1. Trang chủ
  2. » Luận Văn - Báo Cáo

Một số định lý điểm bất động đối với các ánh xạ thỏa mãn điều kiện co cyclic trong không gian mêtric riêng

41 3 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 41
Dung lượng 499,87 KB

Nội dung

❇é ●✐➳♦ ❞ô❝ ✈➭ ➜➭♦ t➵♦ ❚r➢ê♥❣ ➜➵✐ ❤ä❝ ❱✐♥❤ ❍✉ú♥❤ ❚❤Þ ❑✐♠ ❉✉♥❣ ▼ét sè ➤Þ♥❤ ❧ý ➤✐Ĩ♠ ❜✃t ➤é♥❣ ➤è✐ ✈í✐ ❝➳❝ ➳♥❤ ①➵ t❤á❛ ♠➲♥ ➤✐Ị✉ ❦✐Ư♥ ❝♦ ❈②❝❧✐❝ tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣ ▲✉❐♥ ✈➝♥ ❚❤➵❝ sü ❚♦➳♥ ❤ä❝ ◆❣❤Ư ❆♥ ✲ ✷✵✶✹ ❇é ●✐➳♦ ❞ơ❝ ✈➭ ➜➭♦ t➵♦ ❚r➢ê♥❣ ➜➵✐ ❤ä❝ ❱✐♥❤ ❍✉ú♥❤ ❚❤Þ ❑✐♠ ❉✉♥❣ ▼ét sè ➤Þ♥❤ ❧ý ➤✐Ĩ♠ ❜✃t ➤é♥❣ ➤è✐ ✈í✐ ❝➳❝ ➳♥❤ ①➵ t❤á❛ ♠➲♥ ➤✐Ị✉ ❦✐Ư♥ ❝♦ ❈②❝❧✐❝ tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣ ▲✉❐♥ ✈➝♥ ❚❤➵❝ sü ❚♦➳♥ ❤ä❝ ❈❤✉②➟♥ ♥❣➭♥❤✿ ❚♦➳♥ ●✐➯✐ tÝ❝❤ ▼➲ sè✿ ✻✵✳✹✻✳✵✶✳✵✷ ❈➳♥ ❜é ❤➢í♥❣ ❞➱♥ ❦❤♦❛ ❤ä❝ P●❙✳ ❚❙✳ ❚r➬♥ ❱➝♥ ➣♥ ◆❣❤Ư ❆♥ ✲ ✷✵✶✹ ▼ô❝ ▲ô❝ ❚r❛♥❣ ▲ê✐ ♥ã✐ ➤➬✉ ❈❤➢➡♥❣ ■✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶ ➜✐Ĩ♠ ❜✃t ➤é♥❣ ➤è✐ ✈í✐ ❝➳❝ ➳♥❤ ①➵ t❤♦➯ ♠➲♥ ➤✐Ị✉ ❦✐Ư♥ ❝♦ ❝②❝❧✐❝ tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸ ✶✳✶ ❈➳❝ ❦❤➳✐ ♥✐Ö♠ ❝➡ ❜➯♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✳✷ ➜✐Ĩ♠ ❜✃t ➤é♥❣ ➤è✐ ✈í✐ ❝➳❝ ➳♥❤ ①➵ t❤♦➯ ♠➲♥ ➤✐Ị✉ ❦✐Ư♥ ❝♦ ❝②❝❧✐❝ ✳ ✳ ✸ ✽ ❈❤➢➡♥❣ ■■✳ ➜✐Ĩ♠ ❜✃t ➤é♥❣ ➤è✐ ✈í✐ ❝➳❝ ➳♥❤ ①➵ t❤♦➯ ♠➲♥ ➤✐Ị✉ ❦✐Ư♥ ❝♦ ❝②❝❧✐❝ tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣ ✷✳✶ ✶✽ ➜✐Ĩ♠ ❜✃t ➤é♥❣ ➤è✐ ✈í✐ ❝➳❝ ➳♥❤ ①➵ t❤♦➯ ♠➲♥ ➤✐Ị✉ ❦✐Ư♥ ❝♦ ❝②❝❧✐❝ ❦✐Ĩ✉ ❤÷✉ tØ ❍❛r❞② ✲ ❘♦❣❡rs tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣ ✷✳✷ ✳ ✳ ✳ ✳ ✶✽ ➜✐Ĩ♠ ❜✃t ➤é♥❣ ➤è✐ ✈í✐ ❝➳❝ ➳♥❤ ①➵ t❤♦➯ ♠➲♥ ➤✐Ị✉ ❦✐Ư♥ ❝♦ ❝②❝❧✐❝ s✉② ré♥❣ tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✾ ❑Õt ❧✉❐♥ ✸✻ ❚➭✐ ❧✐Ö✉ t❤❛♠ ❦❤➯♦ ✸✼ ✶ ▲ê■ ◆ã■ ➜➬❯ ▲ý t❤✉②Õt ➤✐Ĩ♠ ❜✃t ➤é♥❣ ❧➭ ♠ét tr♦♥❣ ♥❤÷♥❣ ❧Ü♥❤ ✈ù❝ t♦➳♥ ❤ä❝ ➤➢ỵ❝ ♥❤✐Ị✉ ♥❤➭ t♦➳♥ ❤ä❝ q✉❛♥ t➞♠✱ ✈➭ ❧➭ ♠ét tr♦♥❣ ♥❤÷♥❣ ❝❤đ ➤Ị ♥❣❤✐➟♥ ❝ø✉ q✉❛♥ trä♥❣ ❝đ❛ ❣✐➯✐ tÝ❝❤✳ ◆ã ❝ã ♥❤✐Ị✉ ø♥❣ ❞ơ♥❣ ➤❛ ❞➵♥❣ ❝➯ tr♦♥❣ t♦➳♥ ❤ä❝ ❧➱♥ tr♦♥❣ ❝➳❝ ♥❣➭♥❤ ❦❤♦❛ ❤ä❝ ❦❤➳❝✳ ▼ét sè ❦Õt q✉➯ ✈Ị tå♥ t➵✐ ➤✐Ĩ♠ ❜✃t ➤é♥❣ ♥ỉ✐ t✐Õ♥❣ ➤➲ ①✉✃t ❤✐Ư♥ tõ ➤➬✉ t❤Õ ❦Ø ❳❳✱ tr♦♥❣ ➤ã ♣❤➯✐ ❦Ó ➤Õ♥ ♥❣✉②➟♥ ❧Ý ➤✐Ó♠ ❜✃t ➤é♥❣ ❇r♦✉✇❡r ✭✶✾✶✷✮ ✈➭ ♥❣✉②➟♥ ❧Ý ➳♥❤ ①➵ ❝♦ ❇❛♥❛❝❤ ✭✶✾✷✷✮✳ ◆❣✉②➟♥ ❧ý ➳♥❤ ①➵ ❝♦ ❇❛♥❛❝❤ ➤➲ trë t❤➭♥❤ ♠ét ❝➠♥❣ ❝ơ ♣❤ỉ ❞ơ♥❣ ➤Ĩ ❣✐➯✐ q✉②Õt ❝➳❝ ❜➭✐ t♦➳♥ ✈Ị sù tå♥ t➵✐ tr♦♥❣ ♥❤✐Ị✉ ♥❣➭♥❤ ❝đ❛ ●✐➯✐ tÝ❝❤ t♦➳♥ ❤ä❝ ✈➭ ❝➳❝ ø♥❣ ❞ơ♥❣ ❝đ❛ ♥ã✳ ❱× t❤Õ✱ ➤➲ ❝ã ♠ét sè ❧í♥ ❝➳❝ ♠ë ré♥❣ ❝đ❛ ➤Þ♥❤ ❧ý ❝➡ ❜➯♥ ♥➭② ❝❤♦ ❝➳❝ ❧í♣ ➳♥❤ ①➵ ✈➭ ❦❤➠♥❣ ❣✐❛♥ ❦❤➳❝ ♥❤❛✉✱ ❜➺♥❣ ❝➳❝❤ ➤✐Ò✉ ❝❤Ø♥❤ ➤✐Ị✉ ❦✐Ư♥ ❝♦ ❝➡ ❜➯♥ ❤♦➷❝ t❤❛② ➤ỉ✐ ❦❤➠♥❣ ❣✐❛♥✳ ❈❤➻♥❣ ❤➵♥ ♥❤➢✿ ♥❤÷♥❣ ➤✐Ị✉ ❦✐Ư♥ tù❛ ❝♦ ❞➵♥❣ ❍❛r❞② ✲ ❘♦❣❡r ✈➭ ❈✐r✐❝✱ ❞➵♥❣ tù❛ ❝♦ ❝ñ❛ ❝♦ ❝②❝❧✐❝✱ ❞➵♥❣ ❝♦ ②Õ✉ ❝ñ❛ ❝♦ ❝②❝❧✐❝✱ ♣❤Ð♣ fψ ✲❝♦ ❝②❝❧✐❝ s✉② ré♥❣ tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣ ✈➭ ♠ë ré♥❣ ♥❤÷♥❣ ❦Õt q✉➯ ♠í✐ ✈Ị ➤✐Ĩ♠ ❜✃t ➤é♥❣ ❝❤♦ ➳♥❤ ①➵ ❝♦ ❝②❝❧✐❝ tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣✱ tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣ ❚r➟♥ ❝➡ së ❝➳❝ ❜➭✐ ❜➳♦ tr❛❝t✐✈❡ ❝♦♥❞✐t✐♦♥s ✲➤➬② ➤ñ✱✳✳✳ ❋✐①❡❞ ♣♦✐♥t ❢♦r ♠❛♣♣✐♥❣s s❛t✐s❢②✐♥❣ ❝②❝❧✐❝❛❧ ❝♦♥✲ ❝ñ❛ ❲✳ ❆✳ ❑✐r❦✱ P✳ ❙✳ ❙r✐♥✐✈❛s❛♥✱ P✳ ❱❡❡r❛♠❛♥✐ ✭✷✵✵✸✮✱ ❇❛✲ ♥❛❝❤ ❝♦♥tr❛❝t✐♦♥ ♣r✐♥❝✐♣❧❡ ❢♦r ❝②❝❧✐❝❛❧ ♠❛♣♣✐♥❣s ♦♥ ♣❛rt✐❛❧ ♠❡tr✐❝ s♣❛❝❡s ❝ñ❛ ❚✳ ❆❜❞❡❧❥❛✇❛❞✱ ❏✳ ❖✳ ❆❧③❛❜✉t✱ ❆✳ ▼✉❦❤❡✐♠❡r ✈➭ ❨✳ ❩❛✐❞❛♥ ✭✷✵✶✷✮✱ ❋✐①❡❞ ♣♦✐♥t t❤❡♦r❡♠s ✈✐❛ ✈❛r✐♦✉s ❝②❝❧✐❝ ❝♦♥tr❛❝t✐✈❡ ❝♦♥❞✐t✐♦♥s ✐♥ ♣❛rt✐❛❧ ♠❡tr✐❝ s♣❛❝❡s ❝ñ❛ ❍✳ ❑✳ ◆❛s❤✐♥❡✱ ❩✳ ❑❛❞❡❧❜✉r❣✱ ✈➭ ❙✳ ❘❛❞❡♥♦✈✐❝ ✭✷✵✶✸✮✱ ❝ï♥❣ ❝➳❝ t➭✐ ❧✐Ö✉ t❤❛♠ ❦❤➯♦ ❦❤➳❝✱ ❞➢í✐ sù ❤➢í♥❣ ❞➱♥ ❝đ❛ ◆●➛❚✳ P●❙✳ ❚❙✳ ❚r➬♥ ❱➝♥ ➣♥✱ ❝❤ó♥❣ t➠✐ ➤➲ t✐Õ♣ ❝❐♥ ❤➢í♥❣ ♥❣❤✐➟♥ ❝ø✉ ✈Ị ♥❤÷♥❣ ♠ë ré♥❣ ♥ã✐ tr➟♥ ✈➭ t❤ù❝ ❤✐Ư♥ ➤Ị t➭✐✿ ▼ét sè ➤Þ♥❤ ❧ý ➤✐Ĩ♠ ❜✃t ➤é♥❣ ➤è✐ ✈í✐ ❝➳❝ ➳♥❤ ①➵ t❤á❛ ♠➲♥ ➤✐Ị✉ ❦✐Ư♥ ❝♦ ❝②❝❧✐❝ tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣✳ ▲✉❐♥ ✈➝♥ ♥❤➺♠ ♥❣❤✐➟♥ ❝ø✉ ❝➳❝ ❦❤➳✐ ♥✐Ư♠✱ ❝➳❝ tÝ♥❤ ❝❤✃t ❝➡ ❜➯♥ ✈Ị ➤✐Ị✉ ❦✐Ư♥ ❝♦ ❝②❝❧✐❝✱ ➤✐Ị✉ ❦✐Ư♥ ❝♦ ❦✐Ĩ✉ ❝②❝❧✐❝✱ ❝➳❝ tÝ♥❤ ❝❤✃t ✈➭ ♠è✐ q✉❛♥ ❤Ư ❝đ❛ ❝❤ó♥❣✱ ❝➳❝ ➤Þ♥❤ ❧Ý ➤✐Ĩ♠ ❜✃t ➤é♥❣ ❝đ❛ ❝➳❝ ➳♥❤ ①➵ t❤♦➯ ♠➲♥ ➤✐Ị✉ ❦✐Ư♥ ❝♦ ❦✐Ĩ✉ ❝②❝❧✐❝ tr➟♥ ✶ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ ✈➭ ♥❣❤✐➟♥ ❝ø✉ ♥❤÷♥❣ ♥❤❐♥ ①Ðt ♠í✐ ❝đ❛ ❝➳❝ ➤è✐ t➢ỵ♥❣ tr➟♥ tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣✳ ❱í✐ ♠ơ❝ t✐➟✉ tr ợ trì t ✶ ✈í✐ ♥❤❛♥ ➤Ị ➜✐Ĩ♠ ❜✃t ➤é♥❣ ➤è✐ ✈í✐ ❝➳❝ ➳♥❤ ①➵ t❤á❛ ♠➲♥ ➤✐Ị✉ ❦✐Ư♥ ❝♦ ❝②❝❧✐❝ tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝✳ ❚r♦♥❣ ❝❤➢➡♥❣ ♥➭②✱ ▼ơ❝ ✶ t➳❝ ❣✐➯ ❣✐í✐ t❤✐Ư✉ ♠ét sè ❦✐Õ♥ t❤ø❝ ❧➭♠ ❝➡ së tr×♥❤ ❜➭② ❝đ❛ ❧✉❐♥ ✈➝♥✳ ▼ơ❝ ✷ tr×♥❤ ❜➭② ❝➳❝ ❦Õt q✉➯ ✈Ị ➤✐Ĩ♠ ❜✃t ➤é♥❣ ❝đ❛ ❝➳❝ ➳♥❤ ①➵ t❤♦➯ ♠➲♥ ➤✐Ị✉ ❦✐Ư♥ ❝♦ ❝②❝❧✐❝ tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝✳ ❈❤➢➡♥❣ ✷ ✈í✐ t✐➟✉ ➤Ị ➜✐Ĩ♠ ❜✃t ➤é♥❣ ➤è✐ ✈í✐ ➳♥❤ ①➵ ❝♦ ❝②❝❧✐❝ tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣✳ ❚r♦♥❣ ❝❤➢➡♥❣ ♥➭②✱ ▼ơ❝ ✶ ❞➭♥❤ ❝❤♦ ✈✐Ư❝ tr×♥❤ ❜➭② ❝➳❝ ❦Õt q✉➯ ✈Ị ➤✐Ĩ♠ ❜✃t ➤é♥❣ ➤è✐ ✈í✐ ❝➳❝ ➳♥❤ ①➵ t❤♦➯ ♠➲♥ ➤✐Ị✉ ❦✐Ư♥ ❝♦ ❝②❝❧✐❝ ❦✐Ĩ✉ ❍❛r❞② ❘♦❣❡rs tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣✳ ▼ơ❝ ✷ tr×♥❤ ❜➭② ❝➳❝ ❦Õt q✉➯ ✈Ị ➤✐Ĩ♠ ❜✃t ➤é♥❣ ➤è✐ ✈í✐ ❝➳❝ ➳♥❤ ①➵ ❝♦ ❝②❝❧✐❝ s✉② ré♥❣ tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣✳ ▲✉❐♥ ✈➝♥ ➤➢ỵ❝ ❤♦➭♥ t❤➭♥❤ t➵✐ ❚r➢ê♥❣ ➜➵✐ ❤ä❝ ❱✐♥❤ ❞➢í✐ sù ❤➢í♥❣ ❞➱♥ t❐♥ t×♥❤ ❝đ❛ t❤➬② ❣✐➳♦ P●❙✳ ❚❙✳ ❚r➬♥ ❱➝♥ ➣♥✳ ❚➳❝ ❣✐➯ ①✐♥ ❜➭② tá ❧ß♥❣ ❜✐Õt ➡♥ s➞✉ s➽❝ ♥❤✃t ➤Õ♥ t❤➬②✱ ♥❤➞♥ ❞Þ♣ ♥➭② t➳❝ ❣✐➯ ①✐♥ ❝❤➞♥ t❤➭♥❤ ❝➯♠ ➡♥ ❇❛♥ ❝❤đ ♥❤✐Ư♠ ❦❤♦❛ ❚♦➳♥✱ P❤ß♥❣ ➤➭♦ t➵♦ ❙❛✉ ➤➵✐ ❤ä❝✱ q✉ý t❤➬②✱ ❝➠ tr♦♥❣ tỉ ●✐➯✐ tÝ❝❤ ❦❤♦❛ ❚♦➳♥ ❚r➢ê♥❣ ➜➵✐ ❤ä❝ ❱✐♥❤✱ P❤ß♥❣ tỉ ❝❤ø❝ ❚r➢ê♥❣ ➜➵✐ ❤ä❝ ❙➭✐ ●ß♥ ➤➲ ❣✐ó♣ ➤ì tr♦♥❣ q✉➳ tr×♥❤ ❤ä❝ t❐♣ ✈➭ ❤♦➭♥ t❤➭♥❤ ❧✉❐♥ ✈➝♥✳ ❚➳❝ ❣✐➯ ❝ò♥❣ ①✐♥ ❝➳♠ ➡♥ ❝➳❝ ❜➵♥ ❤ä❝ ✈✐➟♥ ❝❛♦ ❤ä❝ ❦❤ã❛ ✷✵ ❚♦➳♥ ✲ ●✐➯✐ tÝ❝❤ t➵✐ ❚r➢ê♥❣ ọ ò t ề ệ t ợ ❣✐ó♣ t➳❝ ❣✐➯ ❤♦➭♥ t❤➭♥❤ ♥❤✐Ư♠ ✈ơ tr♦♥❣ s✉èt q✉➳ tr×♥❤ ❤ä❝ t❐♣✳ ▼➷❝ ❞ï ❝ã ♥❤✐Ị✉ ❝è ❣➽♥❣✱ s♦♥❣ ❧✉❐♥ ✈➝♥ ❦❤➠♥❣ tr➳♥❤ ❦❤á✐ ♥❤÷♥❣ s❛✐ ①ãt✳ ❘✃t ♠♦♥❣ ợ ữ ý ế ó ó ủ qí t ❝➠ ✈➭ ❜➵♥ ➤ä❝ ➤Ĩ ❧✉❐♥ ✈➝♥ ➤➢ỵ❝ ❤♦➭♥ t❤✐Ư♥✳ ❱✐♥❤✱ ♥❣➭② ✵✼ t❤➳♥❣ ✺ ♥➝♠ ✷✵✶✹ ❍✉ú♥❤ ❚❤Þ ❑✐♠ ❉✉♥❣ ✷ ❝❤➢➡♥❣ ✶ ➜✐Ĩ♠ ❜✃t ➤é♥❣ ➤è✐ ✈í✐ ❝➳❝ ➳♥❤ ①➵ t❤á❛ ♠➲♥ ➤✐Ị✉ ❦✐Ư♥ ❝♦ ❈②❝❧✐❝ tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ ❈➳❝ ❦❤➳✐ ♥✐Ư♠ ❝➡ ❜➯♥ ✶✳✶ ➜Þ♥❤ ♥❣❤Ü❛✳ ✶✳✶✳✶ ♠ét ♠➟tr✐❝ tr➟♥ X ✭❬✶❪✮ ❈❤♦ t❐♣ ❤ỵ♣ d(x, y) ≥ ✷✮ d (x, y) = d (y, x) ✸✮ d (x, z) ≤ d (x, y) + d (y, z) ♠➟tr✐❝ X ✈í✐ ♠ä✐ x, y ∈ X ✈í✐ ♠ä✐ ✈➭ ❦ý ❤✐Ư✉ ❧➭ (X, d) ✭❬✶❪✮ ✈➭ d : X ×X → R d (x, y) = x, y ∈ X ❝ï♥❣ ✈í✐ ♠ét ♠➟tr✐❝ ▼Ư♥❤ ➤Ị✳ ✶✳✶✳✷ ✳ ❍➭♠ ➤➢ỵ❝ ❣ä✐ ❧➭ ♥Õ✉ t❤á❛ ♠➲♥ ❝➳❝ ➤✐Ị✉ ❦✐Ư♥ s❛✉ ✶✮ ❚❐♣ ❤ỵ♣ X ●✐➯ sö x, y, z ∈ X ❀ ✳ tr➟♥ ♥ã ➤➢ỵ❝ ❣ä✐ ❧➭ ♠ét ❤❛② ➤➡♥ ❣✐➯♥ ❧➭ x=y ❀ ✈í✐ ♠ä✐ d ❦❤✐ ✈➭ ❝❤Ø ❦❤✐ X ❦❤➠♥❣ ❣✐❛♥ ✳ (X, d) ❧➭ ♠ét ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝✱ xi ∈ X, i = 1, 2, , n✳ ❑❤✐ ➤ã✱ t❛ ❝ã d(x1 , xn ) ≤ d(x1 , x2 ) + d(x2 , x3 ) + · · · + d(xn−1 , xn ) ➜Þ♥❤ ♥❣❤Ü❛✳ ✶✳✶✳✸ ❤é✐ tơ ❦❤✐ ✶✳✶✳✹ tí✐ ➤✐Ĩ♠ ✭❬✶❪✮ ❉➲② x∈X {xn } ✈➭ ❦Ý ❤✐Ö✉ ❧➭ tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ xn → x ❤❛② (X, d) lim xn = x n→∞ ♥Õ✉ ➤➢ỵ❝ ❣ä✐ ❧➭ d (x, xn ) → n→∞ ✳ ▼Ư♥❤ ➤Ị✳ ✭❬✶❪✮ ●✐➯ sư (X, d) ❧➭ ♠ét ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝✳ ❑❤✐ ➤ã ✶✮ ◆Õ✉ {xn } ⊂ X ✱ xn → x ✈➭ xn → y ✱ t❤× x = y ✳ ✷✮ ◆Õ✉ {xn }, {yn } ❧➭ ❝➳❝ ❞➲② tr♦♥❣ X ✱ xn → x, yn → y ✱ t❤× d (xn , yn ) d (x, y) ị ĩ ợ ❣ä✐ ❧➭ n, m ≥ n0 ✭❬✶❪✮ ❞➲② ❈❛✉❝❤② ◆❤❐♥ ①Ðt✳ ✷✮ ◆Õ✉ ❞➲② {xnk } ε>0 ♥Õ✉ ✈í✐ ♠ä✐ (X, d) tå♥ t➵✐ sè n0 ∈ N {xn } X tr♦♥❣ s❛♦ ❝❤♦ ✈í✐ ♠ä✐ ✳ ➤➬② ➤đ ➤➢ỵ❝ ❣ä✐ ❧➭ {xn } ♥Õ✉ ♠ä✐ ❞➲② ❈❛✉❝❤② tr♦♥❣ ❝❤♦ ✈í✐ ♠ä✐ ◆❤❐♥ ①Ðt✳ tõ X (X, d) ✈➭ ➤➢ỵ❝ ❣ä✐ ❧➭ ❝ị♥❣ ❤é✐ tơ ✈Ị (Y, ρ) x ✈➭ ❝ã ❞➲② ❝♦♥ ✳ ❧➭ ❝➳❝ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝✳ ➳♥❤ ①➵ ❝♦ ♥Õ✉ tå♥ t➵✐ ➳ 0≤k r}✱ t➢➡♥❣ ø♥❣✮ ♠ë tr♦♥❣ X✳ ✶✳✶✳✶✺ f ➜Þ♥❤ ❧Ý✳ ❧✐➟♥ tơ❝ t➵✐ t➵✐ ✭❬✼❪✮ x∈X ●✐➯ sö X ❧➭ ❦❤➠♥❣ ❣✐❛♥ t➠♣➠ ✈➭ ❦❤✐ ✈➭ ❝❤Ø ❦❤✐ f f : X → R✳ ❑❤✐ ➤ã✱ ♥ö❛ ❧✐➟♥ tơ❝ tr➟♥ ✈➭ ♥ư❛ ❧✐➟♥ tơ❝ ❞➢í✐ x0 ✳ ị ĩ AR f ợ ❣ä✐ ❧➭ h∈R s❛♦ ❝❤♦ f (x) ≥ h ✶✳✶✳✶✼ ị ĩ ợ ọ ột X ♠➟tr✐❝✱ ❜Þ ❝❤➷♥ ❞➢í✐ ✭❜Þ ❝❤➷♥ tr➟♥✮ ✭t➢➡♥❣ ø♥❣✱ f (x) ≤ h ✮ ✈í✐ ♠ä✐ ✭❬✶✵✱ ✶✹❪✮ ❈❤♦ t❐♣ rỗ tr r = A X tr X X tr➟♥ x∈A ✳ ❍➭♠ A p (x, y) = p (y, x) ✭P✷✮ ◆Õ✉ ✳ p : X × X → R+ ✭P✸✮ p (x, x) ≤ p (x, y) ✭P✹✮ p (x, z) + p (y, y) ≤ p (x, y) + p (y, z) ❀ ≤ p (x, x) = p (x, y) = p (y, y) ✱ t❤× x=y ❀ ❀ ✈í✐ ♠ä✐ x, y, z ∈ X ❑❤✐ ➤ã✱ ❝➷♣ ✳ (X, p) ➤➢ỵ❝ ❣ä✐ ❧➭ ♠ét ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣✳ ✻ f : ♥Õ✉ tå♥ t➵✐ ♥Õ✉ t❤♦➯ ♠➲♥ ❝➳❝ ➤✐Ị✉ ❦✐Ư♥ s P ét ỗ tr r p (x, y) < p (x, x) + } ➜Þ♥❤ ♥❣❤Ü❛✳ ✶✮ ❉➲② X tr➟♥ s✐♥❤ r❛ ♠ét t➠♣➠ {Bp (x, ε) : x ∈ X, ε > 0} ❤ä ❝➳❝ ❤×♥❤ p ỗ (X, p) {xn } ⊂ X x∈X ➤➢ỵ❝ ❣ä✐ ❧➭ τp tr♦♥❣ ➤ã tr➟♥ X ❝ã ❝➡ së ❧➭ Bp (x, ε) {y ∈ X ❂ ✿ >0 ✈➭ ✳ ❧➭ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣✳ ❤é✐ tơ ➤Õ♥ ➤✐Ĩ♠ x∈X lim p(x, xn ) = ♥Õ✉ n→∞ p(x, x) ✳ ✷✮ ❉➲② {xn } tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣ lim p(xn , xm ) = p(x, x) ♥Õ✉ tå♥ t➵✐ ✸✮ n,m→∞ ❈❛✉❝❤② {xn } ♥❣❤Ü❛ ❧➭ t❛ ❝ã ✹✮ ➳ ♥❤ ①➵ ε>0 ✺✮ ♥❤ ①➵ x∈X ❉➲② {xn } ❈❛✉❝❤② ✷✮ x∈X ➤➢ỵ❝ ❣ä✐ ❧➭ ➤Ị✉ ❤é✐ tơ t❤❡♦ t➠♣➠ τp ❞➲② ❈❛✉❝❤② ➤➢ỵ❝ ❣ä✐ ❧➭ ✳ ➤➬② ➤đ ♥Õ✉ ♠ä✐ ❞➲② ➤Õ♥ ♠ét ➤✐Ó♠ x∈X ✱ lim p(xn , xm ) = p(x, x) ✳ δ>0 ❧✐➟♥ tơ❝ ➤➢ỵ❝ ❣ä✐ ❧➭ s❛♦ ❝❤♦ t➵✐ x0 ∈ X ♥Õ✉ ✈í✐ ♠ä✐ f (Bp (x0 , δ)) ⊂ Bp (f (x0 ), ) ✳ ➤➢ỵ❝ ❣ä✐ ❧➭ ❧✐➟♥ tơ❝ tr➟♥ X ♥Õ✉ f ❧✐➟♥ tô❝ t➵✐ ✳ ✭❬✶✹❪✮ ❈❤♦ (X, p) ❧➭ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣✳ tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣ ♥Õ✉ ❑❤➠♥❣ ❣✐❛♥ X ✈í✐ n,m→∞ f :X → X ➜Þ♥❤ ♥❣❤Ü❛✳ ✶✮ X tr♦♥❣ f : X → X tå♥ t➵✐ ➳ ♠ä✐ ✶✳✶✳✶✾ (X, p) ❑❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣ (X, p) (X, p) ➤➢ỵ❝ ❣ä✐ ❧➭ ❞➲② 0✲ lim p(xn , xm ) = ✳ n,m→∞ (X, p) ➤➢ỵ❝ ❣ä✐ ❧➭ ➤Ị✉ ❤é✐ tơ ✭t❤❡♦ t➠♣➠ τp 0✲➤➬② ➤đ ♥Õ✉ ♠ä✐ ❞➲② ✮ ✈Ị ➤✐Ĩ♠ ♥➭♦ ➤ã x∈X ✲❈❛✉❝❤② tr♦♥❣ s❛♦ ❝❤♦ p(x, x) = ✳ ✶✳✶✳✷✵ ➜Þ♥❤ ♥❣❤Ü❛✳ ✭❬✹❪✮ ●✐➯ sư ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣ ➤➬② ➤đ X ➤➢ỵ❝ ❣ä✐ ❧➭ ♠ét ✭❈✶✮ ❝♦ ❝②❝❧✐❝ f (A) ⊆ B ✈➭ A ✈➭ B (X, p) t ó rỗ ủ s ❝❤♦ X = A∪B ✳ ♥Õ✉ t❤♦➯ ♠➲♥ ❝➳❝ ➤✐Ò✉ ❦✐Ö♥ s❛✉ f (B) ⊆ A ❀ ✼ ➳ ♥❤ ①➵ f :X→ ❈é♥❣ ✈Õ ✈í✐ ✈Õ ✷ ❜✃t ➤➻♥❣ t❤ø❝ ♥➭② t❛ s✉② r❛ r➺♥❣ p f x, f x ≤ 2A + B + C + D + E p (x, f x) = λp (x, f x) − (B + C + D + E + 2F ) ◆❤ê ➤✐Ị✉ ❦✐Ư♥ ✭✸✳✸✮ t❛ ❝ã 2A+B+C+D+E 2−(B+C+D+E+2F ) ≤ λ = ➤✐Ị✉ ❦✐Ư♥ q✉ü ➤➵♦✳ ❚❤❡♦ ➜Þ♥❤ ❧Ý ✷✳✶✳✷✱ tå♥ t➵✐ p (f z, z) = p (f z, f z) ✳ ●✐➯ sö X (X, p) ➳ ♣ ❞ơ♥❣ ❇ỉ ➤Ị ✷✳✶✳✸✱ f z∈Y < s❛♦ ❝❤♦ ❝ã tÝ♥❤ ❝❤✃t ❧➭ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣ ✈➭ f ✳❉♦ ➤ã t❤♦➯ p (z, z) = ✈➭ (P ) ✳ f :X→X ❧➭ ♠ét ➳♥❤ ①➵ tõ ✈➭♦ ❝❤Ý♥❤ ♥ã✳ ❑ý ❤✐Ö✉ Mf5 (x, y) = {p (x, y) , p (x, f x) , p (y, f y) , p (x, f y) , p (y, f x)}; Mf4 (x, y) = {p (x, y) , p (x, f x) , p (y, f y) , 12 (p (x, f y) + p (y, f x))}; Mf3 (x, y) = {p (x, y) , 12 (p (x, f x) + p (y, f y)), 12 (p (x, f y) + p (y, f x))} ✷✳✶✳✶✵ ➜Þ♥❤ ❧Ý✳ ✭❬✶✺❪✮ ●✐➯ sư (X, p) 0✲➤➬② ❧➭ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣ ➤ñ✱ m m ∈ N✱ A1 , A2 , , Am X t ó rỗ ủ Ai ✈➭ i=1 f : Y → Y ✳ ●✐➯ sö r➺♥❣ m ✭❛✮ Y = Ai ❧➭ ♠ét ❜✐Ĩ✉ ❞✐Ơ♥ ❝②❝❧✐❝ ❝đ❛ Y ➤è✐ ✈í✐ f✳ i=1 ✭❜✮ ❚å♥ t➵✐ ✭✈í✐ λ ∈ [0, 1) s❛♦ ❝❤♦ ✈í✐ ♠ä✐ (x, y) ∈ Ai × Ai+1 , i = 1, 2, , m Am+1 = A1 ✮✱ p (f x, f y) ≤ λ max Mfj (x, y) ✈í✐ j = 3, j = ❤♦➷❝ j = 5✳ m ♥÷❛✱ p (z, z) = ✈➭ z ∈ ❑❤✐ ➤ã✱ f (3.7) z✳ ❝ã ➤✐Ó♠ ❜✃t ➤é♥❣ ❞✉② ♥❤✃t ❍➡♥ Ai ✳ i=1 ❈❤ø♥❣ ♠✐♥❤✳ ▲✃② ❜✃t ỳ ỗ n N ý ệ rớ ết t ❝❤ø♥❣ ♠✐♥❤ ❝❤♦ tr➢ê♥❣ ❤ỵ♣ x0 ∈ Y t❛ ➤➷t ✳ ❑❤✐ ➤ã✱ tå♥ t➵✐ xn+1 = f xn ✳ sup{p (x, y) : x, y ∈ A} ✳ s❛♦ ❝❤♦ x ∈ Ai ❑❤✐ ➤ã ♥❤ê ❣✐➯ t❤✐Õt t❛ ❝ã Of (x0 ; n) = {x1 , x2 , , xn } Of (x0 ; ∞) = {x1 , x2 , , xn , } i = 1, , m j=5 ❧➭ q✉ü ➤➵♦ t❤ø ❧➭ q✉ü ➤➵♦ ❝đ❛ x0 n ❝đ❛ ✷✹ ❱í✐ {xn } ⊂ Y x0 ✳ ✈➭ ❦ý ❤✐Ư✉ ✳ ❚❛ ❝ị♥❣ ❦ý ệ í ủ t rỗ A ⊂ X ✳ A= ▲➢✉ ý r➺♥❣ ♥Õ✉ ❞✐❛♠ A=0 A t❤× ❧➭ t❐♣ ❣å♠ ♠ét ➤✐Ĩ♠ ❞✉② ♥❤✃t✳ ❚✉② ♥❤✐➟♥ ➤✐Ị✉ ♥❣➢ỵ❝ ❧➵✐ ❧➭ ❦❤➠♥❣ ➤ó♥❣✳ ❚r➢í❝ t✐➟♥✱ t❛ t❤✃② r➺♥❣ ♥Õ✉ t❛ ❝ã f xn = xn+1 = xn p(xn , xn+1 ) = ✱ ♥❣❤Ü❛ ❧➭ p(xn , xn ) = ✳ ❱× t❤Õ t❛ ❣✐➯ sư r➺♥❣ xn ✈í✐ sè ♥➭♦ ➤ã ❧➭ ➤✐Ĩ♠ ❜✃t ➤é♥❣ ❝ñ❛ f ≤ i, j ≤ n ✱ t❤× ✈➭ t❤á❛ ♠➲♥ p(xn , xn+1 ) > n∈N Of (x0 ; ∞) ≤ 1−λ p (x1 , x2 ) ✈í✐ ♠ä✐ ❇➞② ❣✐ê t❛ ❝❤ø♥❣ ♠✐♥❤ r➺♥❣ ❞✐❛♠ ❣✐➯ sö n ∈ N ✳ ✳ ❚❤❐t ✈❐②✱ ✳ ❑❤✐ ➤ã✱ t❛ ❝ã p (xi+1 , xj+1 ) = p (f xi , f xj ) (3.8) = λ max{p (xi , xj ) , p (xi , xi+1 ) , p (xj , xj+1 ) , p (xi , xj+1 ) , p (xj , xi+1 )} ❉♦ xi , xi+1 , xj , xj+1 ∈ Of (x0 ; n) ✱ t❛ s✉② r❛ p (xi+1 , xj+1 ) ≤ λ k≤n ❱× ✈❐②✱ tå♥ t➵✐ t❛ ❝ã ❞✐❛♠ s❛♦ ❝❤♦ ❞✐❛♠ Of (x0 ; n) < ❞✐❛♠ Of (x0 ; n) Of (x0 ; n) = p (x1 , xk ) ✳ ◆❤ê ➤✐Ò✉ ❦✐Ö♥ ✭P✹✮ p (x1 , xk ) ≤ p (x1 , x2 )+p (x2 , xk )−p (x2 , x2 ) ≤ p (x1 , x2 )+p (x2 , xk ) ✱ ♥➟♥ t❛ s✉② r❛ ❞✐❛♠ Of (x0 , n) ≤ p (x1 , x2 ) + λ ➜✐Ò✉ ♥➭② ❦Ð♦ t❤❡♦ ❞✐❛♠ Of (x0 , n) ≤ ❞✐❛♠ Of (x0 ; n) 1−λ p (x1 , x2 )✳ ▲✃② ❝❐♥ tr➟♥ ➤ó♥❣ ❝đ❛ ❜✃t ➤➻♥❣ t❤ø❝ ♥➭② t❛ ❝ã ➤✐Ò✉ ❝➬♥ ❝❤ø♥❣ ♠✐♥❤✳ ❚✐Õ♣ t❤❡♦ t❛ ❝❤ø♥❣ ♠✐♥❤ r➺♥❣ ✈í✐ λn 1−λ p (x1 , x2 )✳ m > n ≥ ✱ t❛ ❝ã p (xm+1 , xn+1 ) ≤ ❚❤❐t ✈❐②✱ t➢➡♥❣ tù ♥❤➢ ➤è✐ ✈í✐ ❝➠♥❣ t❤ø❝ ✭✸✳✽✮ t❛ ❝ã p (xm+1 , xn+1 ) ≤ λ max{p (xm , xn ) , p (xm , xm+1 ) , p (xn , xn+1 ) , p (xm , xn+1 ) , p (xn , xm+1 )} ❱× xm , xm+1 , xn , xn+1 ∈ Of (xn−1 ; m − n + 2) = λp (xn , xk1 ) p (xm+1 , xn+1 ) ≤ λ ✈í✐ sè k1 ♥➭♦ ➤ã ♠➭ ❞✐❛♠ t❛ ❝ã Of (xn−1 ; m − n + 2) = λp(xn , xk1 ), (3.9) n + ≤ k1 ≤ m + ✳ ❚➢➡♥❣ tù✱ t❛ ❝ã p (xn , xk1 ) ≤ λ max{p (xn−1 , xk1 −1 ) , p (xn−1 , xn ) , p (xk1 −1 , xk1 ) , p (xn−1 , xk1 ) , p (xn , xk1 −1 )} ≤ λ ❞✐❛♠ Of (xn−2 ; m − n + 3) ✷✺ ❑Õt ❤ỵ♣ ✈í✐ ✭✸✳✾✮ t❛ ❝ã p (xm+1 , xn+1 ) ≤ λ2 p (xn−1 , xk2 ) ✈í✐ k2 ≤ m + ✳ ❚✐Õ♣ tơ❝ q✉➳ tr×♥❤ ♥➭②✱ t❛ t❤✉ ➤➢ỵ❝ p (xm+1 , xn+1 ) ≤ λn−1 ❞✐❛♠ ≤ λn−1 λ Of (x0 ; m − 1) = λn−1 p x1 , ykn−1 ❞✐❛♠ Of (x0 ; m) ≤ ❚õ ❜✃t ➤➻♥❣ t❤ø❝ ❝✉è✐ ❝ï♥❣ ♥➭② t❛ s✉② r❛ ♥❣❤Ü❛ ❧➭ t➵✐ {xn } z∈Y ❧➭ ❞➲② ✲❈❛✉❝❤②✳ ❉♦ (X, p) λn 1−λ p (x1 , x2 ) p (xn , xm ) → ❧➭ ✲➤➬② ➤ñ ✈➭ Y ❦❤✐ m, n → ∞ ✱ ❧➭ ➤ã♥❣ ♥➟♥ tå♥ s❛♦ ❝❤♦ lim p (xn , z) = = p(z, z) n→∞ m ❍➡♥ ♥÷❛✱ z∈ Ai ✳ ❚❛ sÏ ❝❤ø♥❣ ♠✐♥❤ r➺♥❣ fz = z ✳ ❉ï♥❣ tÝ♥❤ ❝❤✃t ✭P✹✮ ❝ñ❛ i=1 ♠➟tr✐❝ r✐➟♥❣ ✈➭ ➤✐Ị✉ ❦✐Ư♥ ✭✸✳✼✮ ✈í✐ j=5 ✱ t❛ ❝ã p (f z, z) ≤ p (f z, f xn ) + p (f xn , z) ≤ λ max{p (z, xn ) , p (z, f z) , p (xn , xn+1 ) , p (z, xn+1 ) , p (xn , f z)} +p (xn+1 ; z) ❉♦ p (z, xn ) , p (xn , xn+1 ) ➤Ò ✶✳✶✳✷✸ t❛ ❝ã ❞➬♥ ➤Õ♥ ✵ ❦❤✐ ✱ ♥➟♥ ♥Õ✉ ❣✐➯ sư n→∞ ✱ ➤✐Ị✉ ♥➭② ♠➞✉ t❤✉➱♥ ✈× ✈➭ ✈× t❤Õ fz = z ✳ ✈➭ ♥❤ê ❇æ p (f z, z) > p (f z, z) ≤ λp (f z, z) p (f z, z) = f z1 = z1 p (z, xn+1 ) p (xn , f z) → p (z, f z) ➤➻♥❣ t❤ø❝ t❛ ❝ã ➤ã✱ ✈➭ ❇➞② ❣✐ê ❣✐➯ sö tå♥ t➵✐ t❤× tõ ❜✃t λ ∈ [0, 1) ✳ ❉♦ z1 ∈ Y s❛♦ ❝❤♦ ✳ ❑❤✐ ➤ã✱ ♥❤ê tÝ♥❤ ❝❤✃t ✭P✷✮ ❝ñ❛ ♠➟tr✐❝ r✐➟♥❣ t❛ ❝ã p (z, z1 ) = p (f z, f z1 ) ≤ λ max{p (z, z1 ) , p (z, f z) , p (f z1 , f z1 ) , p (z, f z1 ) , p (z1 , f z)} = λ max{p (z, z1 ) , p (z, z) , p (z1 , z1 ) , p (z, z1 ) , p (z1 , z)} = λp (z, z1 ) ➜✐Ò✉ ♥➭②✱ ❝❤Ø ①➯② r❛ ❦❤✐ p (z, z1 ) = ✱ ✈× ✈❐② z = z1 ✳ ❉♦ ➤ã✱ f ❝ã ➤✐Ó♠ ❜✃t ➤é♥❣ ❞✉② ♥❤✃t✳ ❈➳❝ tr➢ê♥❣ ❤ỵ♣ t❤ø❝ j=3 ✈➭ j=4 s✉② tõ tr➢ê♥❣ ❤ỵ♣ j=5 max Mf3 (x, y) ≤ max Mf4 (x, y) ≤ max Mf5 (x, y) ✳ ✷✻ ♥❤ê ❝➳❝ ❜✃t ➤➻♥❣ (X, p) ●✐➯ sư ❍Ư q✉➯✳ ✷✳✶✳✶✶ 0✲➤➬② ❧➭ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣ m ∈ ➤ñ✱ m Ai ✈➭ f : Y → N, A1 , A2 , , Am ❧➭ ❝➳❝ t❐♣ ❝♦♥ ➤ã♥❣ rỗ ủ X i=1 Y sử r➺♥❣ m ✭❛✮ Y = Ai ❧➭ ♠ét ❜✐Ĩ✉ ❞✐Ơ♥ ❝②❝❧✐❝ ❝đ❛ Y ➤è✐ ✈í✐ f✳ i=1 ✭❜✮ ❚å♥ t➵✐ ✭✈í✐ λ ∈ [0, 1) s❛♦ ❝❤♦ ✈í✐ ♠ä✐ (x, y) ∈ Ai × Ai+1 , i = 1, 2, , m Am+1 = A1 ✮✱ p (f x, f y) ≤ λ max{p (x, f x) , p (y, f y)} ❤❛② p (f x, f y) ≤ λ max{p (x, y) , p (x, f x) , p (y, f y)} m ❑❤✐ ➤ã✱ f ❝ã ➤✐Ĩ♠ ❜✃t ➤é♥❣ z ❞✉② ♥❤✃t✳ ❍➡♥ ♥÷❛✱ p (z, z) = ✈➭ z ∈ Ai ✳ i=1 ❈❤ø♥❣ ♠✐♥❤✳ ❉Ô t❤✃② r➺♥❣ max{p (x, f x) , p (y, f y)} ≤ max Mf5 (x, y) ✈➭ max{p (x, y) , p (x, f x) , p (y, f y)} ≤ max Mf5 (x, y) ❱× t❤Õ ❦Õt ❧✉❐♥ ❝đ❛ ❤Ư q✉➯ s✉② tõ ➜Þ♥❤ ❧ý ✷✳✶✳✶✵✳ ✷✳✶✳✶✷ ❍Ö q✉➯✳ ✭❬✶✺❪✮ f : X → X ➳♥❤ ①➵ x, y ∈ X xn → z ✈➭ ❣✐➯ sư t❤❡♦ t➠♣➠ ❈❤ø♥❣ ♠✐♥❤✳ {xn } ❱× t❤á❛ ♠➲♥ ➤✐Ị✉ ❦✐Ư♥ ✭✸✳✼✮ ✈í✐ f z = z✳ f z ✳ ❦❤✐ f ❧✐➟♥ tơ❝ t➵✐ ➤✐Ĩ♠ ❞✉② ♥❤✃t ✈➭ t❤♦➯ ♠➲♥ lim p (xn , z) = p (z, z) τp ❑❤✐ ➤ã✱ λ ∈ [0, 1) t❤❡♦ t➠♣➠ z✱ ✈➭ ✈í✐ ♠ä✐ ♥❣❤Ü❛ ❧➭ ♥Õ✉ τp ✳ f t❤á❛ ♠➲♥ ➤✐Ị✉ ❦✐Ư♥ ✭✸✳✼✮✱ ♥➟♥ t❤❡♦ ➜Þ♥❤ ❧Ý ✷✳✶✳✶✵ ❧➭ ♠ét ❞➲② tr♦♥❣ n→∞ t❤❡♦ (X, p) ❧➭ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣ 0✲➤➬② ➤đ ✈➭ τp ✱ t❤× t❛ ❝ã f xn → f z = z ♠ét ➤✐Ó♠ ❜✃t ➤é♥❣ sö ●✐➯ sö X s❛♦ ❝❤♦ p (z, z) = p (f z, f z) = xn → z t❤❡♦ t➠♣➠ τp ❦❤✐ ❚❛ ♣❤➯✐ ❝❤ø♥❣ ♠✐♥❤ r➺♥❣ ❦❤✐ ➤ã ❝ã ✳ ●✐➯ n→∞ ✱ ❤❛② f xn → f z = z n→∞ ✱ ♥❣❤Ü❛ ❧➭ lim p (f xn , f z) = p (f z, f z) = p (z, z) = n→∞ ✷✼ (3.10) ❚❤❐t ✈❐②✱ t❛ ❝ã p (f xn , f z) ≤ λ max{p (xn , z) , p (xn , f xn ) , p (z, f z) , p (xn , f z) , p (z, f xn )} ≤ λ max{p (xn , z) , p (xn , z) + p (f z, f xn ) , 0, p (xn , z) , p (f z, f xn )} = λ(p (xn , z) + p (f z, f xn )) ❙✉② r❛ p (f xn , f z) ≤ λ 1−λ p (xn , z) n ì tế tứ ợ ❝❤ø♥❣ ♠✐♥❤✳ ➜Þ♥❤ ❧Ý✳ ✷✳✶✳✶✸ ✭❬✶✺❪✮ ❈❤♦ ❦✐Ư♥ ❝đ❛ ➜Þ♥❤ ❧Ý ✷✳✶✳✶✵ ✈í✐ ➜➷❝ ❜✐Ưt✱ tå♥ t➵✐ ♣❤➬♥ tư ✈➭ f ❝ị♥❣ ❝ã tÝ♥❤ ❝❤✃t ❈❤ø♥❣ ♠✐♥❤✳ ❱× f (X, p) ✈➭ ➳♥❤ ①➵ f : Y → Y t❤á❛ ♠➲♥ ❝➳❝ ➤✐Ò✉ λ ∈ [0, 21 )✳ ❑❤✐ ➤ã✱ f t❤♦➯ ➤✐Ị✉ ❦✐Ư♥ q✉ü ➤➵♦ ✭✸✳✷✮✳ z ∈ X s❛♦ ❝❤♦ p (z, z) = ✈➭ p (f z, z) = p (f z, f z) (P )✳ t❤á❛ ♠➲♥ ❝➳❝ ➤✐Ị✉ ❦✐Ư♥ ❝đ❛ ➜Þ♥❤ ❧Ý ✷✳✶✳✶✵ ✈í✐ ♥➟♥ t❤❡♦ ➜Þ♥❤ ❧Ý ✷✳✶✳✶✵ t❛ ❝ã λ ∈ [0, 12 ) ✱ F ix(f ) = φ ✳ ❇➞② ❣✐ê t❛ ❝❤ø♥❣ ♠✐♥❤ r➺♥❣ ♠➲♥ ➤✐Ị✉ ❦✐Ư♥ ✭✸✳✷✮ ❝đ❛ ➜Þ♥❤ ❧Ý ✷✳✶✳✷✳ ●✐➯ sư x∈Y s❛♦ ❝❤♦ x = fx f t❤á❛ ✳ ❑❤✐ ➤ã t❛ ❝ã p f x, f x ≤ λ max{p (x, f x) , p (x, f x) , p f x, f x , p x, f x , p (f x, f x)} ≤ λ max{p (x, f x) , p f x, f x , p (x, f x) + p f x, f x , p f x, f x } = λ p (x, f x) + p f x, f x ❙✉② r❛ p f x, f x ≤ λ 1−λ p (x, f x)✱ tr♦♥❣ ➤ã λ 1−λ 0 ✳ ψ(0) = ✈➭ ψ(t) ≤ t ✈í✐ ♠ä✐ ❙❛✉ ➤➞②✱ ❝❤ó♥❣ t➠✐ ❣✐í✐ t❤✐Ư✉ ➤Þ♥❤ ♥❣❤Ü❛ ❝đ❛ ➳♥❤ ①➵ ➜Þ♥❤ ♥❣❤Ü❛✳ ✷✳✷✳✶ ✭❬✶✺❪✮ ●✐➯ sö A1 , A2 , , Am sè ♥❣✉②➟♥ ❞➢➡♥❣✱ m Ai Y = ✳ i=1 ψ∈Ψ (X, p) ➳ f :Y →Y ♥❤ ①➵ t≥0 ✳ fψ ✲❝♦ ❝②❝❧✐❝ s✉② ré♥❣✳ ❧➭ ♠ét ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣✱ ❧➭ ❝➳❝ t❐♣ ❝♦♥ ➤ã♥❣ rỗ ủ ợ ọ é m X f ✲❝♦ ❝②❝❧✐❝ s✉② ré♥❣ ❧➭ ✈➭ ✈í✐ ♥Õ✉ m ✭❛✮ Y = Ai ❧➭ ♠ét ❜✐Ĩ✉ ❞✐Ơ♥ ❝②❝❧✐❝ ❝đ❛ Y ➤è✐ ✈í✐ f ✳ i=1 ✭❜✮ ❚å♥ t➵✐ α, β ∈ [0, 1) ✈í✐ Ai+1 , i = 1, 2, , m α+β < ✭✈í✐ s❛♦ ❝❤♦ ✈í✐ ♠ä✐ Am+1 = A1 (x, y) ∈ Ai × ✮✱ t❛ ❝ã p (f x, f y) ≤ α♠(x, y) + β ▼(x, y) tr♦♥❣ ➤ã (x, y) = ψ p (x, y) ♠ + p (x, f x) + p (x, y) ✈➭ (x, y) = max{ψ(p (x, y)), ψ(p (x, f x)), ψ(p (y, f y)), ψ( (p (x, y) + p (x, f x)))} ▼ ❑Õt q✉➯ ❝❤Ý♥❤ ❝đ❛ ♠ơ❝ ♥➭② ❧➭ ➤Þ♥❤ ❧Ý s❛✉✳ ✷✾ ➜Þ♥❤ ❧Ý✳ ✷✳✷✳✷ ✭❬✶✺❪✮ ●✐➯ sö (X, p) ❧➭ ♠ét ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣ 0✲➤➬② ➤ñ✱ m m ∈ N✱ A1 , A2 , , Am X✱ Y = ❧➭ ❝➳❝ t ó rỗ ủ Ai i=1 sö f :Y →Y ❧➭ ♣❤Ð♣ fψ ✲❝♦ ❝②❝❧✐❝ s✉② ré♥❣ ✈í✐ ψ ∈ Ψ✳ ❑❤✐ ➤ã✱ f ❝ã m z ➤✐Ĩ♠ ❜✃t ➤é♥❣ ❞✉② ♥❤✃t✳ ❍➡♥ ♥÷❛✱ t❛ ❝ã z∈ Ai ✳ i=1 ❈❤ø♥❣ ♠✐♥❤✳ ✈í✐ ●✐➯ sư x ∈ A1 xn+1 = f xn , n = 0, 1, 2, ✭✈× A1 = φ ✮✳ ❚❛ ①➳❝ ➤Þ♥❤ ❞➲② {xn } ⊂ X ✈➭ ❝❤ø♥❣ ♠✐♥❤ r➺♥❣ lim p (xn , xn+1 ) = (4.1) n→∞ ❚❤❐t ✈❐②✱ ♥Õ✉ tå♥ t➵✐ sè ❝♦ ❝②❝❧✐❝ s✉② ré♥❣✱ Ai × Ai+1 s❛♦ ❝❤♦ α, β ∈ [0, 1) ❇➞② ❣✐ê ❣✐➯ sö r➺♥❣ ✈➭ ✱ tå♥ t➵✐ p (xk+1 , xk ) = ✱ t❤× ♥❤ê α+β < ✱ t❛ s✉② r❛ p (xn , xn+1 ) > nN r ỗ k∈N ✈í✐ ♠ä✐ n∈N f ❧➭ ♣❤Ð♣ fψ ✲ lim p (xn , xn+1 ) = ✳ n→∞ ✳ ❚õ ➤✐Ị✉ ❦✐Ư♥ ✭❛✮✱ t❛ t❤✃② i = i(n) ∈ {1, 2, , m} s❛♦ ❝❤♦ (xn , xn+1 ) ∈ ✳ ❑❤✐ ➤ã✱ tõ ➤✐Ị✉ ❦✐Ư♥ ✭❜✮ t❛ ❝ã p (xn , xn+1 ) ≤ α♠(xn−1 , xn ) + β ▼(xn−1 , xn ), n = 1, 2, (4.2) ▼➷t ❦❤➳❝✱ t❛ ❝ã ♠ (xn−1 , xn ) = ψ p (xn , xn+1 ) + p (xn−1 , xn ) = ψ(p (xn , xn+1 )), + p (xn−1 , xn ) ✈➭ (xn−1 , xn ) = max{ψ(p (xn−1 , xn )), ψ(p (xn , xn+1 )) ▼ ψ( 12 (p (xn−1 , xn+1 ) + p (xn , xn )))} (xn−1 , xn ) = ψ(p (xn , xn+1 )) ▼ ✯ ◆Õ✉ ✱ tõ ✭✹✳✷✮ ✈➭ tÝ♥❤ ❝❤✃t ❝ñ❛ ψ t❛ ❝ã p (xn , xn+1 ) ≤ (α + β)ψp (xn , xn+1 ) < p (xn , xn+1 ) ❱× α+β 0 ✮✳ ❑ý ❤✐Ư✉ ✈í✐ ♠ä✐ ✱ ❤❛② ψ : [0, +∞) → [0, +∞) t ∈ [0, +∞) ✳ ❑❤✐ ➤ã✱ ❞Ô t❤✃② ψ∈Ψ ✳ ❇➞② ❣✐ê t❛ ❝❤ø♥❣ tá r➺♥❣ ❝②❝❧✐❝ s✉② ré♥❣✳ ❚❤❐t ✈❐②✱ ✈í✐ ❜✃t ❦ú y≤x Ai ❑❤✐ ➤ã râ r➭♥❣ f ψ ❧➭ ❤➭♠ ❝❤♦ ❧✐➟♥ tô❝ ✈➭ ❧➭ ♣❤Ð♣ fψ ✲❝♦ (x, y) ∈ Ai × Ai+1 i = 1, ✱ ✱ ❣✐➯ sö r➺♥❣ ✱ ❦❤✐ ➤ã t❛ ❝ã p(f x, f y) = max y2 x2 , 2(1 + x) 2(1 + y) ✸✹ x2 = 2(1 + x) (4.8) ▼➷t ❦❤➳❝ ✈× ψ ❧➭ ❤➭♠ t➝♥❣✱ tõ ❣✐➯ t❤✐Õt x x + max y, p x, 2(1+x) ≤x x ≥ y ✈➭ x ≥ x2 ✱ 2(1+x) t❛ s✉② r❛ ✳ ➜✐Ò✉ ♥➭② ❦Ð♦ t❤❡♦ (x, y) = max{ψ(p (x, y)), ψ(p (x, f x)), ψ(p (y, f y)), ψ( 21 (p (x, f y) + p (y, f x)))} ▼ 2 y , ψ p y, 2(1+y) x = max ψ(p (x, y)), ψ p x, 2(1+x) ψ = max ψ(x), ψ(x), ψ(y), ψ 2 , y2 x p x, 2(1+y) + p y, 2(1+x) x x + max y, 2(1+x) = ψ(x) (4.9) ❚õ ➤ã ✭✹✳✽✮ ✈➭ ✭✹✳✾✮ t❛ s✉② r❛ p(f x, f y) ≤ 0.♠(x, y) + ▼(x, y) ❉♦ ➤ã✱ tt ề ệ ủ ị í ợ t❤♦➯ ♠➲♥ ✈í✐ ❱❐②✱ f ❝ã ➤✐Ĩ♠ ❜✃t ➤é♥❣ ❞✉② ♥❤✃t z = ∈ A1 ∩ A2 ✸✺ ✈➭ p (z, z) = ✳ m = ✳ ❑Õt ❧✉❐♥ ❙❛✉ t❤ê✐ ❣✐❛♥ ♥❣❤✐➟♥ ❝ø✉ ✈➭ t❤❛♠ ❦❤➯♦ ♥❤✐Ị✉ t➭✐ ❧✐Ư✉ ❦❤➳❝ ♥❤❛✉✱ ❞➢í✐ sù ❤➢í♥❣ ❞➱♥ t❐♥ t×♥❤ ❝đ❛ t❤➬② ❣✐➳♦ P●❙✳❚❙✳ ❚r➬♥ ❱➝♥ ➣♥✱ ❝❤ó♥❣ t➠✐ ➤➲ t❤✉ ➤➢ỵ❝ ♠ét sè ❦Õt q✉➯ s❛✉ ✶✳ ❍Ư t❤è♥❣ ❤ã❛ ❝➳❝ ❦❤➳✐ ♥✐Ö♠✱ ❝➳❝ tÝ♥❤ ❝❤✃t ❝➡ ❜➯♥ ✈➭ ❝➳❝ ✈Ý ❞ơ ♠✐♥❤ ❤ä❛ ✈Ị ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝✱ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ ➤➬② ➤ñ✱ ➳♥❤ ①➵ ❝♦✱ ➳♥❤ ①➵ ❝②❝❧✐❝✱ ❦❤➠♥❣ ❣✐❛♥ ➤Þ♥❤ ❝❤✉➮♥✱ ➳♥❤ ①➵ ❦❤➠♥❣ ❣✐➲♥✱ ♠➟tr✐❝ r✐➟♥❣✱ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣✱ ❞➲② ❤é✐ tô tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣✱ ❞➲② ❈❛✉❝❤② tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣✱ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣ ➤➬② ➤ñ✱ ❞➲② ♠➟tr✐❝ r✐➟♥❣✱ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣ ❝②❝❧✐❝ r✐➟♥❣✱ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣ ✲❈❛✉❝❤② tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ✲➤➬② ➤ñ✱ ➳♥❤ ①➵ ❝♦ ❝②❝❧✐❝✱ ➳♥❤ ①➵ ❝♦ ✲❝♦♠♣➽❝✱ ➳♥❤ ①➵ ❝♦ rót✱ ❞➲② P✐❝❛r❞✱ ➳♥❤ ①➵ t❤♦➯ ♠➲♥ ➤✐Ị✉ ❦✐Ư♥ q✉ü ➤➵♦✱ ➳♥❤ ①➵ ❝ã tÝ♥❤ ❝❤✃t ①➵ ❝♦ ❝②❝❧✐❝ ❦✐Ĩ✉ ❤÷✉ tû ❍❛r❞②✲❘♦❣❡rs✱ ♣❤Ð♣ ✷✳ ①➵ α fψ (P ) ✱ ❜✐Ĩ✉ ❞✐Ơ♥ ❝②❝❧✐❝✱ ➳♥❤ ✲❝♦ ❝②❝❧✐❝ s✉② ré♥❣✳ ❚r×♥❤ ❜➭② ♠ét sè ➤Þ♥❤ ❧ý ➤✐Ĩ♠ ❜✃t ➤é♥❣ ❝đ❛ ➳♥❤ ①➵ ❝♦ rót ❝②❝❧✐❝✱ ➳♥❤ ✲❝♦ ❝②❝❧✐❝ ✈í✐ α∈S ❜➟♥ ♣❤➯✐ t❤á❛ ♠➲♥ ϕ ✱ ➳♥❤ ①➵ ✲❝♦ ❝②❝❧✐❝ ✈í✐ ϕ ❧➭ ❤➭♠ ♥ư❛ ❧✐➟♥ tơ❝ tr➟♥ ≤ ψ(t) < t ✱ ♠ét ♠ë ré♥❣ ❝đ❛ ➤Þ♥❤ ❧ý ➤✐Ĩ♠ ❜✃t ➤é♥❣ ❈❛r✐st✐ ❝❤♦ ❝➳❝ ➳♥❤ ①➵ ❝②❝❧✐❝✱ ♠ét ♠ë ré♥❣ ❝đ❛ ➤Þ♥❤ ❧ý ➤✐Ĩ♠ ❜✃t ➤é♥❣ ❝❤♦ ❝➳❝ ➳♥❤ ①➵ ❦❤➠♥❣ ❣✐➲♥✳ ●✐í✐ t❤✐Ư✉ ♠ét sè ➤Þ♥❤ ❧ý ➤✐Ĩ♠ ❜✃t ➤é♥❣ ❝đ❛ ➳♥❤ ①➵ ❝♦ ❝②❝❧✐❝ ❦✐Ĩ✉ ❤÷✉ tû ❍❛r❞②✲❘♦❣❡rs✱ ♠ét sè ♠ë ré♥❣ ♥❣✉②➟♥ ❧ý ➳♥❤ ①➵ ❝♦ tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣✱ ➤Þ♥❤ ❧ý ➤✐Ĩ♠ ❜✃t ➤é♥❣ ➤è✐ ✈í✐ ❝➳❝ ♣❤Ð♣ fψ s✉② ré♥❣ ✈➭ ♠ét sè ❤Ư q✉➯ ❝ñ❛ ♥ã tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣ ✸✳ ✲❝♦ ❝②❝❧✐❝ ✲➤➬② ➤ñ✳ ❈❤ø♥❣ ♠✐♥❤ ❝❤✐ t✐Õt ♠ét sè tÝ♥❤ ❝❤✃t ✈➭ ➤Þ♥❤ ❧ý ♠➭ tr♦♥❣ ❝➳❝ t➭✐ ❧✐Ư✉ t❤❛♠ ❦❤➯♦ ❝❤➢❛ ❝❤ø♥❣ ♠✐♥❤ ❤♦➷❝ ❝❤ø♥❣ ♠✐♥❤ ❝ß♥ s➡ ợ ị ý ị ý ➜Þ♥❤ ❧ý ✶✳✷✳✻✱ ❍Ư q✉➯ ✷✳✶✳✼✱ ➜Þ♥❤ ❧ý ✷✳✶✳✾✱ ❍Ư q✉➯ ✷✳✶✳✶✶✱ ❍Ö q✉➯ ✷✳✷✳✸✱ ❍Ö q✉➯ ✷✳✷✳✹✱ ❍Ö q✉➯ ✷✳✷✳✺✳ ✹✳ ❚r×♥❤ ❜➭② ❝❤✐ t✐Õt ❱Ý ❞ơ ✷✳✶✳✽ ♠✐♥❤ ❤ä❛ ❝❤♦ ➤Þ♥❤ ❧ý ➤✐Ĩ♠ ❜✃t ➤é♥❣ ❝đ❛ ❝➳❝ ➳♥❤ ①➵ ❝♦ ❝②❝❧✐❝ ❦✐Ĩ✉ ❤÷✉ tû ❍❛r❞②✲❘♦❣❡rs✱ ❱Ý ❞ơ ✷✳✷✳✻ ♠✐♥❤ ❤ä❛ ❝❤♦ ➜Þ♥❤ ❧ý ✷✳✷✳✷✳ ✸✻ t➭✐ ❧✐Ư✉ t❤❛♠ ❦❤➯♦ ❬✶❪ ❚r➬♥ ❱➝♥ ➣♥ ✭✷✵✵✼✮✱ ❇➭✐ ❣✐➯♥❣ ❚➠♣➠ ➤➵✐ ❝➢➡♥❣✱ ❚r➢ê♥❣ ➜➵✐ ❤ä❝ ❱✐♥❤✳ ❬✷❪ ❚r➬♥ ❱➝♥ ➣♥✱ ❇➭✐ ❣✐➯♥❣ ❑❤➠♥❣ ❣✐❛♥ ✈❡❝t➡ t➠♣➠✱ ❚r➢ê♥❣ ➜➵✐ ❤ä❝ ❱✐♥❤✳ ❬✸❪ ❚✳ ❆❜❞❡❧❥❛✇❛❞✱ ❊✳ ❑❛r❛♣✐♥❛r✱ ❑✳ ❚❛s ✭✷✵✶✶✮✱ ❊①✐st❡♥❝❡ ❛♥❞ ✉♥✐q✉❡♥❡ss ♦❢ ❛ ❝♦♠♠♦♥ ❢✐①❡❞ ♣♦✐♥t ♦♥ ♣❛rt✐❛❧ ♠❡tr✐❝ s♣❛❝❡s✱ ❆♣♣❧✳ ▼❛t❤✳ ▲❡tt✳✱ ✷✹ ✭✶✶✮✱ ✶✾✵✵✲✶✾✵✹✳ ❬✹❪ ❚✳ ❆❜❞❡❧❥❛✇❛❞✱ ❏❖✳ ❆❧③❛❜✉t✱ ❆✳ ▼✉❦❤❡✐♠❡r✱ ❨✳ ❩❛✐❞❛♥ ✭✷✵✶✷✮✱ ❇❛♥❛❝❤ t✐❛❧ ❝♦♥tr❛❝t✐♦♥ ♠❡tr✐❝ ♣r✐♥❝✐♣❧❡ s♣❛❝❡s✱❋✐①❡❞ ❢♦r P♦✐♥t ❝②❝❧✐❝❛❧ ❚❤❡♦r② ♠❛♣♣✐♥❣s ❆♣♣❧✳✱ ✶✺✹ ♦♥ ♣❛r✲ ✭✷✵✶✷✮✱ ❞♦✐✿✶✵✳✶✶✽✻✴✶✻✽✼✲✶✽✶✷✲✷✵✶✷✲✶✺✹✳ ❬✺❪ ❏✳ ❈❛r✐st✐ ✭✶✾✼✻✮✱ ❋✐①❡❞ ♣♦✐♥t t❤❡♦r❡♠s ❢♦r ♠❛♣♣✐♥❣s s❛t✐s❢②✐♥❣ ✐♥✇❛r❞♥❡ss ❝♦♥❞✐t✐♦♥s✱ ❚r❛♥s✳ ❆♠❡r✳ ▼❛t❤✳ ❙♦❝✳✱ ✷✶✺✱ ✷✹✶✲✷✺✶✳ ❬✻❪ ▼✳ ❊❞❡❧st❡✐♥ ✭✶✾✻✷✮✱ ❖♥ ❢✐①❡❞ ❛♥❞ ♣❡r✐♦❞✐❝ ♣♦✐♥ts ✉♥❞❡r ❝♦♥tr❛❝✲ t✐✈❡ ♠❛♣♣✐♥❣s✱ ❏✳ ▲♦❞♦♥ ▼❛t❤✳ ❙♦❝✳✱ ✸✼✱ ✼✹✲✼✾✳ ❬✼❪ ❘✳ ❊♥❣❡❧❦✐♥❣ ✭✶✾✼✼✮✱ ●❡♥❡r❛❧ ❚♦♣♦❧♦❣②✱ P❲◆✲P♦❧✐s❤✱ ❙❝✐❡♥t✐❢✐❝ P✉❜❧✐s❤❡rs✱ ❲❛rs③❛✇❛✳ ❬✽❪ ▼✳ ❆✳ ●❡r❛❣❤t② ✭✶✾✼✸✮✱ ❖♥ ❝♦♥tr❛❝t✐✈❡ ♠❛♣♣✐♥❣s✱ Pr♦❝✳ ❆♠❡r✳ ▼❛t❤✳ ❙♦❝✳✱ ✹✵✱ ✻✵✹✲✻✵✽✳ ❬✾❪ ❑✳ ●♦❡❜❡❧✱ ❲✳ ❆✳ ❑✐r❦ ✭✷✵✵✵✮✱ ❚♦♣✐❝ ✐♥ ▼❡tr✐❝ ❋✐①❡❞ P♦✐♥t ❚❤❡✲ ♦r② ✭❲✳ ❆✳ ❑✐r❦ ❛♥❞ ❇✳ ❙✐♠s ❡❞s✳✮✱ ❈❛♠❜r✐❞❣❡ ❯♥✐✈✳ Pr❡ss✱ ❈❛♠✲ ❜r✐❞❣❡✳ ❬✶✵❪ ❉✳ ■❧✐❝✱ ❱✳ P❛✈❧♦✈✐❝✱ ❱✳ ❘❛❦♦❝❡✈✐❝ ✭✷✵✶✶✮✱ ❙♦♠❡ ♥❡✇ ❡①t❡♥s✐♦♥s ♦❢ ❇❛♥❛❝❤✬s ❝♦♥tr❛❝t✐♦♥ ♣r✐♥❝✐♣❧❡ t♦ ♣❛rt✐❛❧ ♠❡tr✐❝ s♣❛❝❡s✱ ❆♣♣❧✳ ▼❛t❤✳ ▲❡tt✳✱ ✷✹ ✭✶✶✮✱ ✶✸✷✻✲✶✾✸✵✳ ✸✼ ❬✶✶❪ ●✳❙✳ ❏❡♦♥❣✱ ❇✳ ❊✳ ❘❤♦❛❞❡s ✭✷✵✵✺✮✱ ▼❛♣s ❢♦r ✇❤✐❝❤ F (T ) = F (T n )✱ ❋✐①❡❞ P♦✐♥t ❚❤❡♦r② ❆♣♣❧✳✱ ✻✱ ✽✼✲✶✸✶✳ ❬✶✷❪ ❲✳ ❆✳ ❑✐r❦✱ ❲✳ ❉✳ ❘♦②❛❧t② ✭✶✾✼✶✮✱ ❋✐①❡❞ ♣♦✐♥t t❤❡♦r❡♠s ❢♦r ❝❡rt❛✐♥ ♥♦♥❧✐♠❡❛r ♥♦♥❡①♣❛♥s✐✈❡ ♠❛♣♣✐♥❣s✱ ■❧❧✐♥♦✐s ❏✳ ▼❛t❤✳✱ ✹✱ ✻✺✻✲✻✼✸✳ ❬✶✸❪ ❲✳ ❆✳ ❑✐r❦✱ P✳ ❙✳ ❙r✐♥❛✈❛s❛♥✱ P✳ ❱❡❡r❛♠❛♥✐ ✭✷✵✵✸✮✱ ❋✐①❡❞ ♣♦✐♥ts ❢♦r ♠❛♣♣✐♥❣s s❛t✐s❢②✐♥❣ ❝②❝❧✐❝❛❧ ❝♦♥tr❛❝t✐✈❡ ❝♦♥❞✐t✐♦♥s✱ ❋✐①❡❞ P♦✐♥t ❚❤❡♦r②✱ ✹✱ ✼✾✲✽✾✳ ❬✶✹❪ ●✳❙✳ ▼❛t❤❡✇s ✭✶✾✾✹✮✱ P❛rt✐❛❧ ♠❡tr✐❝ t♦♣♦❧♦❣②✱ Pr♦❝✳ ✽t❤ ❙✉♠♠❡r ❈♦♥❢❡r❡♥❝❡ ♦♥ ●❡♥❡r❛❧ ❚♦♣♦❧♦❣② ❛♥❞ ❆♣♣❧✐❝❛t✐♦♥s✱ ❆♥♥❛❧s ♦❢ t❤❡ ◆❡✇ ❨♦r❦ ❆❝❛❞❡♠② ♦❢ ❙❝✐❡♥❝❡s✱ ✼✷✽✱ ✶✽✸✲✶✾✼✳ ❬✶✺❪ ❍✳ ❑✳ ◆❛s❤✐♥❡✱ ❩✳ ❑❛❞❡❧❜❡r❣✱ ❙✳ ❘❛❞❡♥♦✈✐❝ ✭✷✵✶✸✮✱ ❋✐①❡❞ ♣♦✐♥t t❤❡♦r❡♠s ✈✐❛ ❝②❝❧✐❝ ❝♦♥tr❛❝t✐✈❡ ❝♦♥❞✐t✐♦♥s ✐♥ ♣❛rt✐❛❧ ♠❡tr✐❝ s♣❛❝❡s✱ P✉❜❧✳ ■♥st✐t✳▼❛t❤✳✱ ✾✸ ✭✶✵✼✮✱ ✻✾✲✾✸✳ ❬✶✻❪ ❙✳ ❖❧tr❛ ❛♥❞ ❖✳ ❱❛❧❡r♦ ✭✷✵✵✹✮✱ ❇❛♥❛❝❤✬s ❢✐①❡❞ ♣♦✐♥t t❤❡♦r❡♠ ❢♦r ♣❛rt✐❛❧ ♠❡tr✐❝ s♣❛❝❡s✱ ❘❡♥❞✳ ■st✐t✳ ▼❛t✳ ❯♥✐✈✳ ❚r✐❡st❡✳✱ ✸✻ ✭✶✲✷✮✱ ✶✼✲✷✻✳ ❬✶✼❪ ▼✳ P❛❝✉r❛✱ ■✳ ❆✳ ❘✉s ✭✷✵✶✵✮✱ ❋✐①❡❞ ♣♦✐♥t t❤❡♦r② ❢♦r ❝②❝❧✐❝ φ✲ ❝♦♥tr❛❝t✐♦♥s✱ ◆♦♥❧✐♥❡❛r✳ ❆♥❛❧✳✱ ✼✷✱ ✶✶✽✶✲✶✶✽✼✳ ❬✶✽❪ ❙✳ ❘❛❞❡♥♦✈✐❝✱ ❩✳ ❑❛❞❡❧❜❡r❣✱ ❉✳ ❏❛♥❞r❧✐❝✱ ❆✳ ❏❛♥❞r❧✐❝ ✭✷✵✶✷✮✱ ❙♦♠❡ r❡s✉❧ts ♦♥ ✇❡❛❦ ❝♦♥tr❛❝t✐♦♥s ♠❛♣s✱ ❇✉❧❧✳ ■r❛♥✐❛♥ ▼❛t❤✳ ❙♦❝✳✱ ✸✽ ✭✸✮✱ ✻✷✺✲✻✹✺✳ ❬✶✾❪ ❇✳ ❊✳ ❘❤♦❛❞❡s ✭✷✵✵✶✮✱ ❙♦♠❡ t❤❡♦r❡♠s ♦♥ ✇❡❛❦❧② ❝♦♥tr❛❝t✐✈❡ ♠❛♣s✱ ◆♦♥❧✐♥❡❛r ❆♥❛❧②s✐s✱ ✹✼ ✭✹✮✱ ✷✻✽✸✲✷✻✾✸✳ ❬✷✵❪ ❙✳ ❘♦♠❛❣✉❡r❛ ✭✷✵✶✵✮✱ ❆ ❑✐r❦ t②♣❡ ❝❤❛r❛❝t❡r✐③❛t✐♦♥ ♦❢ ❝♦♠♣❧❡t❡✲ ♥❡ss ❢♦r ♣❛rt✐❛❧ ♠❡tr✐❝ s♣❛❝❡s✱ ❋✐①❡❞ P♦✐♥t ❚❤❡♦r② ❆♣♣❧✳✱ ■❉ ✹✾✸✷✾✽✱ ❞♦✐✿✶✵✿✶✶✺✺✴✷✵✶✵✴✹✾✸✷✾✽✳ ✸✽ ... ❝♦ ❈②❝❧✐❝ ❦✐Ĩ✉ ❤÷✉ tû ❍❛r❞②✲❘♦❣❡rs tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣ ❚r♦♥❣ ♠ơ❝ ♥➭② ❝❤ó♥❣ t trì ột số ị í ề ể ❜✃t ➤é♥❣ ❝đ❛ ❝➳❝ tù ➳♥❤ ①➵ ①➳❝ ➤Þ♥❤ tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ♠➟tr✐❝ r✐➟♥❣ ✲➤➬② ➤ñ ✈➭ t❤♦➯ ♠➲♥... tr Ai {xn } ộ tụ ế ỗ m Ai i = 1, , m z ❞➲② ❧➷♣ i = 1, , m tr♦♥❣ t❐♣ m Ai ì ỗ {xn } ó số ❤➵♥❣ ♥➺♠ ❝ã ♠ét ❞➲② ❝♦♥ ❝ñ❛ Ai , i = 1, , m {xink } ❝ñ❛ ❞➲② ❧➭ ➤ã♥❣✱ ♥➟♥ z ∈ Ai = φ ✳ ❉♦ ➤ã... ❝②❝❧✐❝ ❦✐Ĩ✉ ❤÷✉ tû ❍❛r❞②✲❘♦❣❡rs✱ ♣❤Ð♣ ✷✳ ①➵ α fψ (P ) ✱ ❜✐Ĩ✉ ❞✐Ơ♥ ❝②❝❧✐❝✱ ➳♥❤ ✲❝♦ s rộ rì ột số ị ý ể ❜✃t ➤é♥❣ ❝đ❛ ➳♥❤ ①➵ ❝♦ rót ❝②❝❧✐❝✱ ➳♥❤ ✲❝♦ ❝②❝❧✐❝ ✈í✐ α∈S ❜➟♥ ♣❤➯✐ t❤á❛ ♠➲♥ ϕ ✱ ➳♥❤ ①➵

Ngày đăng: 09/09/2021, 20:32

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
[1] Trần Văn Ân (2007), Bài giảng Tôpô đại cương, Trường Đại học Vinh Sách, tạp chí
Tiêu đề: Bài giảng Tôpô đại cương
Tác giả: Trần Văn Ân
Nhà XB: Trường Đại học Vinh
Năm: 2007
[2] Trần Văn Ân, Bài giảng Không gian vectơ tôpô, Trường Đại học Vinh Sách, tạp chí
Tiêu đề: Bài giảng Không gian vectơ tôpô
Tác giả: Trần Văn Ân
Nhà XB: Trường Đại học Vinh
[4] T. Abdeljawad, JO. Alzabut, A. Mukheimer, Y. Zaidan (2012), Banach contraction principle for cyclical mappings on par- tial metric spaces,Fixed Point Theory Appl., 154 (2012), doi:10.1186/1687-1812-2012-154 Sách, tạp chí
Tiêu đề: Banach contraction principle for cyclical mappings on partial metric spaces
Tác giả: T. Abdeljawad, JO. Alzabut, A. Mukheimer, Y. Zaidan
Nhà XB: Fixed Point Theory Appl.
Năm: 2012
[5] J. Caristi (1976), Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc., 215 , 241-251 Sách, tạp chí
Tiêu đề: Fixed point theorems for mappings satisfying inwardness conditions
Tác giả: J. Caristi
Nhà XB: Trans. Amer. Math. Soc.
Năm: 1976
[6] M. Edelstein (1962), On fixed and periodic points under contrac- tive mappings, J. Lodon Math. Soc., 37 , 74-79 Sách, tạp chí
Tiêu đề: On fixed and periodic points under contrac- tive mappings
Tác giả: M. Edelstein
Nhà XB: J. London Math. Soc.
Năm: 1962
[8] M. A. Geraghty (1973), On contractive mappings, Proc. Amer.Math. Soc., 40 , 604-608 Sách, tạp chí
Tiêu đề: On contractive mappings
Tác giả: M. A. Geraghty
Nhà XB: Proc. Amer.Math. Soc.
Năm: 1973
[9] K. Goebel, W. A. Kirk (2000), Topic in Metric Fixed Point The- ory (W. A. Kirk and B. Sims eds.), Cambridge Univ. Press, Cam- bridge Sách, tạp chí
Tiêu đề: Topic in Metric Fixed Point Theory
Tác giả: K. Goebel, W. A. Kirk
Nhà XB: Cambridge Univ. Press
Năm: 2000
[10] D. Ilic, V. Pavlovic, V. Rakocevic (2011), Some new extensions of Banach's contraction principle to partial metric spaces, Appl.Math. Lett., 24 ( 11 ), 1326-1930 Sách, tạp chí
Tiêu đề: Some new extensions of Banach's contraction principle to partial metric spaces
Tác giả: D. Ilic, V. Pavlovic, V. Rakocevic
Nhà XB: Appl.Math. Lett.
Năm: 2011
[11] G.S. Jeong, B. E. Rhoades (2005), Maps for which F (T ) = F (T n ) , Fixed Point Theory Appl., 6 , 87-131 Sách, tạp chí
Tiêu đề: Maps for which F (T ) = F (T n )
Tác giả: G.S. Jeong, B. E. Rhoades
Nhà XB: Fixed Point Theory Appl.
Năm: 2005
[12] W. A. Kirk, W. D. Royalty (1971), Fixed point theorems for certain nonlimear nonexpansive mappings, Illinois J. Math., 4 , 656-673 Sách, tạp chí
Tiêu đề: Fixed point theorems for certain nonlimear nonexpansive mappings
Tác giả: W. A. Kirk, W. D. Royalty
Nhà XB: Illinois J. Math.
Năm: 1971
[13] W. A. Kirk, P. S. Srinavasan, P. Veeramani (2003), Fixed points for mappings satisfying cyclical contractive conditions, Fixed Point Theory, 4 , 79-89 Sách, tạp chí
Tiêu đề: Fixed points for mappings satisfying cyclical contractive conditions
Tác giả: W. A. Kirk, P. S. Srinavasan, P. Veeramani
Nhà XB: Fixed Point Theory
Năm: 2003
[14] G.S. Mathews (1994), Partial metric topology, Proc. 8th Summer Conference on General Topology and Applications, Annals of the New York Academy of Sciences, 728 , 183-197 Sách, tạp chí
Tiêu đề: Partial metric topology
Tác giả: G.S. Mathews
Nhà XB: Annals of the New York Academy of Sciences
Năm: 1994
[15] H. K. Nashine, Z. Kadelberg, S. Radenovic (2013), Fixed point theorems via cyclic contractive conditions in partial metric spaces, Publ. Instit.Math., 93 ( 107 ), 69-93 Sách, tạp chí
Tiêu đề: Fixed point theorems via cyclic contractive conditions in partial metric spaces
Tác giả: H. K. Nashine, Z. Kadelberg, S. Radenovic
Nhà XB: Publ. Instit.Math.
Năm: 2013
[16] S. Oltra and O. Valero (2004), Banach's fixed point theorem for partial metric spaces, Rend. Istit. Mat. Univ. Trieste., 36 ( 1-2 ), 17-26 Sách, tạp chí
Tiêu đề: Banach's fixed point theorem for partial metric spaces
Tác giả: S. Oltra, O. Valero
Nhà XB: Rend. Istit. Mat. Univ. Trieste.
Năm: 2004
[19] B. E. Rhoades (2001), Some theorems on weakly contractive maps, Nonlinear Analysis, 47 ( 4 ), 2683-2693 Sách, tạp chí
Tiêu đề: Some theorems on weakly contractive maps
Tác giả: B. E. Rhoades
Nhà XB: Nonlinear Analysis
Năm: 2001
[20] S. Romaguera (2010), A Kirk type characterization of complete- ness for partial metric spaces, Fixed Point Theory Appl., ID 493298, doi:10:1155/2010/493298 Sách, tạp chí
Tiêu đề: A Kirk type characterization of completeness for partial metric spaces
Tác giả: S. Romaguera
Nhà XB: Fixed Point Theory Appl.
Năm: 2010
[3] T. Abdeljawad, E. Karapinar, K. Tas (2011), Existence and uniqueness of a common fixed point on partial metric spaces, Appl. Math. Lett., 24 ( 11 ), 1900-1904 Khác
[7] R. Engelking (1977), General Topology, PWN-Polish, Scientific Publishers, Warszawa Khác
[17] M. Pacura, I. A. Rus (2010), Fixed point theory for cyclic φ - contractions, Nonlinear. Anal., 72 , 1181-1187 Khác
[18] S. Radenovic, Z. Kadelberg, D. Jandrlic, A. Jandrlic (2012), Some results on weak contractions maps, Bull. Iranian Math. Soc., 38 ( 3 ), 625-645 Khác

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w