Numerical Example – Parallel Configuration

Một phần của tài liệu Bảo trì cho các hệ thống công nghiệp (Trang 177 - 182)

Figure 6.35 presents a block diagram of a piping sys- tem made of three redundant parallel pumps: Pump1, Pump2, and Pump3.

6.5.1.1 Exponential Distributions of Components’ ttf,

Nonrepairable Components

All components in Fig. 6.35 are supposed to be not re- pairable and the probability distributions of the ttf ran- dom variables, assumed to be exponential, are based on the following assumptions:

• MTTFPump1 D10;000 h;

• MTTFPump2 D6;000 h;

• MTTFPump3 D7;000 h.

Pump1

Pump2

Pump3

Fig. 6.35 Block diagram parallel system, piping system

By Eq. 6.60 the reliabilityRS.t /of the parallel system is

RS.t /D an iD1

Ri.t /

D1Œ1RPump1.t /Œ1RPump2.t /Œ1RPump3.t / DR1.t /CR2.t /CR3.t /R1.t /R2.t /

R2.t /R3.t /R1.t /R3.t / Šexp

t

10;000

Cexp

t 6;000

Cexp

t 7;000

exp.2:67104t / exp.2:43104t /exp.3:10104t /:

Considering two values for the mission timeT,T D 4;000 h andT D 8;000 h, respectively, the values of the system reliability are

RS.T D4;000/Š0:737;

RS.T D8;000/Š0:687:

By Eq. 6.61 the unconditional failure ratefS.t /of the parallel system is

fS.t /D Xn iD1

fi.t /Y

j¤i

Œ1Rj.t /

Df1.t /Cf2.t /Cf3.t /Cf1.t /R2.t /R3.t / Cf2.t /R1.t /R3.t /Cf3.t /R1.t /R2.t / f1.t /ŒR2.t /CR3.t /

f2.t /ŒR3.t /CR1.t / f3.t /ŒR2.t /CR1.t /:

Similarly,S.t /is given by S.t /D

Xn iD1

i.t /Y

j¤i

Œ1Rj.t /

D1.t /C2.t /C3.t /C1.t /R2.t /R3.t / C2.t /R1.t /R3.t /C3.t /R1.t /R2.t / 1.t /ŒR2.t /CR3.t /

2.t /ŒR3.t /CR1.t / 3.t /ŒR2.t /CR1.t /:

Figure 6.36 presents the trend of the system’s proba- bility functionF .t /, reliabilityR.t /, density function

f .t /, and failure rate.t /compared with the trends of the components involved (i. e., three pumps).

The results illustrated in Fig. 6.36 and related to a parallel configuration of the system can be directly compared with those reported in Fig. 6.20 and related to the same components in a serial configuration.

As a consequence, comparing the results obtained, in terms of system reliability, the parallel configuration is much more reliable than the serial one.

Figure 6.37 presents the values of the reliabil- ity importanceIRi.t /for different values of t, while Fig. 6.38 presents the reliability importance for t D 4;000 h andt D10;000 h. Every graph shown in these figures was obtained with ReliaSoft® software:The most critical component is Pump1 because it is the most reliable one; in other words it is convenient to improve it and further increase the values of reliabil- ity.

6.5.1.2 Mix of Probability Distributions of Components’ ttf, Nonrepairable Components

Figures 6.39–6.41 illustrate the results obtained by as- suming the following distributions of the blocks’ ttf in Fig. 6.35:

• Pump1. Exponential distribution, MTTFPump1 D 10;000 h;

• Pump2. Normal distribution, MTTFPump2 D 6;000 h, and standard deviation of ttf 100 h.

• Pump3. Weibull distribution, scale parameter˛ D 7;000 h, and shape parameterˇD1:5.

Figure 6.39 presents the trend of the system’s proba- bility functionF .t /, reliabilityR.t /, density function f .t /, and failure rate.t /compared with the trends of the three components involved (i. e., blocks). Fig- ures 6.40 and 6.41 present the results of the reliability importance evaluation for the components of the par- allel block diagram.

6.5.1.3 Repairable Components and Exponential Distributions of ttf and ttr Random Variables

In this case every component in the parallel system in Fig. 6.35 is supposed to be repairable under correc- tive actions and the probability distributions of random

ReliaSoft BlockSim 7 - www.ReliaSoft.com

Block Unreliability vs Time

Time, (t)

Unreliability, F(t)=1-R(t)

0.000 10000.000 20000.000 30000.000 40000.000 50000.000

0.000 1.000

0.200 0.400 0.600 0.800

Unreliability Diagram1

System Pump 1 Pump 2 Pump 3

ReliaSoft BlockSim 7 - www.ReliaSoft.com

Block Probability Density Function

Time, (t)

f(t)

0.000 10000.000 20000.000 30000.000 40000.000 50000.000

-3.000E-20 2.000E-4

4.000E-5 8.000E-5 1.200E-4 1.600E-4

Pdf Diagram1

System Pump 1 Pump 2 Pump 3

ReliaSoft BlockSim 7 - www.ReliaSoft.com

Block Failure Rate vs Time

Time, (t)

Failure Rate, f(t)/R(t)

0.000 10000.000 20000.000 30000.000 40000.000 50000.000

-3.000E-20 2.000E-4

4.000E-5 8.000E-5 1.200E-4 1.600E-4

Failure Rate Diagram1

System Pump 1 Pump 2 Pump 3 ReliaSoft BlockSim 7 - www.ReliaSoft.com

Block Reliability vs Time

Time, (t)

Reliability, R(t)

0.000 10000.000 20000.000 30000.000 40000.000 50000.000

0.000 1.000

0.200 0.400 0.600 0.800

Reliability Diagram1 System Pump 1 Pump 2 Pump 3

Fig. 6.36 Parallel system, exponential distributors.F .t /,R.t /,f .t /, and(t /. ReliaSoft®software

ReliaSoft BlockSim 7 - www.ReliaSoft.com

Reliability Importance vs Time

Time, (t)

Reliability Importance Value

0.000 10000.000 20000.000 30000.000 40000.000 50000.000

0.000 0.999

0.200 0.400 0.599 0.799

Importance Diagram1

Starting Block Ending Block Pump 3 Pump 2 Pump 1

Fig. 6.37 Parallel system. Reliability importance of components within the system. ReliaSoft®software

ReliaSoft BlockSim 7 - www.ReliaSoft.com

Static Reliability Importance

Time = 10000

Reliability Importance Value

Pump 1 Pump 3 Pump 2

0.000 0.617

0.123 0.247 0.370 0.493

Reliability

3 Item(s) 100%

50%

0%

ReliaSoft BlockSim 7 - www.ReliaSoft.com

Static Reliability Importance

Time = 4000

Reliability Importance Value

Pump 1 Pump 3 Pump 2

0.000 0.212

0.042 0.085 0.127 0.169

Reliability

3 Item(s) 100%

50%

0%

Fig. 6.38 Parallel system. Reliability importance of components within the system.t D4;000 h andt D10;000 h. ReliaSoft® software

ReliaSoft BlockSim 7 - www.ReliaSoft.com

Block Unreliability vs Time

Time, (t)

Unreliability, F(t)=1-R(t)

0.000 10000.000 20000.000 30000.000 40000.000 50000.000

0.000 1.000

0.200 0.400 0.600 0.800

Unreliability Diagram1

System Pump 1 Pump 2 Pump 3

ReliaSoft BlockSim 7 - www.ReliaSoft.com

Block Failure Rate vs Time

Time, (t)

Failure Rate, f(t)/R(t)

0.000 10000.000 20000.000 30000.000 40000.000 50000.000

0.000 1.000E+27

2.000E+26 4.000E+26 6.000E+26 8.000E+26

Failure Rate Diagram1

System Pump 1 Pump 2 Pump 3 ReliaSoft BlockSim 7 - www.ReliaSoft.com

Block Reliability vs Time

Time, (t)

Reliability, R(t)

0.000 10000.000 20000.000 30000.000 40000.000 50000.000

0.000 1.000

0.200 0.400 0.600 0.800

Reliability Diagram1 System Pump 1 Pump 2 Pump 3

ReliaSoft BlockSim 7 - www.ReliaSoft.com

Block Probability Density Function

Time, (t)

f(t)

0.000 10000.000 20000.000 30000.000 40000.000 50000.000

0.000 2.000E-4

4.000E-5 8.000E-5 1.200E-4 1.600E-4

Pdf Diagram1

System Pump 1 Pump 2 Pump 3

Fig. 6.39 Parallel system, mix of distributions.F .t /,R.t /,f .t /, and.t /. ReliaSoft®software variables ttf and ttr are assumed to be exponential. In

particular the values of MTTF and MTTR are the fol- lowing:

• MTTFPump1 D10;000 h;

• MTTFPump2 D6;000 h;

• MTTFPump3 D7;000 h;

• MTTRPump1 D MTTRPump2 D MTTRPump3 D 100 h.

Figure 6.42 illustrates the state diagram, reporting the state of the components and of the system for differ- ent values of timet obtained by the application of the Monte Carlo simulation analysis. In the case of “full

ReliaSoft BlockSim 7 - www.ReliaSoft.com

Reliability Importance vs Time

Time, (t)

Reliability Importance Value

0.000 10000.000 20000.000 30000.000 40000.000 50000.000

0.000 1.000

0.200 0.400 0.600 0.800

Importance Diagram1

Starting Block Ending Block Pump 1 Pump 2 Pump 3

Fig. 6.40 Parallel system. Reliability importance of components within the system. ReliaSoft®software

ReliaSoft BlockSim 7 - www.ReliaSoft.com

Static Reliability Importance

Time = 10000

Reliability Importance Value

Pump 1 Pump 3 Pump 2

0.000 0.819

0.164 0.327 0.491 0.655

Reliability

3 Item(s) 100%

50%

0%

ReliaSoft BlockSim 7 - www.ReliaSoft.com

Static Reliability Importance

Time = 4000

Reliability Importance Value

Pump 1 Pump 3 Pump 2

0.000 0.351

0.070 0.140 0.210 0.281

Reliability

3 Item(s) 100%

50%

0%

Fig. 6.41 Parallel system. Reliability importance of components within the system.t D4;000 h andt D10;000 h. ReliaSoft® software

redundancy” the system fails if all the components fail.

In other words the number of expected failures for the system is close to 0.

In fact if the components introduced are used as parts of a redundant parallel system, the value of the system availability is very close to 1 as shown in the Fig. 6.43 reporting the simulated analysis conducted by ReliaSoft®software.

If the value of MTTR passes from 100 to 600 h (C500%), the trend of the state diagram (the so-called

up/down diagram) related to the three components and to the system changes as illustrated in Fig. 6.44. This simulated analysis is called “B” in order to distin- guish it from previous one, called “A,” which relates to MTTR equal to 100 h.

By the analysis of the simulated scenario, in config- uration B the system is always in the state of function (up state).

The system availability versus reliability diagram changes as illustrated in Fig. 6.45.

ReliaSoft BlockSim 7 - www.ReliaSoft.com

Block Up/Down

Time, (t)

0.000 10000.000 20000.000 30000.000 40000.000 50000.000

System Pump 1 Pump 2 Pump 3

State Operating Time Time Under Repair

Fig. 6.42 Parallel configuration. Repairable components, simulation analysis A. State diagram of the system. ReliaSoft®software

ReliaSoft BlockSim 7 - www.ReliaSoft.com

Availability and Reliability vs Time

Time, (t)

A(t), R(t)

0.000 10000.000 20000.000 30000.000 40000.000 50000.000

0.997 1.000

0.998 0.998 0.999 0.999

Diagram1

Point Availability Line Point Reliability Line

Fig. 6.43 Repairable components, simulation A. Availability and reliability. ReliaSoft®software

Một phần của tài liệu Bảo trì cho các hệ thống công nghiệp (Trang 177 - 182)

Tải bản đầy đủ (PDF)

(489 trang)