1. Trang chủ
  2. » Tất cả

Bài-toán-trùng-vân

40 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 40
Dung lượng 607,11 KB

Nội dung

BÀI TOÁN TRÙNG VÂN I LÝ THUYẾT TRỌNG TÂM VÀ PHƯƠNG PHÁP GIẢI - Khi giao thoa Y-âng thực đồng thời với n ánh sáng đơn sắc ánh sáng cho hệ vân giao thoa riêng - Tại trung tâm nơi trùng tất vân sáng bậc có màu định (chẳng hạn đỏ trùng với vàng màu cam) Trong chủ đề khảo sát giao thoa với 2, ánh sáng đơn sắc: +) Tìm điều kiện để có vạch sáng trùng nhau, vạch tối trùng nhau, vạch sáng trùng vạch tối + Tìm khoảng vân trùng đôi, khoảng vân trùng ba +) Xác định tọa độ vị trí vân trùng đơi, trùng ba +) Tìm số vân trùng, số vân sáng, số vân tối tổng số vân quan sát +) Bài tốn ngược DẠNG 1: BÀI TỐN VỀ HAI VẠCH SÁNG TRÙNG NHAU, SỐ VÂN QUAN SÁT ĐƯỢC - Nếu điểm M có vân sáng xạ trùng (tại M cho vạch sáng màu với vạch sáng trung tâm) x S1  x S2  k1i1  k 2i  k11  k   k1  b   (phân số tối giản) (*) k 1 c a) Khoảng vân trùng, vị trí vân trùng k1  bn  x  bi  ci n  Từ *    n  Z   x  bni1  cni   k  cn x  x n 1  x n  bi1  ci Trong đó: x khoảng cách từ O đến vị trí trùng gần Các vân trùng cách hai vân trùng liên tiếp cách khoảng x  i   Vì gốc tọa độ vị trí vân sáng trùng với vân sáng nên: x  x  i  Như vậy: +) Khoảng vân trùng đôi: i   b.i1  c.i +) Tọa độ vị trí trùng: x  ni  (với n số nguyên) b) Số vị trí trùng hai hệ vân Để tìm số vị trí trùng hai hệ vân, ta tìm tọa độ vị trí trùng hai hệ vân theo số nguyên n Sau thay vào điều kiện giới hạn x: Tài liệu Tự Học 365 Trang |1 +) Nếu bề rộng trường giao thoa L số vạch sáng màu với vạch sáng trung tâm trường  0,5L  giao thoa (kể vân trung tâm) N     1  i  +) Nếu cho tọa độ điểm M N số vạch sáng có màu giống với màu vạch sáng trung tâm đoạn MN xác định từ x M  ni   x N ⇒ Khoảng chạy n, số giá trị nguyên n số vạch trùng cần tìm Chú ý: Bài tốn ngược: +) Nếu cho hai vân sáng gần màu với vân sáng trung tâm có z vân sáng hệ c   z  c  z  thay vào k1  b   tìm theo b Sau thay vào điều kiện giới hạn k 1 c 0,38m    0, 76 m tìm  +) Nếu cho vị trí gần O màu với vạch sáng trung tâm, tìm bước sóng ta làm sau: Cách 1: x  k1 1D D k  b  k 2    phân số tối giản  a a k 1 c i  b   i1 D D  i  b  c   a a 0,38 0,76   b1  i1    c Cách 2: i   k1min 1D D  k 2min a a i  k1min  i   số nguyên tố với k1min ⇒ Thử phương án k1min 1 k   2min 2 c) Số vân sáng quan sát Mỗi ánh sáng đơn sắc cho hệ vân giao thoa riêng Mỗi vân sáng vạch sáng, vân sáng hệ trùng vân sáng hệ cho ta quan sát vạch sáng (vân sáng trùng) Để tìm số vân sáng quan sát ta tìm tổng số vạch sáng xạ tạo trừ số vạch trùng lên nhau: N  N1  N  N  Với N1 , N tổng số vân sáng AB giao thoa với 1 ,  (đã có cách tìm chủ đề trước) II VÍ DỤ MINH HỌA Ví dụ 1: Trong thí nghiệm Y-âng giao thoa ánh sáng, khe hẹp S phát đồng thời hai xạ đơn sắc có bước sóng 1  0, 42 m (màu tím),   0,56 m (màu lục) Biết a  1mm, D  2m a) Khoảng cách gần từ vị trí có hai vân sáng trùng đến vân trung tâm bao nhiêu? b) Xét vùng giao thoa rộng cm quan sát đối xứng với vân trung tâm, có vạch sáng Tài liệu Tự Học 365 Trang |2 kết trùng hai hệ vân, số vân sáng màu tím vùng bao nhiêu? c) Trên quan sát, gọi M, N hai điểm khác phía so với vân trung tâm cách vân trung tâm 5,5 mm 16,8 mm Trên đoạn MN, số vị trí vân sáng trùng hai xạ bao nhiêu? Lời giải: Khoảng vân giao thoa ánh sáng tím: i1  D1 2.0, 42   0,84 mm a a) Điều kiện để vân sáng trùng nhau: x s1  x s2  k1i1  k 2i  k1 i  0,56     k i1 1 0, 42 ⇒ Khoảng vân trùng: i   4i1  4.0,84  3,36 mm Vậy khoảng cách gần từ vị trí có hai vân sáng trùng đến vân trung tâm 3,36 mm b) Do vùng giao thoa đối xứng vân trung tâm nên ta có số vị trí trùng hai hệ vân giao thoa;  L   30  N          vân  2.3,36   2i   Số vị trí cho vân sáng ánh sáng tím L  30  N1          35 vân 2i 2.0,84    1 Vậy số vân sáng màu tím quan sát thấy 35   26 vân c) Tọa độ vị trí trùng x   ni   3,36n với n  Z M, N hai điểm nằm khác phía so với vân trung tâm nên x M , x N trái dấu Ta có:  x M  x   x N  5,5  3,36n  16,8  1,  n  Có giá trị n nguyên ứng với vạch trùng hai xạ đoạn MN, N vân trùng Ví dụ 2: [Trích đề thi THPT QG năm 2008] Trong thí nghiệm giao thoa ánh sáng với khe Y-âng khoảng cách hai khe mm, khoảng cách từ mặt phẳng chứa hai khe đến quan sát 1,2 m Chiếu sáng hai khe ánh sáng hỗn hợp gồm hai ánh sáng đơn sắc có bước sóng 500 nm 660 nm thu hệ vân giao thoa Biết vân sáng (trung tâm) ứng với hai xạ trùng Khoảng cách từ vân đến vân gần màu với vân là: A 4,9 mm B 19,8 mm C 9,9 mm D 29,7 mm Lời giải: Khoảng vân bước sóng 500 nm i1  Điều kiện để vân sáng trùng nhau: 1D  0,3mm a k1  660 33    k 1 500 25 ⇒ Khoảng vân trùng: i   33i1  33.0,3  9,9 mm Vậy khoảng cách từ vân đến vân gần màu với vân 9,9 mm Tài liệu Tự Học 365 Trang |3 Chọn C Ví dụ 3: [Trích đề thi THPT QG năm 2009] Trong thí nghiệm Y-âng giao thoa ánh sáng, khoảng cách hai khe 0,5 mm, khoảng cách từ hai khe đến quan sát m Nguồn sáng dùng thí nghiệm gồm hai xạ có bước sóng 1  450 nm   600 nm Trên quan sát, gọi M, N hai điểm phía so với vân trung tâm cách vân trung tâm 5,5 mm 22 mm Trên đoạn MN, số vị trí vân sáng trùng hai xạ là: A B C D Lời giải: Ta có i1  D1 k   1,8 mm;    i   4i1  7, mm a k 1 ⇒ Tọa độ vị trí trùng: x   7, 2n với n  Z M, N nằm phía so với vân trung tâm nên x M , x N dấu Ta có: x M  x   x N  5,5  3,36n  33,  1,  n  10 5,5  x   7, 2n  22(n  )  n  1, 2,3 Vậy có vị trí vân sáng trùng xạ Chọn D Ví dụ 4: [Trích đề thi THPT QG năm 2012] Trong thí nghiệm Y-âng giao thoa ánh sáng, nguồn sáng phát đồng thời hai ánh sáng đơn sắc 1 ,  có bước sóng 0, 48 m 0, 60 m Trên quan sát, khoảng hai vân sáng gần màu với vân sáng trung tâm có A vân sáng 1 vân sáng  B vân sáng 1 vân sáng  C vân sáng 1 vân sáng  D vân sáng 1 vân sáng  Lời giải: Tại vị trí trùng vân: k1  0, 60    k 1 0, 48 ⇒ số vân sáng 1 là:   số vân sáng    Chọn A Ví dụ 5: Trong thí nghiệm Y-âng giao thoa ánh sáng, nguồn sáng phát đồng thời hai ánh sáng đơn sắc gồm ánh sáng đỏ có bước sóng 684 nm ánh sáng lam có bước sóng 456 nm Trong khoảng hai vân sáng có màu màu với vân sáng trung tâm, đếm vân sáng màu lam số vân sáng màu đỏ A vân B vân C vân D vân Lời giải: Điều kiện trùng hệ hai vân sáng k1  456    k 1 684 ⇒ Cứ hai vân sáng liên tiếp màu với vân trung tâm có vị trí cho vân sáng lam vị trí cho vân sáng đỏ Tài liệu Tự Học 365 Trang |4 ⇒ Nếu hai vân trùng màu với vân trung tâm không liên tiếp ta đếm vân sáng lam có tương ứng vân đỏ (ứng với khoảng vân trùng đơi) Chọn B Ví dụ 6: Thực giao thoa ánh sáng với xạ nhìn thấy có bước sóng 1  0, m  Trên hứng vân giao thoa, hai vân gần màu với vân sáng trung tâm đếm 13 vân sáng, số vân xạ 1 xạ  lệch vân, bước sóng  A 0, 72 m B 0, m C 0,54 m D 0, 45 m Lời giải: Gọi n1 n số vân sáng quan sát hai xạ n  n  13 n1  Ta có    n  n1  n  ⇒ Vị trí trùng gần với vân trung tâm ứng với vân sáng bậc xạ 1 vân sáng bậc xạ  Ta có k1         0, m Chọn B k 1 0, Ví dụ 7: [Trích đề thi THPT QG năm 2010] Trong thí nghiệm Y-âng giao thoa ánh sáng, nguồn sáng phát đồng thời hai xạ đơn sắc, xạ màu đỏ có bước sóng  d  720 nm xạ màu lục có bước sóng λlục (có giá trị khoảng từ 500 nm đến 575 nm) Trên quan sát, hai vân sáng gần màu với vân sáng trung tâm có vân sáng màu lục Giá trị λlục A 500 nm B 520 nm C 540 nm D 560 nm Lời giải: Tọa độ vân sáng trùng khi: x sluc  x sd  k.D luc k .D d k    luc   d a a k Do quan sát, hai vân sáng gần màu với vân sáng trung tâm có vân sáng màu lục nên k    luc  k .0, 72 Do 0,5   luc  0,575  6, 25  k   7,18  k     luc  7.0, 72  0,56 m Chọn D Ví dụ 8: Trong thí nghiệm Yang, chiếu đồng thời hai xạ có bước sóng 1  0, m   0, m Trên quan sát, gọi M N hai điểm nằm hai phía so với vân trung tâm mà M vị trí vân sáng bậc 11 xạ 1 ; N vị trí vân sáng bậc 13 xạ  Số vân sáng quan sát đoạn MN A 43 vân B 40 vân C 42 vân D 48 vân Lời giải: Xét tỉ số i  0,    1,5 i1 1 0, Tài liệu Tự Học 365 Trang |5 +) Vị trí M vân sáng thứ 11 xạ 1  x M  11.i1  11 i2  7,3.i 1,5 +) Vị trí N vân sáng thứ 13 xạ   x N  13.i  11.1,5.i1  16,5.i1 16,5  k M  11 (do M, N nằm hai phía so với vân trung tâm nên x M , x N trái dấu)   13  k N  7,3 ⇒ Trên đoạn MN có 28 vân sáng xạ 1 có 21 vân sáng xạ  +) Xác định số vân sáng trùng nhau, vị trí trùng tính vân sáng Để hai vân trùng x1  x  k1    k 1 Từ O đến N có vị trí trùng nhau, từ O đến M có vị trí trùng Số vân sáng quan sát 21  28   43 Chọn A Ví dụ 9: Trong thí nghiệm Y-âng giao thoa ánh sáng, hai khe hẹp cách mm, khoảng cách từ hai khe tới m Chiếu đồng thời hai xạ có bước sóng 1  0,5 m   0, 75 m Tại M vân sáng bậc xạ 1 N vân sáng bậc xạ  Số vân sáng khoảng M N A vân B vân C vân D vân Lời giải: Ta có 0,5k1  0, 75k  k1  k2 ⇒ cặp trùng  k1 , k    0,  ;  3,  ;  6,  ;  9,  ; Tại M: 0,5D 0, 75D  k2  k   M :  k1 , k    3,  a a Tại N: k1 0,5D 0, 75D 6  k1   N :  k1 , k    9,  a a Trong “khoảng” MN có: cực địa ứng với k1  4,5, 6, 7,8 cực đại ứng với k  3, 4,5 vân trùng  6,  ⇒ Số vân sáng “khoảng” MN là:    Chọn C Ví dụ 10: Trong thí nghiệm giao thoa ánh sáng Y-âng, cố định ảnh, mặt phẳng chứa hai khe sáng tiến hành hai lần thí nghiệm sau: - Lần 1: Chiếu hai khe ánh sáng đơn sắc có bước sóng 1  0, m quan sát, ta thấy có vân sáng liên tiếp cách mm - Lần 2: Chiếu hai khe ánh sáng đa sắc gồm hai xạ có bước sóng 1  người ta thấy M cách vân trung tâm 10,8 mm có vân sáng trung tâm, khoảng M vân sáng trung tâm cịn có Tài liệu Tự Học 365 Trang |6 vân sáng có màu giống vân trung tâm Bước sóng xạ  A 0, 65 m B 0, m C 0, 76 m D 0,38 m Lời giải: ▪ Lần 1: vân sáng liên tiếp dài mm  5i1   i1  1,8 mm  D i 1,8.103    3000 a  0, 6.106 ▪ Lần 2: 10,8 mm khoảng cách vân trùng đến vân trung tâm, cịn có vân trùng nên 10,8 mm ứng với khoảng vân trùng i T  10,8  3, mm Gọi k bậc sáng  vân sáng trùng lần đầu tiên: i T  k 2i  k 3000.  3, 6.103 k 1, 2.106 1 2 Thay đáp án vào (1), thấy   0, 4.106 m k  nguyên (thỏa mãn) Chọn B Ví dụ 11: Một nguồn sáng điểm nằm cách hai khe Yâng phát đồng thời hai ánh sáng đơn sắc có bước sóng 1  Khoảng vân ánh sáng đơn sắc 1 2mm Trong khoảng rộng L  3, cm màn, đếm 25 vạch sáng, có vạch kết trùng hai hệ vân; biết hai năm vạch trùng nằm khoảng L Số vân sáng ánh sáng  quan sát A 12 vân B vân C 11 vân D 10 vân Lời giải: Do khoảng cách hai vân sáng kề khoảng vân i, nên trường giao thoa rộng L mà có hai vân sáng nằm hai đầu trường phủ kín khoảng vân i, số khoảng vân cho N  L số vân sáng quan sát trường N  N  Số vân sáng đếm trường (các vân trùng tính vân) 25 vân, 25 vân có vạch trùng nên số vân thực tế kết giao thoa hai xạ 30 vân sáng Số khoảng vân ứng với bước sóng 1 N1  L 23   16 i1 ⇒ số vân sáng ứng với 1 N1  17 vân Khi đó, số vân sáng ứng với bước sóng  N 2  30  17  13 vân Số vân sáng ánh sáng  quan sát 13   vân Vậy   0, m Chọn B DẠNG 2: HAI VÂN TỐI TRÙNG NHAU Cách 1: Điều kiện để hai vạch tối trùng nhau: Tài liệu Tự Học 365 Trang |7 x   2m1  1 i1 i 2m1  i  b   2m  1     phân số tối giản  c 2 2m  i1 1 (Dĩ nhiên, b c ngun dương lẻ có vân tối trùng với vân tối) 2m1   b  2n  1 i i   n  Z   x  b  2n  1  c  2n  1 2 2m   c  2n  1 bi ci   x   n   2 x  x n 1  x n  bi1  ci Trong đó, x khoảng cách từ O đến vị trí trùng gần x khoảng cách hai vị trí trùng liên tiếp  i   Trường hợp x  2x hay x  Cách 2: x i2 2 b   phân số tối giản   i   bi1  ci c i1 1 Vì gốc tọa độ khơng phải vị trí vân tối trùng cách vị trí trùng gần x  0,5i  ⇒ Tọa độ vị trí trùng: x   n  0,5  i  với n  Z DẠNG 3: VÂN TỐI CỦA  TRÙNG VỚI VÂN SÁNG CỦA 1 Cách 1: x  k1i1   2m  1 i2 0,5i 0,5 b k     phân số tối giản  c 2m  i1 1 (Dĩ nhiên, c số ngun dương lẻ có vân sáng 1 trùng với vân tối  ) k1  b  2n  1 i   n  Z   x  b  2n  1 i1  c  2n  1 2 2m   c  2n  1 ci   x  bi1  n   x  x n 1  x n  2bi1  ci Trong đó, x khoảng cách từ O đến vị trí trùng gần x khoảng cách hai vị trí trùng liên tiếp  i   Trường hợp x  2x hay x  x Cách 2: - Vân tối  trùng với vân sáng 1 ; i2  b   phân số tối giản   i   2bi1  ci c 2i1 21 Vì gốc tọa độ cách vị trí trùng gần x  0,5i  ⇒ Tọa độ vị trí trùng: x   n  0,5  i  với n  Z - Vân tối 1 trùng với vân sáng  : Tài liệu Tự Học 365 Trang |8 i1  b   phân số tối giản   i   2bi  ci1 c 2i 2 Vì gốc tọa độ cách vị trí trùng gần là: x  0,5i  ⇒ Tọa độ vị trí trùng: x   n  0,5  i  với n  Z Chú ý: Nếu bề rộng trường giao thoa đủ lớn: Ln tồn vị trí để hai vân sáng hai hệ trùng i2 2 b   phân số tối giản  c i1 1 +) Nếu b c số lẻ có vị trí vân tối trùng khơng có vị trí vân sáng trùng vân tối +) Nếu b chẵn c lẻ có vị trí vân sáng hệ trùng vân tối hệ 2, khơng có vị trí vân tối trùng khơng có vị trí vân sáng hệ trùng vân tối hệ +) Nếu b lẻ c chẵn có vị trí vân sáng hệ trùng vân tối hệ 1, khơng có vị trí vân tối trùng khơng có vị trí vân sáng hệ trùng vân tối hệ Ví dụ 12: Trong thí nghiệm giao thoa Y-âng thực đồng thời hai xạ đơn sắc với khoảng vân ảnh thu 1,50 mm 2, 25mm Tại hai điểm gần M N vân tối hai xạ trùng Tính MN A 5,75 mm B 6,75 mm C 4,5 mm D 3,0 mm Lời giải: Ta có i 2, 25    i   3i1  2i  3.1,50  4,5 mm i1 1,50 Khoảng cách hai vân tối trùng gần khoảng vân trùng 4,5 mm Chọn C Ví dụ 13: Trong thí nghiệm giao thoa Y-âng thực đồng thời hai xạ đơn sắc với khoảng vân ảnh thu i1  0,5 mm i  0, mm Khoảng cách gần từ vị trí có vân tối trùng đến vân trung tâm A 0,75 mm B 1,75 mm C 3,5 mm D 1,5 mm Lời giải: Ta có i 0, 7    i   7i1  5i  7.0,5  3,5 mm i1 0,5 Vì gốc tọa độ O vân sáng trùng O cách vị trí trùng gần x  0,5i   1, 75 mm Chọn B Ví dụ 14: Trong thí nghiệm giao thoa Y-âng, thực đồng thời với hai ánh sáng đơn sắc khoảng vân giao thoa 0,20 mm 0,15 mm Lập cơng thức xác định vị trí trùng vân tối hai xạ (n số nguyên) A x  0, 6.n  0,3mm Tài liệu Tự Học 365 B x  0,8.n  0,3mm Trang |9 C x  1, 05.n  0,525 mm D x  0, 6.n mm Lời giải: Cách 1: Điều kiện để vân tối trùng nhau: x t    2m1  1  0, 20 0,15   2m  1 mm 2 2m1  2m1    2n  1 0, 20    x t    2n  1  0, 6n  0,3mm 2m  2m    2n  1 Cách 2: i 0,15    i t   is   3i1  4i  0, 6mm i1 0, 20 Vì gốc tọa độ O khơng phải vị trí vân tối trùng O cách vị trí trùng gần x t  0,5i   0, mm ⇒ Tọa độ vị trí tối trùng: x t    n  0,5  i   0, 6n  0,3mm (với n số nguyên) Chọn A Ví dụ 15: Trong thí nghiệm giao thoa Y-âng thực đồng thời hai xạ đơn sắc với khoảng vân ảnh thu i1  0,5 mm i  0, mm Hai điểm M N mà điểm hệ cho vân sáng hệ cho vân tối Khoảng cách MN nhỏ A mm B 1,2 mm C 0,8 mm D 0,6 mm Lời giải: Điều kiện để vân sáng hệ trùng với vân tối hệ là: x  k1i1   2m  1 0,5i  k1 0,5i 0,5.0, k1   2n  1     2m  i1 0,5 2m    2n  1  x   2n  1 0,5  x n 1  x n  2mm Vân tối  trùng với vân sáng 1 : i2 0,    i   2.2i1  5i  2.2.0,5   mm   x  MN Chọn A 2i1 2.0,5 Ví dụ 16: Trong thí nghiệm giao thoa Y-âng thực đồng thời hai xạ đơn sắc với khoảng vân ảnh thu i1  0,5 mm i  0,3mm Trên quan sát, gọi M, N hai điểm phía so với vân trung tâm cách vân trung tâm 2,25 mm 6,75 mm Trên đoạn MN, số vị trí vân tối trùng hai xạ A vân B vân C vân D vân Lời giải: Ta có i 0,5    i   5i1  3i  5.0,3  1,5mm i1 0,3 Vì gốc tọa độ O khơng phải vị trí vân tối trùng O cách vị trí trùng gần x  0,5i   0, 75 mm Tài liệu Tự Học 365 Trang |10

Ngày đăng: 17/10/2021, 07:17

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w