Tài liệu tham khảo |
Loại |
Chi tiết |
[3] J.Botle Continuous gradient projection method in Hilbert spaces, J.Optim. Theory and Appl., 2003. V. 119. P. 235-259 |
Sách, tạp chí |
Tiêu đề: |
Continuous gradient projection method in Hilbert spaces |
Tác giả: |
J. Botle |
Nhà XB: |
J. Optim. Theory and Appl. |
Năm: |
2003 |
|
[5] T. Kato Nonlinear semigroups and evolution equations, J. Math. Soc.Japan, 1967.V.4. P. 508-520 |
Sách, tạp chí |
Tiêu đề: |
Nonlinear semigroups and evolution equations |
Tác giả: |
T. Kato |
Nhà XB: |
J. Math. Soc. Japan |
Năm: |
1967 |
|
[6] N guyenBuong 1 , DangT hiT haiHa 2 . Continuous regularization method for ill-posed operator equations of Hammerstein type, 2007.T.23, S.2, 99-109 |
Sách, tạp chí |
Tiêu đề: |
Continuous regularization method for ill-posed operator equations of Hammerstein type |
Tác giả: |
N guyenBuong, DangT hiT haiHa |
Nhà XB: |
T.23 |
Năm: |
2007 |
|
[10] Nguyen Buong. Convergence rates in regularization for the case of monotone perturbations, Ukrainian Math. Zh., 2000. T.52. P. 285-293 |
Sách, tạp chí |
Tiêu đề: |
Convergence rates in regularization for the case of monotone perturbations |
Tác giả: |
Nguyen Buong |
Nhà XB: |
Ukrainian Math. Zh. |
Năm: |
2000 |
|
[13] A.G. Ramm Global convergence for ill-posed equations with mono- tone operator: the dynamical systems method, J.Phys. A, 2003. V.36. L248-L254 |
Sách, tạp chí |
Tiêu đề: |
Global convergence for ill-posed equations with mono- tone operator: the dynamical systems method |
Tác giả: |
A.G. Ramm |
Nhà XB: |
J.Phys. A |
Năm: |
2003 |
|
[14] A.G. Ramm Dynamical systems method for solving nonlinear operator equations, Int. J. Appl.Math. Sci., 2004. V. 1. P. 97-110 |
Sách, tạp chí |
Tiêu đề: |
Dynamical systems method for solving nonlinear operator equations |
Tác giả: |
A.G. Ramm |
Nhà XB: |
Int. J. Appl.Math. Sci. |
Năm: |
2004 |
|
[15] A.G. Ramm Dynamical systems method (DSM) for nonlinear equation in Banach spaces, Proc. AMS., 2006. V. 134. P. 1059-1063 |
Sách, tạp chí |
Tiêu đề: |
Dynamical systems method (DSM) for nonlinear equation in Banach spaces |
Tác giả: |
A.G. Ramm |
Nhà XB: |
Proc. AMS. |
Năm: |
2006 |
|
[16] I.P. Ryazantseva On several mehtods of continuous regularization for monotone equations, Zh. Vychisl. Matematiki i Matem. Fiziki, 1994.V. 24. C. 1572-1576 (in Russian) |
Sách, tạp chí |
Tiêu đề: |
On several methods of continuous regularization for monotone equations |
Tác giả: |
I.P. Ryazantseva |
Nhà XB: |
Zh. Vychisl. Matematiki i Matem. Fiziki |
Năm: |
1994 |
|
[18] I.P. Ryazantseva A first order continuous and iterative methods with generalized projector for monotone variational inequalities, Zh. Vy- chisl. Matematiki i Matem. Fiziki, 2005. T. 45. C. 400-410 (in Rus- sian) |
Sách, tạp chí |
Tiêu đề: |
A first order continuous and iterative methods with generalized projector for monotone variational inequalities |
Tác giả: |
I.P. Ryazantseva |
Nhà XB: |
Zh. Vy- chisl. Matematiki i Matem. Fiziki |
Năm: |
2005 |
|
[19] D. Vaclav, Monotone Operators and Applications in Control and Net- work Theory, Ams.-New York, Elsevier, 1979 |
Sách, tạp chí |
Tiêu đề: |
Monotone Operators and Applications in Control and Network Theory |
Tác giả: |
D. Vaclav |
Nhà XB: |
Ams.-New York |
Năm: |
1979 |
|
[1] A.S. Antipin Minimization of convex functions on convex sets by mean of differential equations, Differential Equations, Belorussian, 1994.T.30. C. 1365-1375 (in Russian) |
Khác |
|
[2] A. Bakushinsky and A. Goncharsky. Ill-posed problems: Theory and Applications, Kluwer Academic Publishers, Dordrecht, Boston, Lon- don 1994 |
Khác |
|
[4] W.E. Fitzgibbon, Weak continuous accretive operators, Bull.AMS., 1973. V. 79. P. 473-474 |
Khác |
|
[7] Nguyen Buong. On solutions of the equations of Hammerstein type in Banach spaces, Zh. Vychisl. Matematiki i Matem. Fiziki, 1985. T. 25.C 1256-1280 (in Russian) |
Khác |
|
[8] Nguyen Buong. On solution of Hammerstein’s equation with mono- tone perturbations, Vietnamese Math. Journal, 1985.T.3. Tr. 28-32 (in Vietnamese) |
Khác |
|
[9] Nguyen Buong. Convergence rates in regularization for Hammerstein equations, Zh. Vychisl. Matematiki i Matem. Fiziki, 1999.T.39. P. 3-7 |
Khác |
|
[11] Nguyen Buong. Solution of the Hammerstein equations under non- monotone perturbations, New Zealand J. of Math., 2004.V.33. P. 1-11 |
Khác |
|
[12] A.G. Ramm Dynamical systems method for ill-posed equations with monotone operators, J. Math. Anal. Appl., 2001. V. 258. P. 448-456 |
Khác |
|
[17] I.P. Ryazantseva A first order continuous regularization method for monotone variational inequalities in Banach spaces, Differential Equa- tions, Belorussian, 2003. T. 39. C. 113-117 (in Russian) |
Khác |
|