ▼❛tr✐① ❉♦♣♦✈✳ ◆❛ts ❆❦❛❞✳ ◆❛✉❦✳ ❯❦r✳ ▼❛t✳ Pr✐r♦❞♦③♥✳ ❚❡❦❤✳ ◆❛✉❦✐✳ ◆✳ ✶✷✳ ✶✷✲✶✼✳ ✭❘✉ss✐❛♥✮✳ ❬✸✼❪ ◆❣✉②❡♥ ❳✉❛♥ ❚❤❛♦✱ ❱✉ ❑✐♠ ❚✉❛♥ ❛♥❞ ◆❣✉②❡♥ ▼✐♥❤ ❑❤♦❛ ✭✷✵✵✹✮✱ ❖♥ t❤❡ ❣❡♥❡r❛❧✐③❡❞ ❝♦♥✈♦❧✉t✐♦♥ ✇✐t❤ t❤❡ ✇❡✐❣❤t ❢✉♥❝t✐♦♥ ❢♦r t❤❡ ❋♦✉r✐❡r ❝♦s✐♥❡ ❛♥❞ s✐♥❡ tr❛♥s❢♦r♠s✳ ❬✸✽❪ ✇✐t❤ tr❛♥s❢♦r♠s✳ ❛ ✇❡✐❣❤t ❢✉♥❝t✐♦♥ ❱✐❡t♥❛♠ ❏✳ ▼❛t❤✳ ◆❣✉②❡♥ ❳✉❛♥ ❚❤❛♦ ✭✶✾✾✽✮✱ H ❢♦r ◆❣✉②❡♥ ❳✉❛♥ ❚❤❛♦ ✭✷✵✵✶✮✱ t❤❡ ❋♦✉r✐❡r✱ ❋♦✉r✐❡r ❝♦s✐♥❡ ❛♥❞ s✐♥❡ ✸✸✳ ❱♦❧✳✹✱ ✹✷✶ ✲ ✹✸✻✳ ✲❢✉♥❝t✐♦♥ ♦❢ ♠❛tr✐① ❛r❣✉♠❡♥t✱ ●❯✳ ❙❡r✳✿ ❊st❡st✈✳ ❛♥❞ ❚❡❤♥✳ ◆❛✉❦✐ ❬✹✵❪ ❱♦❧✳ ✼✱ ◆♦✳✸✱ ✸✷✸ ✲ ✸✸✼✳ ◆❣✉②❡♥ ❳✉❛♥ ❚❤❛♦ ❛♥❞ ◆❣✉②❡♥ ▼✐♥❤ ❑❤♦❛ ✭✷✵✵✺✮✱ ❖♥ t❤❡ ❣❡♥❡r❛❧✐③❡❞ ❝♦♥✲ ✈♦❧✉t✐♦♥ ❬✸✾❪ ❋r❛❝t✳ ❈❛❧✳ ❛♥❞ ❆♣♣❧✳ ❆♥❛❧✳ ❖♥ ❱❡st♥✐❦✱ ◆♦✈✳ ✶✵✱ ✶✵✷✲✶✵✻ ✭✐♥ ❘✉ss✐❛♥✮✳ t❤❡ ❣❡♥❡r❛❧✐③❡❞ ❍✐❧❜❡rt✱ ❋♦✉r✐❡r ❝♦s✐♥❡ ❛♥❞ s✐♥❡ tr❛♥s❢♦r♠s✱ ❝♦♥✈♦❧✉t✐♦♥ ❯❦r✳ ▼❛t✳ ❏✳ ❢♦r ❙t✐❡❧t❥❡s✱ ✺✸✱ ✺✻✵✲✺✻✼✳ ✭■♥ ❘✉ss✐❛♥✮✳ ❬✹✶❪ ◆❣✉②❡♥ ❳✉❛♥ ❚❤❛♦✱ ❱✳ ❆✳ ❑❛❦✐❝❤❡✈ ❛♥❞ ❱✉ ❑✐♠ ❚✉❛♥ ✭✶✾✾✽✮✱ ❖♥ t❤❡ ❣❡♥✲ ❡r❛❧✐③❡❞ ❝♦♥✈♦❧✉t✐♦♥ ❢♦r ❋♦✉r✐❡r ❝♦s✐♥❡ ❛♥❞ s✐♥❡ tr❛♥s❢♦r♠s✱ ▼❛t❤✳ ❬✹✷❪ ✶✱ ✽✺✲✾✵✳ ◆❣✉②❡♥ ❳✉❛♥ ❚❤❛♦ ❛♥❞ ◆❣✉②❡♥ ❚❤❛♥❤ ❍❛✐ ✭✶✾✾✼✮✱ ❈♦♥✈♦❧✉t✐♦♥ ❢♦r ✐♥t❡❣r❛❧ tr❛♥s❢♦r♠ ❛♥❞ t❤❡✐r ❛♣♣❧✐❝❛t✐♦♥✱ ❬✹✸❪ ❱♦❧✐♥✳ ▼❛t✳ ❱✐s♥✳ ▼❛t✳ ❩❛♠❡t✳ I ✲❢✉♥❝t✐♦♥ ♦❢ t✇♦ ✈❛r✐✲ ✶✵✷✲✶✵✻✳ ◆❣✉②❡♥ ❳✉❛♥ ❚❤❛♦ ✭✷✵✵✵✮✱ ❆ ❜❛s✐❝ ❛♥❛❧♦❣✉❡ ♦❢ t❤❡ ✈❛r✐❛❜❧❡s✱ ❬✹✺❪ ❘✉ss✐❛♥ ❆❝❛❞❡♠②✱ ▼♦s❝♦✇✳ ◆❣✉②❡♥ ❳✉❛♥ ❚❤❛♦ ✭✶✾✾✾✮✱ ❆ ❜❛s✐❝ ❛♥❛❧♦❣✉❡ ♦❢ t❤❡ ❛❜❧❡s✱ ❬✹✹❪ ❊❛st✲❲❡st ❏✳ H ✲❢✉♥❝t✐♦♥ ♦❢ s❡✈❡r❛❧ ✻✼✱ ✼✸✽✲✼✹✹✳ ❊✳ ❈✳ ❚✐t❝❤♠❛r❝❤ ✭✶✾✸✼✮✱ ■♥tr♦❞✉❝t✐♦♥ t♦ ❚❤❡♦r② ♦❢ ❋♦✉r✐❡r ■♥t❡❣r❛❧s✱ ❖①❢♦r❞ ❯♥✐✈✳ Pr❡ss✱ ❖①❢♦r❞✳ ❬✹✻❪ ❱✉ ❑✐♠ ❚✉❛♥ ✭✶✾✽✼✮✱ ■♥t❡❣r❛❧ ❚r❛♥s❢♦r♠s ❛♥❞ ❚❤❡✐r ❈♦♠♣♦s✐t✐♦♥ ❙tr✉❝t✉r❡✳ ❉r✳ ❙❝✐✳ ❉✐ss❡rt❛t✐♦♥✳ ▼✐♥s❦✱ ✷✼✺ ♣✳ TIEU LUAN MOI download : skknchat@gmail.com ✶✵✺ ❬✹✼❪ ❱✉ ❑✐♠ ❚✉❛♥ ❛♥❞ ▼✳ ❙❛✐❣♦ ✭✶✾✾✺✮✱ ❈♦♥✈♦❧✉t✐♦♥ ♦❢ ❍❛♥❦❡❧ tr❛♥s❢♦r♠ ❛♥❞ ✐ts ❛♣♣❧✐❝❛t✐♦♥s t♦ ❛♥ ✐♥t❡❣r❛❧ ✐♥✈♦❧✈✐♥❣ ❇❡ss❡❧ ❢✉♥❝t✐♦♥ ♦❢ ❢✐rst ❦✐♥❞✱ ▼❛t❤✳ ❛♥❞ ▼❛t❤✳ ❙❝✐✳ ❬✹✽❪ ■♥t✳ ❏✳ ❱✳ ✶✽✱ ◆✳ ✷✱ ✺✹✺✲✺✺✵✳ ❱✉ ❑✐♠ ❚✉❛♥ ✭✶✾✾✷✮✱ ❖♥ ❝r✐t❡r✐❛ ♦❢ ❝♦♥✈❡r❣❡♥❝❡ ❢♦r ❞♦✉❜❧❡ ▼❡❧❧✐♥ ✲ ❇❛r♥❡s ✐♥t❡❣r❛❧✳ ❱❡s❝✐✳ ❆◆✳ ❇❡❧♦r✉ss✐❛♥✱ ❋✐③ ✲ ▼❛t✳ ✷✺✲✸✶✳ ■♥t❡❣r❛❧ ❊q✉❛t✐♦♥s✱ ■♥t❡r✳ P✉❜❧✳ ◆❡✇ ❨♦r❦ ❛♥❞ ▲♦♥❞♦♥✳ ❬✹✾❪ ❋✳ ●✳ ❚r✐❝♦♠✐ ✭✶✾✺✼✮✱ ❬✺✵❪ ❋✳ ●✳ ❚r✐❝♦♠✐ ✭✶✾✺✶✮✱ ❖♥ t❤❡ ❢✐♥✐t❡ ❍✐❧❜❡rt tr❛♥s❢♦r♠✱ ◗✉❛rt✳ ❏✳ ▼❛t❤✳ ✷ ✱ ✶✾✾✲✷✶✶✳ ❬✺✶❪ ◆✳ ❨❛✳ ❱✐❧❡♥❦✐♥ ✭✶✾✺✽✮✱ ❚❤❡ ♠❛tr✐① ❡❧❡♠❡♥ts ♦❢ ✐rr❡❞✉❝✐❜❧❡ ✉♥✐t❛r② r❡♣r❡✲ s❡♥t❛t✐♦♥s ♦❢ ❛ ❣r♦✉♣ ♦❢ ▲♦❜❛❝❡✈s❦✐✐✐ s♣❛❝❡ ♠♦t✐♦♥s ❛♥❞ t❤❡ ❣❡♥❡r❛❧✐③❡❞ ❋♦❦✲ ▼❡❤❧❡r tr❛♥s❢♦r♠❛t✐♦♥✱ ❬✺✷❪ ❉♦❦❧✳ ❆❦❛❞✳ ◆❛✉❦ ❙❙❙❘✱ ✶✶✽✱ ✷✶✾➊✷✷✷✳ ✭■♥ ❘✉ss✐❛♥✮✳ ❋✳ ◆✐❦✐❢♦r♦✈✱ ❇✳ ❯✈❛r♦✈ ✭✶✾✽✽✮✱ ❙♣❡❝✐❛❧ ❋✉♥❝t✐♦♥s ♦❢ ▼❛t❤❡♠❛t✐❝❛❧ P❤②s✐❝s✿ ❆ ❯♥✐❢✐❡❞ ■♥tr♦❞✉❝t✐♦♥ ✇✐t❤ ❆♣♣❧✐❝❛t✐♦♥s✳ ❬✺✸❪ ❙✳ ❇✳ ❨❛❦✉❜♦✈✐❝❤ ✭✶✾✾✵✮✱ ✐♥t❡❣r❛❧ ❝♦♥✈♦❧✉t✐♦♥s✱ ❬✺✹❪ ❙✳ ❇✳ ❨❛❦✉❜♦✈✐❝❤ ❖♥ t❤❡ ❉❆◆ ❇❙❙❘ ❛♥❞ ❆✳ ■✳ ❇✐r❦❤❛✉s❡r ❱❡r❧❛❣ ❇❛s❡❧✳ ❝♦♥str✉❝t✐♦♥ ♠❡t❤♦❞ ❢♦r ❝♦♥str✉❝t✐♦♥ ♦❢ ✸✹✱ ✺✽✽✲✺✾✶✳ ▼♦s✐♥s❦✐ ✭✶✾✾✸✮✱ ■♥t❡❣r❛❧ ✈♦❧✉t✐♦♥s ❢♦r tr❛♥s❢♦r♠s ♦❢ ❑♦♥t♦r♦✈✐❝❤✲▲❡❜❡❞❡✈ t②♣❡✱ ❡q✉❛t✐♦♥s ❛♥❞ ❝♦♥✲ ❉✐❢❢✳ ❯r❛✈♥❡♥✐❛ ✷✾✱ ✶✷✼✷✲✶✷✽✹✳ ❬✺✺❪ ❙✳ ❇✳ ❨❛❦✉❜♦✈✐❝❤ ❛♥❞ ◆❣✉②❡♥ ❚❤❛♥❤ ❍❛✐ ✭✶✾✾✶✮✱ ■♥t❡❣r❛❧ ❝♦♥✈♦❧✉t✐♦♥s ❢♦r H ❬✺✻❪ ✲tr❛♥s❢♦r♠s✱ ■③✈✳ ❱✉③♦✈✳ ▼❛t✳ ◆♦✳✽✱ ✼✷✲✼✾✳ ❙✳ ❇✳ ❨❛❦✉❜♦✈✐❝❤ ✭✶✾✽✼✮✱ ❖♥ t❤❡ ❝♦♥✈♦❧✉t✐♦♥ ❢♦r ❑♦♥t♦r♦✈✐❝❤✲▲❡❜❡❞❡✈ ✐♥t❡✲ ❣r❛❧ tr❛♥s❢♦r♠ ❛♥❞ ✐ts ❛♣♣❧✐❝❛t✐♦♥ t♦ ✐♥t❡❣r❛❧ tr❛♥s❢♦r♠✱ ❇❙❙❘ ❬✺✼❪ ❙✳ ❇✳ ❉♦❦❧✳ ❆❦❛❞✳ ◆❛✉❦✳ ✸✶✱ ✶✵✶✲✶✵✸ ✭✐♥ ❘✉ss✐❛♥✮✳ ❨❛❦✉❜♦✈✐❝❤ ✭✶✾✾✻✮✱ ■♥❞❡① ❚r❛♥s❢♦r♠s✱ ❲♦r❧❞ ❙❝✐❡♥t✐❢✐❝ P✉❜❧✐s❤✐♥❣ ❈♦♠♣❛♥②✱ ❙✐♥❣❛♣♦r❡✱ ◆❡✇ ❏❡rs❡②✱ ▲♦♥❞♦♥ ❛♥❞ ❍♦♥❣ ❑♦♥❣✱ ✷✹✽ ♣✳ TIEU LUAN MOI download : skknchat@gmail.com ...Đ? ?i học Quốc gia Hà N? ?i Trờng Đ? ?i học khoa học tự nhiên Trịnh Tuân Hàm dạng I v? ?i nhiều ®? ?i sè ma trËn vµ tÝch chËp suy réng cđa phép biến đ? ?i I Chuyên ngành: Toán Gi? ?i tích M sè: 62.46.01.01... j=1 bij = 1 − aij − sign αij , 2 aij ∈ C, αij ∈ R, TIEU LUAN MOI download : skknchat@gmail.com ✹✽ mi = (mi1 , mi2 , , mipi ), = (ai1 , ai2 , , aipi ), ? ?i = (? ?i1 , ? ?i2 , , αipi ), αij +... mij ∈ Z, pi ∈ N = j=1 π exp − pi pi mij |αij | |s|j=1 mi j (bij − 12 ) sign αij + |αij | sign αij j=1 ➜➷t ci = pi mij |αij |, ✭✷✳✶✳✻✮ j=1 pi γj = − |αij | mij (bij − ) sign αij + sign αij 2 j=1

Ngày đăng: 12/07/2022, 09:29

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
[1] M. Abramowitz and I. A. Stegun (1964), Handbook of Mathematical Func- tions with Formulas, Graphs and Mathematical Tables , Nat. Bur. Stan appl.Math. Ser. 55 Sách, tạp chí
Tiêu đề: Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables
Tác giả: M. Abramowitz, I. A. Stegun
Nhà XB: Nat. Bur. Stan appl.Math. Ser. 55
Năm: 1964
[2] N. I. Achiezer (1965), Lectures on Approximation Theory , Science publish- ing House, Moscow Sách, tạp chí
Tiêu đề: Lectures on Approximation Theory
Tác giả: N. I. Achiezer
Nhà XB: Science publishing House
Năm: 1965
[4] H. Bateman and A. Erdelyi (1953), Higher Transcendental Functions , Mc Graw-Hill, New York, V.1 Sách, tạp chí
Tiêu đề: Higher Transcendental Functions
Tác giả: H. Bateman, A. Erdelyi
Nhà XB: Mc Graw-Hill
Năm: 1953
[6] R. G. Buschman (1978), H -function of two variables I, Indian. Math. J. 20, 139-153 Sách, tạp chí
Tiêu đề: H -function of two variables I
Tác giả: R. G. Buschman
Nhà XB: Indian Math Journal
Năm: 1978
[7] R. G. Buschman (1979), H -function of N - variables , Ranchi. Univ. Math.J. 10, 81-88 Sách, tạp chí
Tiêu đề: H -function of N - variables
Tác giả: R. G. Buschman
Nhà XB: Ranchi. Univ. Math.J.
Năm: 1979
[10] G. Gasper, M. Rahman (1990), Basic Hypergeometric Series , Cambridge University Press Sách, tạp chí
Tiêu đề: Basic Hypergeometric Series
Tác giả: G. Gasper, M. Rahman
Nhà XB: Cambridge University Press
Năm: 1990
[11] W. Hahn (1949), Beitrage zur theorie der Heineschen Reihen, Die 24 in- tegrale der hypergeometrischen q -Differenzenleichung, Das q -analogen der Laplace transformation, Math. Nachr. 2, 340--379 Sách, tạp chí
Tiêu đề: Beitrage zur theorie der Heineschen Reihen, Die 24 integrale der hypergeometrischen q -Differenzenleichung, Das q -analogen der Laplace transformation
Tác giả: W. Hahn
Nhà XB: Math. Nachr.
Năm: 1949
[12] Nguyen Thanh Hai, O. I. Marichev and R.G. Buschman (1992). Theory of the general H - function of two variables. Rocky Mountain J. of Math. Vol.22. N. 4. 1317 - 1327 Sách, tạp chí
Tiêu đề: Theory of the general H - function of two variables
Tác giả: Nguyen Thanh Hai, O. I. Marichev, R.G. Buschman
Nhà XB: Rocky Mountain J. of Math.
Năm: 1992
[13] I. I. Hirchman and O. V. Widder (1955), The Convolution Transforms ,Princeton, New Jersey Sách, tạp chí
Tiêu đề: The Convolution Transforms
Tác giả: I. I. Hirchman, O. V. Widder
Nhà XB: Princeton
Năm: 1955
[14] V. A. Kakichev (1967), On the convolution for integral transforms, Izv. AN BSSR, Ser. Fiz. Mat. N.2, 48-57. (In Russian) Sách, tạp chí
Tiêu đề: On the convolution for integral transforms
Tác giả: V. A. Kakichev
Nhà XB: Izv. AN BSSR, Ser. Fiz. Mat.
Năm: 1967
[15] V. A. Kakichev, Nguyen Xuan Thao and Nguyen Thanh Hai (1996), Compo- sition method to constructing concoluions for the integral transform. Integr.Trans. Special Func. V. 4. 235 - 242 Sách, tạp chí
Tiêu đề: Composition method to constructing concoluions for the integral transform
Tác giả: V. A. Kakichev, Nguyen Xuan Thao, Nguyen Thanh Hai
Nhà XB: Integr.Trans. Special Func.
Năm: 1996
[16] V. A. Kakichev and Nguyen Xuan Thao (1994), On the generalized convolu- tion for H -transforms, Izv. Vuzov Mat. No. 8, 21-28. (In Russian) Sách, tạp chí
Tiêu đề: On the generalized convolution for H -transforms
Tác giả: V. A. Kakichev, Nguyen Xuan Thao
Nhà XB: Izv. Vuzov Mat.
Năm: 1994
[18] V. A. Kakichev and Nguyen Xuan Thao (2000), A basic analogue of the H -function of one and two variables, Izv. Vuzov Mat. 28-34 Sách, tạp chí
Tiêu đề: A basic analogue of the H -function of one and two variables
Tác giả: V. A. Kakichev, Nguyen Xuan Thao
Nhà XB: Izv. Vuzov Mat.
Năm: 2000
[19] Y. L. Luke (1969), The Special Functions and their Aproximations. Vol. I and II. Academic Press. New York Sách, tạp chí
Tiêu đề: The Special Functions and their Aproximations
Tác giả: Y. L. Luke
Nhà XB: Academic Press
Năm: 1969
[20] O. I. Marichev (1983), Handbook of Integral Transforms of Higher Tran- scendental Functions. Theory and Algorithmic Tables . New York Sách, tạp chí
Tiêu đề: Handbook of Integral Transforms of Higher Transcendental Functions. Theory and Algorithmic Tables
Tác giả: O. I. Marichev
Nhà XB: New York
Năm: 1983
[21] O. I. Marichev and Vu Kim Tuan (1985), The factorization of G -transformin two spaces of functions. Complex Anal. and Appl. Varna. 418 - 433 Sách, tạp chí
Tiêu đề: The factorization of G -transformin two spaces of functions
Tác giả: O. I. Marichev, Vu Kim Tuan
Nhà XB: Complex Anal. and Appl. Varna
Năm: 1985
[22] A. M. Mathai and R. K. Saxena, (1973) Generalized Hypergeometric Func- tions with Applications in Statistics and Physical Sciences, Lecture Notes No. 348. Springer-Verlag, Heidelberg and New York Sách, tạp chí
Tiêu đề: Generalized Hypergeometric Functions with Applications in Statistics and Physical Sciences
Tác giả: A. M. Mathai, R. K. Saxena
Nhà XB: Springer-Verlag
Năm: 1973
[23] A. M. Mathai (1993), Lauricella function of real symmetric positive definite matrices. Indian. J. Pure. Appl. Math. 24, 513-531 Sách, tạp chí
Tiêu đề: Lauricella function of real symmetric positive definite matrices
Tác giả: A. M. Mathai
Nhà XB: Indian. J. Pure. Appl. Math.
Năm: 1993
[24] A. M. Mathai (1995), Special function of matrix arguments -III. Proc. Nat.Acad. Sci. India. A. 65, 367-393 Sách, tạp chí
Tiêu đề: Special function of matrix arguments -III
Tác giả: A. M. Mathai
Nhà XB: Proc. Nat.Acad. Sci. India. A
Năm: 1995
[25] A. M. Mathai and R. K. Saxena (1978), The H -Function with Applications in Statistics and Other Discipline , Wiley Fastern Limited, New Delli Ban- galore Bombay Sách, tạp chí
Tiêu đề: The H -Function with Applications in Statistics and Other Discipline
Tác giả: A. M. Mathai, R. K. Saxena
Nhà XB: Wiley Fastern Limited
Năm: 1978

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w