Phân tích ph ổ hồng ngoại (IR), phổ cộng hưởng từ proton (1H- NMR) và ph ổ khối lượng (HR-MS)

Một phần của tài liệu tổng hợp một số amide là dẫn xuất của (Trang 43 - 49)

PHẦN III. KẾT QUẢ - THẢO LUẬN

III.4. T ổng hợp các amide của 3-aminocoumarin

III.4.3. Phân tích ph ổ hồng ngoại (IR), phổ cộng hưởng từ proton (1H- NMR) và ph ổ khối lượng (HR-MS)

Hình 3.5. Phổ hồng ngoại của (4b)

Phân tích phổ hồng ngoại của các amide (4a-c), chúng tôi nhận thấy có sự khác biệt rõ nhất là 2 peak của nhóm amine đã chuyển thành một peak của nhóm –NH– ở vùng 3300-3390 cm-1 giống như tín hiệu ở 3331 cm-1 của amide (2). Điều này cho thấy 3-aminocoumarin đã chuyển thành amide sau quá trình phản ứng. Trên cả 3 phổ hồng ngoại của các amide còn thấy xuất hiện 2 tín hiệu dao động hoá trị của nhóm >CO ở gần 1680 cm-1 và 1710 cm-1 giống như sản phẩm (2). Nhìn chung, trên các phổ còn thấy các tín hiệu ở 2950-3000 cm-1 đặc trưng cho dao động hoá trị của các C𝑠𝑝3–H, các peak trong vùng 1600 cm-1 đặc trưng cho dao động hoá trị của các C=C thơm, peak ở gần 1200 cm-1 đặc trưng cho dao động hoá trị của liên kết C–O. Một số hấp thụ tiêu biểu của các amide (4a-c) được tóm tắt ở bảng 3.1.

O

NH O O

Bảng 3.1. Các tín hiệu đặc trưng trên phổ IR của hợp chất (4a-c)

Hợp chất Phổ IR (ν, cm-1)

N-H C-H C=O C=C thơm

4a 3308 3080 2960 1709 1682 1609

4b 3337 2969 2866 1709 1678 1624 1603 4c 3337 2950 3050 1717 1682 1600

So sánh với phổ (3) ta thấy có nhiều điểm khác biệt, như vậy ta có thể bước đầu khẳng định chất mới được tạo thành. Để xác định rõ công thức cấu tạo, chúng tôi tiếp tục tiến hành phân tích phổ cộng hưởng từ proton 1H-NMR của các hợp chất (4a-c).

Tổng số prton trên phổ 1H-NMR của (4a-c) lần lượt là 8, 17 và 13, phù hợp với số nguyên tử hidro trên các công thức dự kiến.

Ở vùng trường yếu 8,9-11,0 ppm, xuất hiện một tín hiệu singlet với cường độ tích phân là 1H. Tín hiệu này được quy kết cho H9–proton gắn trên nguyên tử nitơ của nhóm amide. Điều này có thể giải thích là do proton này không tương tác với các proton khác nên có dạng singlet và bản thân nó gắn với nguyên tố nitơ nằm cạnh nhóm C=O nên bị rút electron mạnh, chuyển dịch về vùng trường yếu.

Trong khoảng 8,50-8,70 ppm, trên cả 3 phổ đều xuất hiện một tín hiệu singlet của H4. Do H4 nằm gần nhóm amide nên bị rút electron làm mật độ electron trên proton bị giảm mạnh và chuyển dịch về trường yếu.

Do hiệu ứng nhân cộng hưởng của nhân thơm nên các proton trên vòng coumarin cho tín hiệu trong vùng trường yếu 7,30-7,80 ppm.

Proton H5 có cường độ tích phân là 1H, dạng doublet-doublet. Sự liên hợp của oxi trên vòng coumarin làm mật độ electron trên H5 bị giảm mạnh và tín hiệu dịch chuyển mạnh về trường yếu. Tín hiệu có dạng doublet-doublet là do nó tương tác với H6 và H7.

Proton H8 cho tín hiệu với cường độ tích phân 1H. Nguyên nhân là do sự liên hợp của oxi lên vòng coumarin làm tăng mật độ electron trên H8, gây ra hiệu ứng chắn làm tín hiệu dịch chuyển lên trường cao hơn. Theo lý thuyết, tín hiệu có dạng doublet-doublet vì H8 tương tác spin-spin với H6 và H7. Tuy nhiên có lẽ do tương tác giữa H8 và H6chưa đủ lớn nên trên phổ 1H-NMR chỉ cho tín hiệu doublet do tương tác spin-spin với H7.

Proton H7 có cường độ tích phân 1H, dạng doublet-doubet-doubet. Sự liên hợp của oxi trên vòng coumarin làm mật độ electron trên H7 bị giảm mạnh và tín hiệu dịch chuyển mạnh về trường yếu. Tín hiệu có dạng doublet- doublet-doublet là do nó tương tác mạnh với H6 và H8, tương tác yếu với H5. Tuy nhiên, do có sự chồng chất tín hiệu nên trên phổ 1H-MNR ta quan sát được hình dạng tín hiệu giống triplet-doublet.

Cũng có hình dạng tương tự như H7, H6 xuất hiện tín hiệu với cường độ tích phân 1H. Sự dịch chuyển này có thể giải thích là do oxi cộng hưởng vào vòng thơm làm tăng mật độ electron trên H6, gây hiệu ứng chắn mạnh làm tín hiệu chuyển dịch về phía trường mạnh hơn. Về hình dạng tín hiệu, H6 cũng tương tác mạnh với H5 và H7 nhưng do sự chồng chất, ta thấy tín hiệu có dạng triplet thay vì doublet-doulet như dự kiến. Tương tác giữa H6 và H8 quá yếu nên không xuất hiện trên phổ.

Ngoài những tín hiệu chung như trên, mỗi hợp chất (4a-c) còn có một số tín hiệu khác ở vùng trường mạnh hơn như sau:

Trên phổ cộng hưởng từ hạt nhân của hợp chất (4a), tại 4,48 ppm ta còn thấy sự xuất hiện của một tín hiệu singlet với cường độ tích phân là 2H. Tín hiệu này được quy kết cho H10 gắn trên carbon nằm giữa nhóm amide và dị tố chlor. Mặc dù được gắn trên carbon lai hoá sp3 nhưng do sự rút electron của nhóm amide và độ âm điện lớn của chlor làm giảm mật độ electron của proton. Kết quả tín hiệu bị chuyển dịch mạnh từ vùng trường mạnh về 4,48 ppm.

Hình 3.6. Phổ cộng hưởng từ hạt nhân của (4a)

Trên phổ cộng hưởng từ hạt nhân của hợp chất (4b) ta thấy sự xuất hiện hai tín hiệu ở vùng trường mạnh có hình dạng singlet.

Proton H11 cho tín hiệu ở trường mạnh nhất trên toàn phổ: 1,01 ppm với cường độ tích phân là 9H. Sự chuyển dịch về trường rất mạnh của các proton H10 được giải thích là do chúng được gắn trên carbon no nên mật độ electron

cao làm gây ra hiệu ứng chắn mạnh. Bên cạnh 3 nhóm methyl là carbon bậc bốn nên các proton H10 không bị tương tác spin-spin, làm cho tín hiệu có dạng singlet.

Proton H10 cho tín hiệu ở 3,32 ppm với cường độ tích phân 2H. Đây cũng là các proton gắn trên carbon no nhưng do bị hiệu ứng rút electron của nhóm amide nên tín hiệu chuyển dịch về vùng trường yếu hơn. Proton H10 cũng không bị tương tác spin-spin nên cũng cho hình dạng singlet như H10.

Ở vùng trường mạnh trên phổ của hợp chất (4c) xuất hiện hai tín hiệu có hình dạng doublet multiplet.

Tín hiệu doublet xuất hiện ở 1,25 ppm với cường độ tích phân 6H được quy kết cho H11. Vì H11 gắn trên carbon lai hoá sp3 nên có độ âm điện nhỏ, mật độ electron trên proton cao, gây ra hiệu ứng chắn làm chuyển dịch tín hiệu về vùng trường mạnh nhất trên phổ. Hình dạng doublet là do H11 tương tác spin-spin với proton H10 bên cạnh, hằng số tương tác 3J=7,0 Hz.

Tín hiệu septet xuất hiện ở 2,94 ppm với cường độ tích phân 1H được quy kết cho proton H10, H10 cũng gắn trên carbon lai hoá sp3 giống H11 nên cũng xuất hiện vùng trường mạnh. Tuy nhiên, do carbon gắn H10 nằm cạnh nhóm carbonyl, bị rút bớt electron nên chuyển dịch về vùng trường yếu hơn H11. Hình dạng septet của H10được giải thích là do tương tác spin-spin với 6 proton H11, hằng số tương tác 3J=7,0 Hz.

Kết quả quy kết phổ 1H-NMR của các hợp chất (4a-c) được biểu diễn ở bảng 3.2.

Bảng 3.2. Các tín hiệu trên phổ 1H-NMR của các hợp chất (4a-c)

OO

NNHH

OO CC OO

RR 44

55 66 77

88

99

(4a) (4b) (4c)

Vị trí

CH2 Cl

R= 10 10CH2 C

11

R= CH3

CH3 CH3 11

11 CH

10 R=

CH3 CH3 11

11

4 8,65 (1H), s 8,65 (1H), s 8,63 (1H), s

5 7,75 (1H), d-d,

3J=8,0, 4J=1,5

7,71 (1H), d-d,

3J=8,0, 4J=1,5

7,69 (1H), d-d,

3J=8,0, 4J=1,5 6 7,36 (1H), d-d,

3J1=8,0, 3J2=7,0

7,34 (1H), d-d,

3J1=8,0, 3J2=7,0

7,34 (1H), d-d,

3J1=3J2=8,0

7

7,53 (1H), d-d-d,

3J1=7,0, 3J1=8,0,

4J=1,5

7,50 (1H), d-d-d,

3J1=7,0, 3J2=8,0,

4J=1,5

7,50 (1H), d-d-d,

3J1=3J2=8,0, 4J=1,5

8 7,41 (1H), d, 3J=8,0 7,39 (1H), d, 3J=8,0 7,39 (1H), d, 3J=8,0 9 10,12 (1H), s 9,53 (1H), s 9,61 (1H), s 10 4,48 (2H), s 3,32 (2H), s 2,94 (1H), m, 3J=7,0

11 - 1,01 (9H), s 1,09 (6H), d, 3J=7,0

Cấu trúc của các hợp chất amide còn được xác nhận qua khối phổ phân giải cao HR-MS. Dưới đây là kết quả phổ HR-MS của hai hợp chất được khảo sát:

Phổ của hợp chất (4a): C11H8ClNO3, M= 237,0193 xuất hiện các peak ion phân tử (M+H): 238,0266 (100%), [(M+H)+1]: 239,0298 (12,48%), [(M+H)+2]: 240,0239 (33,29%), [(M+H)+3]: 241,0270 (4,09%).

Phổ của hợp chất (4b): C15H17O3N, M= 259,1208 xuất hiện các peak ion phân tử (M+H): 260,1314 (100%), [(M+H)+1]: 261,1214 (16,91%), [(M+H)+2]: 262,1339 (1,96%).

Qua việc phân tích cường độ các peak ion phân tử trên phổ HR-MS của các hợp chất (4a,b) chúng tôi nhận thấy khối lượng phân tử của các hợp chất đều phù hợp với công thức dự kiến.

Tóm lại, các tính chất phổ hồng ngoại (IR), phổ cộng hưởng từ proton (1H-NMR) và phổ HR-MS của các amide chứng tỏ rằng các hợp chất này đã được tạo thành với cấu trúc đúng như dự kiến.

Một phần của tài liệu tổng hợp một số amide là dẫn xuất của (Trang 43 - 49)

Tải bản đầy đủ (PDF)

(69 trang)