1. Trang chủ
  2. » Luận Văn - Báo Cáo

MốI liên hệ giữa hệ động lực rời rạc và liên tục

47 3 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 47
Dung lượng 440,49 KB

Nội dung

❇é ●✐➳♦ ❞ô❝ ✈➭ ➜➭♦ t➵♦ ❚r➢ê♥❣ ➜➵✐ ❤ä❝ ❇➳❝❤ ❦❤♦❛ ❍➭ ◆é✐ ❇ï✐ ❳✉➞♥ ❉✐Ö✉ ▼è✐ ❧✐➟♥ ❤Ö ❣✐÷❛ ❤Ư ➤é♥❣ ❧ù❝ rê✐ r➵❝ ✈➭ ❧✐➟♥ tơ❝ ▲✉❐♥ ✈➝♥ ❚❤➵❝ sÜ ❑❤♦❛ ❤ä❝ ❈❤✉②➟♥ ♥❣➭♥❤✿ ❚♦➳♥ ❝➠♥❣ ♥❣❤Ö ◆❣➢ê✐ ❤➢í♥❣ ❞➱♥ ❦❤♦❛ ❤ä❝✿ ✶✳ P●❙✳ ❚❙❑❍✳ ◆❣✉②Ơ♥ ❱➝♥ ▼✐♥❤ ✷✳ ❚❙✳ ❍➭ ❇×♥❤ ▼✐♥❤ ❍➭ ◆é✐ ✲ ✷✵✶✵ ▲ê✐ ❝❛♠ ➤♦❛♥ ❚➠✐ ①✐♥ ❝❛♠ ➤♦❛♥ ❧✉❐♥ ✈➝♥ ♥➭② ❧➭ ❝➠♥❣ tr×♥❤ ♥❣❤✐➟♥ ❝ø✉ ❝đ❛ r✐➟♥❣ t➠✐✳ ❈➳❝ ❦Õt q✉➯ ✈✐Õt ❝❤✉♥❣ ✈í✐ ❝➳❝ t➳❝ ❣✐➯ ❦❤➳❝ ➤➲ ➤➢ỵ❝ sù ♥❤✃t trÝ ❝ñ❛ ❝➳❝ ➤å♥❣ t➳❝ ❣✐➯ ❦❤✐ ➤➢❛ ✈➭♦ ❧✉❐♥ ✈➝♥✳ ❈➳❝ ❦Õt q✉➯ ♥➟✉ tr♦♥❣ ❧✉❐♥ ✈➝♥ ❧➭ tr✉♥❣ t❤ù❝ ✈➭ ❧➭ ❦Õt q✉➯ ❝đ❛ q✉➳ tr×♥❤ ❧➭♠ ✈✐Ư❝ ♥❣❤✐➟♠ tó❝ ❝đ❛ t➠✐ ❝ï♥❣ ✈í✐ ♥❤ã♠ ♥❣❤✐➟♥ ❝ø✉ t➵✐ ❑❤♦❛ ❚♦➳♥ ✲ ❚✐♥ ø♥❣ ❞ô♥❣✱ ➜➵✐ ❤ä❝ ❇➳❝❤ ❑❤♦❛ ❍➭ ◆é✐✳ ❚➳❝ ❣✐➯ ❇ï✐ ❳✉➞♥ ❉✐Ö✉ ✷ ▼ơ❝ ❧ơ❝ ❚r❛♥❣ ♣❤ơ ❜×❛ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶ ▲ê✐ ❝❛♠ ➤♦❛♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸ ❇➯♥❣ ❦ý ❤✐Ö✉ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✺ ▼ë ➤➬✉ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✻ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✼ ▼ô❝ ❧ô❝ ✳ ✳ ✳ ✳ ▲ê✐ ❝➯♠ ➡♥ ✳ ❈❤➢➡♥❣ ✶ ✿ ❚æ♥❣ q✉❛♥ ✶✳✶ ❍➭♠ sè ❤➬✉ t✉➬♥ ❤♦➭♥ ✾ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✾ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✾ ✶✳✶✳✶ ➜Þ♥❤ ♥❣❤Ü❛ ❝đ❛ ❇♦❝❤♥❡r ✶✳✶✳✷ ❑❤➠♥❣ ❣✐❛♥ ❝➳❝ ❤➭♠ sè ❤➬✉ t✉➬♥ ❤♦➭♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✵ ✶✳✶✳✸ ➜Þ♥❤ ♥❣❤Ü❛ ❝đ❛ ❇♦❤r ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✶ ✶✳✶✳✹ ➜Þ♥❤ ♥❣❤Ü❛ t❤❡♦ ❦✐Ĩ✉ ❤é✐ tơ tõ♥❣ ➤✐Ĩ♠ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✸ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✹ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✼ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✵ ✳ ✳ ✳ ✳ ✳ ✳ ❉➲② sè ❛❧♠♦st ❛✉t♦♠♦r♣❤✐❝ ✸ ✳ ✳ ✳ ✶✳✹ ✳ ✳ ✳ ❑❤➠♥❣ ❣✐❛♥ ❝➳❝ ❤➭♠ sè ❛❧♠♦st ❛✉t♦♠♦r♣❤✐❝ ✳ ✳ ✳ ✶✳✸ ✳ ✳ ✳ ❉➲② sè ❤➬✉ t✉➬♥ ❤♦➭♥ ✳ ✳ ✳ ✶✳✷ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✳✺ ❱➭✐ ♥Ðt ✈Ị ❧Þ❝❤ sư ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✶ ❈❤➢➡♥❣ ✷ ✿ ◗✉❛♥ s➳t ♥❣❤✐Ư♠ ❤➬✉ t✉➬♥ ❤♦➭♥ ❝đ❛ ♣❤➢➡♥❣ tr×♥❤ ✷✸ ✈✐ ♣❤➞♥ ✷✳✶ ●✐í✐ t❤✐Ư✉ ❜➭✐ t♦➳♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✸ ✷✳✷ ❈➳❝ ❦Õt q✉➯ ❝❤Ý♥❤ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✹ ✷✳✸ ▼ét sè ø♥❣ ❞ô♥❣ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✵ ✳ ❈❤➢➡♥❣ ✸ ✿ ◗✉❛♥ s➳t ♥❣❤✐Ö♠ ❛❧♠♦st ❛✉t♦♠♦r♣❤✐❝ ❝đ❛ ♣❤➢➡♥❣ ✸✸ tr×♥❤ ✈✐ ♣❤➞♥ ✸✳✶ ●✐í✐ t❤✐Ö✉ ❜➭✐ t♦➳♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✸ ✸✳✷ ❈➳❝ ❦Õt q✉➯ ❝❤Ý♥❤ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✺ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹✷ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹✸ ❑✐Õ♥ ♥❣❤Þ ❝❤♦ ❝➳❝ ♥❣❤✐➟♥ ❝ø✉ t✐Õ♣ t❤❡♦ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹✹ ❚➭✐ ❧✐Ö✉ t❤❛♠ ❦❤➯♦ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹✺ ❑Õt ❧✉❐♥ ❝❤✉♥❣ ✳ ✳ ❈➳❝ ❝➠♥❣ tr×♥❤ ❝đ❛ t➳❝ ❣✐➯ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ❇➯♥❣ ❦ý ❤✐Ö✉ ✈➭ ❝❤÷ ✈✐Õt t➽t Z R C Rn X AA(X) KAA(X) AP(X) BC(X) BUC(X) l∞ (X) aa(X) kaa(X) H(f ) α Tα T (f |R , ε) T (ϕ|Z , ε) Tˆ(ϕ|{tn } , ε) Rf {tn } [t] {t} ❚❐♣ ❤ỵ♣ ❝➳❝ sè ♥❣✉②➟♥ ❚❐♣ ❤ỵ♣ ❝➳❝ sè t❤ù❝ ❚❐♣ ❤ỵ♣ ❝➳❝ sè ♣❤ø❝ ❑❤➠♥❣ ❣✐❛♥ t❤ù❝ n ❝❤✐Ị✉ Ox1 x2 xn ❑❤➠♥❣ ❣✐❛♥ ❇❛♥❛❝❤ ❑❤➠♥❣ ❣✐❛♥ ❝➳❝ ❤➭♠ sè ❛❧♠♦st ❛✉t♦♠♦r♣❤✐❝ ♥❤❐♥ ❣✐➳ trÞ tr➟♥ X ❑❤➠♥❣ ❣✐❛♥ ❝➳❝ ❤➭♠ sè ❝♦♠♣❛❝t ❛❧♠♦st ❛✉t♦♠♦r♣❤✐❝ ♥❤❐♥ ❣✐➳ trÞ tr➟♥ ❑❤➠♥❣ ❣✐❛♥ ❝➳❝ ❤➭♠ sè ❤➬✉ t✉➬♥ ❤♦➭♥ ♥❤❐♥ ❣✐➳ trÞ tr➟♥ X ❑❤➠♥❣ ❣✐❛♥ ❝➳❝ ❤➭♠ sè ❧✐➟♥ tơ❝✱ ❜Þ ❝❤➷♥ ♥❤❐♥ ❣✐➳ trÞ tr➟♥ X ❑❤➠♥❣ ❣✐❛♥ ❝➳❝ ❤➭♠ sè ❧✐➟♥ tơ❝ ➤Ị✉✱ ❜Þ ❝❤➷♥ ♥❤❐♥ ❣✐➳ trÞ tr➟♥ ❑❤➠♥❣ ❣✐❛♥ t✃t ❝➯ ❝➳❝ ❞➲② sè ❜Þ ❝❤➷♥ tr➟♥ X X ❑❤➠♥❣ ❣✐❛♥ t✃t ❝➯ ❝➳❝ ❞➲② sè ❛❧♠♦st ❛✉t♦♠♦r♣❤✐❝ ♥❤❐♥ ❣✐➳ trÞ tr➟♥ X X ❑❤➠♥❣ ❣✐❛♥ t✃t ❝➯ ❝➳❝ ❞➲② sè ❝♦♠♣❛❝t ❛✉t♦♠♦r♣❤✐❝ ♥❤❐♥ ❣✐➳ trÞ tr➟♥ ❇❛♦ ❝đ❛ ❤➭♠ sè f ❉➲② sè ✈í✐ ♣❤➬♥ tư tỉ♥❣ q✉➳t ❧➭ αn ❚♦➳♥ tư ❞Þ❝❤ ❝❤✉②Ĩ♥ f ❚❐♣ ❞Þ❝❤ ❝❤✉②Ĩ♥ ❝đ❛ ❚❐♣ ❞Þ❝❤ ❝❤✉②Ĩ♥ ❝đ❛ ❞➲② sè ❚❐♣ ❞Þ❝❤ ❝❤✉②Ĩ♥ ❝đ❛ ❞➲② sè ❚❐♣ ❣✐➳ trÞ ❝đ❛ ❤➭♠ sè ϕn ϕ tr➟♥ {tn } f ❉➲② ❝➳❝ q✉❛♥ s➳t ➤➢ỵ❝ s➽♣ ①Õ♣ t❤❡♦ t❤ø tù t➝♥❣ ❞➬♥ P❤➬♥ ♥❣✉②➟♥ ❝ñ❛ sè t❤ù❝ P❤➬♥ ♣❤➞♥ ❝ñ❛ sè t❤ù❝ ✺ t t X ▼ë ➤➬✉ ▼è✐ ❧✐➟♥ ❤Ư ❣✐÷❛ ❝➳❝ ❤Ư ➤é♥❣ ❧ù❝ rê✐ r➵❝ ✈➭ ❧✐➟♥ tơ❝✱ ✈í✐ ý t➢ë♥❣ ❝❤Ý♥❤ ❝đ❛ ➳♥❤ ①➵ P♦✐♥❝❛rÐ✱ ➤ã♥❣ ♠ét ✈❛✐ trß q✉❛♥ trä♥❣ tr♦♥❣ ❧ý t❤✉②Õt ♣❤➢➡♥❣ tr×♥❤ ✈✐ ♣❤➞♥✳ ❈➳❝ ♥❣❤✐➟♥ ❝ø✉ ✈Ị ❝➳❝ ❤Ư ➤é♥❣ ❧ù❝ ♥➭② ➤➲ ❝ã ♠ét ❧Þ❝❤ sư ♣❤➳t tr✐Ĩ♥ ❧➞✉ ➤ê✐✱ ❦❤ë✐ ♥❣✉å♥ tõ ❝➳❝ ♥❣❤✐➟♥ ❝ø✉ t✐➟♥ ♣❤♦♥❣ ❝ñ❛ ▲②❛♣✉♥♦✈ ✈➭ P♦✐♥❝❛rÐ✳ ❈❤♦ ➤Õ♥ ♥❛②✱ ➤➲ ❝ã r✃t ♥❤✐Ò✉ ❦Õt q✉➯ ♥❣❤✐➟♥ ❝ø✉ ❦❤➳❝ ♥❤❛✉ ✈Ị ❝➳❝ ❤Ư ➤é♥❣ ❧ù❝ rê✐ r➵❝ ✈➭ ❧✐➟♥ tơ❝✱ ♥❤➢ sù tå♥ t➵✐✱ tÝ♥❤ ❞✉② ♥❤✃t ♥❣❤✐Ư♠✱ tÝ♥❤ ❧✐➟♥ tơ❝ ➤Ị✉✱ tÝ♥❤ ❜Þ ❝❤➷♥✱ tÝ♥❤ ỉ♥ ➤Þ♥❤✱ tÝ♥❤ ỉ♥ ➤Þ♥❤ t✐Ư♠ ❝❐♥✱ tÝ♥❤ t✉➬♥ ❤♦➭♥✱ tÝ♥❤ ❤➬✉ t✉➬♥ ❤♦➭♥✱ tÝ♥❤ ❛❧♠♦st ❛✉t♦♠♦r♣❤✐❝ ❝đ❛ ♥❣❤✐Ư♠✳ ❚✉② ♥❤✐➟♥✱ ♠è✐ ❧✐➟♥ ❤Ư ❣✐÷❛ ❤❛✐ ❤Ư ➤é♥❣ ❧ù❝ ♥➭② ✈➱♥ ❝❤➢❛ ➤➢ỵ❝ ♥❣❤✐➟♥ ❝ø✉ ♠ét ❝➳❝❤ ➤➬② ➤đ ♥❤✃t✳ ▲✉❐♥ ✈➝♥ ♥➭② ❝đ❛ t➳❝ ❣✐➯ ♥❤➺♠ ♠ơ❝ ➤Ý❝❤ ❣✐➯✐ q✉②Õt ♠ét ♣❤➬♥ ❝đ❛ ❜➭✐ t♦➳♥ tr➟♥✳ ◆ã✐ r✐➟♥❣✱ ❝❤ó♥❣ t➠✐ q✉❛♥ t ế t tì ố ệ ữ tí ❤➬✉ t✉➬♥ ❤♦➭♥✱ tÝ♥❤ ❛❧♠♦st ❛✉t♦♠♦r♣❤②✱ ✈➭ tÝ♥❤ ❜Þ ❝❤➷♥ ❝đ❛ ❝➳❝ ♥❣❤✐Ư♠ tr♦♥❣ ❝➳❝ ❤Ư ➤é♥❣ ❧ù❝ ♥➭②✳ ✻ ❑Õt ❝✃✉ ❧✉❐♥ ✈➝♥ ▲✉❐♥ ✈➝♥ ♥➭② ❣å♠ ✸ ❝❤➢➡♥❣✿ trì ế tứ ị ❣✐➯ ♥➟✉ r❛ ❝➳❝ ➤Þ♥❤ ♥❣❤Ü❛ ❦❤➳❝ ♥❤❛✉ ❝đ❛ ➤Þ♥❤ ♥❣❤Ü❛ ♠ét ❤➭♠ sè ❤➬✉ t✉➬♥ ❤♦➭♥✱ ❞➲② sè ❤➬✉ t✉➬♥ ❤♦➭♥✱ ❤➭♠ sè ❛❧♠♦st ❛✉t♦♠♦r♣❤✐❝✱ ❞➲② sè ❛❧♠♦st ❛✉t♦♠♦r♣❤✐❝✳ ❚r♦♥❣ ❝❤➢➡♥❣ ♥➭② t➳❝ ❣✐➯ ❝ò♥❣ ❝❤Ø r❛ ♠ét t✐➟✉ ❝❤✉➮♥ ✭➤✐Ị✉ ❦✐Ư♥ ➤đ✮ ➤Ĩ ❦✐Ĩ♠ tr❛ ❦❤✐ ♥➭♦ ♠ét ❞➲② ❝➳❝ q✉❛♥ s➳t {x(tn )}n∈Z ❧➭ ❤➬✉ t✉➬♥ ❤♦➭♥✳ ❈❤➢➡♥❣ ✷ ✈➭ ❝❤➢➡♥❣ ✸ ❧➭ ❝➳❝ ❦Õt q✉➯ ❝❤Ý♥❤ ❝ñ❛ t➳❝ ❣✐➯✳ ❈❤➢➡♥❣ ✷ t➳❝ ❣✐➯ ♥❣❤✐➟♥ ❝ø✉ ♣❤➢➡♥❣ tr×♥❤ ✈✐ ♣❤➞♥ ❤➬✉ t✉➬♥ ❤♦➭♥ ✈➭ ❝❤ø♥❣ ♠✐♥❤ ➤✐Ị✉ ❦✐Ư♥ ❝➬♥ ✈➭ ➤đ ♥❣❤✐Ư♠ ❝❤Ø ♥Õ✉ ❞➲② q✉❛♥ s➳t x(t) {x(tn )}n∈Z ❝đ❛ ♣❤➢➡♥❣ tr×♥❤ ✈✐ ♣❤➞♥ ❧➭ ❤➬✉ t✉➬♥ ❤♦➭♥ ♥Õ✉ ✈➭ ❧➭ ❤➬✉ t✉➬♥ ❤♦➭♥✳ ❈❤➢➡♥❣ ✸ t➳❝ ❣✐➯ ♥❣❤✐➟♥ ❝ø✉ ♣❤➢➡♥❣ tr×♥❤ ✈✐ ♣❤➞♥ ❛❧♠♦st ❛✉t♦♠♦r♣❤✐❝ ✈➭ ❝❤ø♥❣ ♠✐♥❤ ➤✐Ị✉ ❦✐Ư♥ ❝➬♥ ✈➭ ➤đ ♥❣❤✐Ư♠ ♣❤✐❝ ♥Õ✉ ✈➭ ❝❤Ø ♥Õ✉ ❞➲② q✉❛♥ s➳t x(t) ❝ñ❛ ♣❤➢➡♥❣ tr×♥❤ ✈✐ ♣❤➞♥ ❧➭ ❛❧♠♦st ❛✉t♦♠♦r✲ {x(n)}n∈Z ✼ ❧➭ ❛❧♠♦st ❛✉t♦♠♦r♣❤✐❝✳ ▲ê✐ ❝➯♠ ➡♥ ➜➬✉ t✐➟♥ t➳❝ ❣✐➯ ①✐♥ ➤➢ỵ❝ tỏ ò ết s s ủ ì ế ❝➳❝ t❤➬② ❣✐➳♦ P●❙✳❚❙❑❍✳ ◆❣✉②Ô♥ ❱➝♥ ▼✐♥❤ ✈➭ ❚❙✳ ❍➭ ❇×♥❤ ▼✐♥❤ ✈× sù ❤➢í♥❣ ❞➱♥ t❐♥ t×♥❤✱ tr✉②Ị♥ t❤ơ ♥❤÷♥❣ ❦✐Õ♥ t❤ø❝ ✈➭ ❦✐♥❤ ♥❣❤✐Ư♠ q✉ý ❜➳✉ tr♦♥❣ ✈✐Ư❝ ♥❣❤✐➟♥ ❝ø✉ ❦❤♦❛ ❤ä❝ ❝ò♥❣ ♥❤➢ sù q✉❛♥ t➞♠ t❤➢ê♥❣ ①✉②➟♥✱ ❣✐ó♣ ➤ì ➞♥ t×♥❤✱ ➤é♥❣ ✈✐➟♥ t➳❝ ❣✐➯ tr♦♥❣ q✉➳ tr×♥❤ t❤ù❝ ❤✐Ư♥ ❧✉❐♥ ✈➝♥✳ ❚➳❝ ❣✐➯ ❝ị♥❣ ①✐♥ tr➞♥ trä♥❣ ❝➯♠ ➡♥ ❚❙✳ ◆❣✉②Ơ♥ ❚❤✐Ư✉ ❍✉② ✈➭ t✃t ❝➯ ❝➳❝ t❤➭♥❤ ✈✐➟♥ ❝đ❛ ❳➟✲♠✐✲♥❛ ✬✬ ❉➳♥❣ ➤✐Ư✉ t✐Ư♠ ❝❐♥ ❝đ❛ ♣❤➢➡♥❣ tr×♥❤ ✈✐ ♣❤➞♥ ✈➭ ø♥❣ ❞ơ♥❣✬✬✱ ❦❤♦❛ ❚♦➳♥ ✲ ❚✐♥ ø♥❣ ❞ơ♥❣ ➤➲ ❣✐ó♣ ➤ì✱ ➤é♥❣ ✈✐➟♥ ✈➭ ➤ã♥❣ ❣ã♣ ♥❤✐Ò✉ ý ❦✐Õ♥ q✉ý ❜➳✉ ❝❤♦ ♥é✐ ❞✉♥❣ ❝ñ❛ ❧✉❐♥ ✈➝♥✳ ❚➳❝ ❣✐➯ tr➞♥ trä♥❣ ❝➯♠ ➡♥ ❇❛♥ ●✐➳♠ ❤✐Ư✉✱ ❇❛♥ ❈❤đ ♥❤✐Ư♠ ❑❤♦❛ ❚♦➳♥ ✲ ❚✐♥ ø♥❣ ❞ơ♥❣✱ P❤ß♥❣ ❚ỉ ❝❤ø❝ ❝➳♥ ❜é✱ ❱✐Ư♥ ➜➭♦ t➵♦ s❛✉ ➜➵✐ ❤ä❝ ➤➲ ❣✐ó♣ ➤ì✱ t➵♦ ➤✐Ị✉ ❦✐Ư♥ t❤✉❐♥ ❧ỵ✐ ❝❤♦ t➳❝ ❣✐➯ ❤♦➭♥ t❤➭♥❤ ❧✉❐♥ ✈➝♥✳ ❚➳❝ ❣✐➯ ❝ò♥❣ ①✐♥ ❝❤➞♥ t❤➭♥❤ ❝➯♠ ➡♥ ❝➳❝ t❤➬②✱ ❝➠ ❣✐➳♦ ✈➭ ❝➳❝ ❛♥❤ ❝❤Þ ❡♠ ➤å♥❣ ♥❣❤✐Ư♣ ❑❤♦❛ ❚♦➳♥ ✲ ❚✐♥ ø♥❣ ❞ô♥❣ ❚r➢ê♥❣ ➜➵✐ ❤ä❝ ❇➳❝❤ ❦❤♦❛ ❍➭ ◆é✐ ✈Ị sù q✉❛♥ t➞♠ ❣✐ó♣ ➤ì✱ ➤é♥❣ ✈✐➟♥ t➳❝ ❣✐➯ tr♦♥❣ q✉➳ tr×♥❤ t❤ù❝ ❤✐Ư♥ ❧✉❐♥ ✈➝♥✳ ❍➭ ◆é✐✱ t❤➳♥❣ ✶✵ ♥➝♠ ✷✵✶✵ ❚➳❝ ❣✐➯ ❇ï✐ ❳✉➞♥ ❉✐Ö✉ ✽ ❈❤➢➡♥❣ ✶ ❚æ♥❣ q✉❛♥ ✶✳✶ ❍➭♠ sè ❤➬✉ t✉➬♥ ❤♦➭♥ ❚r♦♥❣ ♠ơ❝ ♥➭② ❝❤ó♥❣ t➠✐ ➤➢❛ r❛ ♠ét ✈➭✐ ➤Þ♥❤ ♥❣❤Ü❛ t➢➡♥❣ ➤➢➡♥❣ ❦❤➳❝ ♥❤❛✉ ❝ñ❛ ♠ét ❤➭♠ sè ❤➬✉ t✉➬♥ ❤♦➭♥ ✈➭ ❝➳❝ tÝ♥❤ ❝❤✃t ❝đ❛ ♥ã✳ ❈➳❝ ➤Þ♥❤ ♥❣❤Ü❛ ❤➭♠ sè ❤➬✉ t✉➬♥ ❤♦➭♥ ❞➢í✐ ❇❛♥❛❝❤ X ➤➞② ✳ ế ợ f t trì f ❤➭♠ ❧➭ ❤➭♠ sè ♥❤❐♥ ❣✐➳ trÞ t❤ù❝✱ tr♦♥❣ ♥❤❐♥ Rk trị tr ứ tì ị ĩ ũ ợ ể ột t➢➡♥❣ tù✳ ✶✳✶✳✶ ➜Þ♥❤ ♥❣❤Ü❛ ❝đ❛ ❇♦❝❤♥❡r ➜Þ♥❤ ♥❣❤Ü❛ ✶✳✶✳✶✳ sè t❤ù❝ {αn }n∈Z ❍➭♠ sè f : R → X ➤➢ỵ❝ ❣ä✐ ❧➭ ❝ã t❤Ĩ trÝ❝❤ ➤➢ỵ❝ ♠ét ❞➲② ❝♦♥ ❤➬✉ t✉➬♥ ❤♦➭♥ ♥Õ✉ tõ ❜✃t ❦× ❞➲② {αn }n∈Z s❛♦ ❝❤♦ lim f (t + αn ) n→∞ ❤é✐ tơ ➤Ị✉ tr➟♥ ➤➢ê♥❣ t❤➻♥❣ t❤ù❝✳ ◆Õ✉ f ❧➭ ♠ét ❤➭♠ sè t✉➬♥ ❤♦➭♥ ✈í✐ ❝❤✉ ❦× ❚❤❐t ✈❐②✱ tõ ❜✃t ❦× ❞➲② sè ❝❤♦ {αn (modT )} → α0 ✳ {αn }n∈Z ❑❤✐ ➤ã T t❤× ♥ã ❧➭ ♠ét ❤➭♠ sè ❤➬✉ t✉➬♥ ❤♦➭♥✳ ❝❤ó♥❣ t❛ ❝ã t❤Ĩ ❝❤ä♥ ♠ét ❞➲② ❝♦♥ lim f (t + αn ) = f (t + α0 ) n→∞ ♠ét ❤➭♠ sè t tì ó ị r ♥➝♠ ✶✾✻✷✳ ✾ {αn }n∈Z ◆❣♦➭✐ r❛ ♥Õ✉ s❛♦ f ❧➭ ❙❛✉ ➤➞② ❧➭ ♠ét ✈➭✐ ❦Ý ❤✐Ö✉ ❞♦ ❇♦❝❤♥❡r ❚♦➳♥ tư ❞Þ❝❤ ❝❤✉②Ĩ♥✳ β⊂α ♥❣❤Ü❛ ❧➭ {−αn } ✳ ❚❛ βn = βn(k) ✳ β ♥ã✐ {αn } sÏ ➤➢ỵ❝ ❦Ý ❤✐Ư✉ ❧➭ ❧➭ ♠ét ❞➲② sè ❝♦♥ ❝đ❛ ❞➲② α β ✈➭ f ◆Õ✉ ➤Þ♥❤ ♥❣❤Ü❛ ❜ë✐ ❉➲② sè ❧➭ ❝➳❝ ➤å♥❣ ❞➲② α ✳ ❑Ý ❤✐Ö✉ ❝♦♥ ❝ñ❛ α α ✳ ◆Õ✉ β = {βn } α + β = {αn + βn }, −α = β ✈➭ ♥Õ✉ αn = αn(k) ❧➭ ♠ét ❤➭♠ sè ❤➬✉ t tì t tử ị ể T f = g ♥Õ✉ g(t) = lim f (t + αn ) n tì ết T ợ ộ tụ ề ❞ơ♥❣ ❝➳❝ ❦Ý ❤✐Ư✉ ♥➭②✱ ➤Þ♥❤ ♥❣❤Ü❛ ❝đ❛ ❤➭♠ sè ❤➬✉ t✉➬♥ ❤♦➭♥ ➤➢ỵ❝ ✈✐Õt ❧➵✐ ♥❤➢ s❛✉✿ ❤➭♠ sè s❛♦ ❝❤♦ f ➤➢ỵ❝ ❣ä✐ ❧➭ ❤➬✉ t✉➬♥ ❤♦➭♥ ♥Õ✉ ✈í✐ ♠ä✐ ❞➲② sè Tα f ✱ tå♥ t➵✐ ❞➲② ❝♦♥ α⊂α tå♥ t➵✐✳ ❇❛♦ ❝ñ❛ ❤➭♠ sè✳ ❇❛♦ ❝ñ❛ ❤➭♠ sè H(f ) = {g : ∃α ➜Þ♥❤ ❧ý f ị ý ế f ợ ➤Þ♥❤ ♥❣❤Ü❛ ♥❤➢ s❛✉✿ s❛♦ ❝❤♦ Tα f = g ❤é✐ tơ ➤Ị✉ ❧➭ ♠ét ❤➭♠ sè ❤➬✉ t✉➬♥ ❤♦➭♥ ♥Õ✉ ✈➭ ❝❤Ø ♥Õ✉ f ❧➭ ♠ét ❤➭♠ sè ❤➬✉ t✉➬♥ t❤× ✈í✐ ♠ä✐ } H(f ) ❧➭ t❐♣ ❝♦♠♣❛❝t✳ g ∈ H(f )✱ H(g) = H(f )✳ ❑❤➠♥❣ ❣✐❛♥ ❝➳❝ ❤➭♠ sè ❤➬✉ t✉➬♥ ❤♦➭♥ ➜➷t f = sup |f (t)| ✈➭ AP(X) = {f : f ❧➭ ♠ét ❤➭♠ sè ❤➬✉ t✉➬♥ ❤♦➭♥ } ✱ ♥ã t ➤➢ỵ❝ tr❛♥❣ ❜Þ ❝❤✉➮♥ ❤➭♠ sè ❤➬✉ t✉➬♥ ❤♦➭♥ AP(Rk ) f : R → R ❤♦➷❝ ▼ét ❝➳❝❤ t➢➡♥❣ tù✱ ❦❤➠♥❣ ❣✐❛♥ ❝➳❝ f : R → Rk ➤➢ỵ❝ ❦Ý ❤✐Ư✉ ❧➭ AP(R) ✈➭ t➢➡♥❣ ø♥❣✳ ➜Þ♥❤ ❧ý ✶✳✶✳✸✳ ợ ế ị ĩ tr AP(X) X = C✮✱ ❧➭ ♠ét ➤➵✐ sè tr➟♥ X✳ ◆❣❤Ü❛ ❧➭ ♥ã ➤ã♥❣ ✈í✐ ♣❤Ð♣ ❧✃② ❧✐➟♥ ➤ã♥❣ ✈í✐ ❝➳❝ ♣❤Ð♣ t♦➳♥ ❝é♥❣✱ ♥❤➞♥ ✈➭ ♥❤➞♥ ✈í✐ ✈➠ ❤➢í♥❣✳ ❍➡♥ ✶✵ ❈❤➢➡♥❣ ✸ ◗✉❛♥ s➳t ♥❣❤✐Ư♠ ❛❧♠♦st ❛✉t♦♠♦r♣❤✐❝ ❝đ❛ ♣❤➢➡♥❣ tr×♥❤ ✈✐ ♣❤➞♥ ✸✳✶ ●✐í✐ t❤✐Ư✉ ❜➭✐ t♦➳♥ ❚r♦♥❣ ❝❤➢➡♥❣ ♥➭② ❝❤ó♥❣ t➠✐ ①Ðt ♣❤➢➡♥❣ tr×♥❤ dx = f (x, t), dt ë ➤ã f (x, t) ❝♦♠♣❛❝t ❝ñ❛ ❧➭ ♠ét ❤➭♠ sè ❛❧♠♦st ❛✉t♦♠♦r♣❤✐❝ t❤❡♦ Rk ✭✸✳✶✮ t ➤Ò✉ t❤❡♦ x ✳ ❇➭✐ t♦➳♥ ❝❤ó♥❣ t➠✐ q✉❛♥ t➞♠ ➤Õ♥ ❧➭ ❦❤✐ ệ tr ỗ t x(t) ủ trì ✭✸✳✶✮ ❧➭ ❛❧♠♦st ❛✉t♦♠♦r♣❤✐❝ ♥Õ✉ ❜✐Õt r➺♥❣ ❞➲② ❝➳❝ q✉❛♥ s➳t ❝ñ❛ ♥ã tr➟♥ Z ❧➭ ♠ét ❞➲② ❛❧♠♦st ❛✉t♦♠♦r♣❤✐❝✳ ▼ét sè ❦Õt q✉➯ ♥❣❤✐➟♥ ❝ø✉ ❣➬♥ ➤➞② ✈Ò ❜➭✐ t♦➳♥ ♥➭② ❝ã t❤Ó ❦Ó ➤Õ♥ ♥❤➢ s❛✉✿ ◆➝♠ ✶✾✻✾✱ tr♦♥❣ ❬✻❪✱ t➳❝ ❣✐➯ ①Ðt ♣❤➢➡♥❣ tr×♥❤ dx(t) = F (t, x), t ∈ R, dt ë ➤ã F ❧➭ ♠ét ❤➭♠ sè ❧✐➟♥ tô❝ ✈➭ t❤á❛ ♠➲♥ ✭✸✳✷✮ F (t, x) = F (t + 1, x) ✳ ♣❤➢➡♥❣ tr×♥❤ ✭✸✳✷✮ ❧➭ ❞✉② ♥❤✃t ♥❣❤✐Ư♠ ✈í✐ ❜➭✐ t♦➳♥ ❣✐➳ trị ủ trì ó ϕ(n) ϕ(t) ●✐➯ sư t❤➟♠ ϕ ❧➭ ♥❣❤✐Ư♠ ❧➭ ❝♦♠♣❛❝t ❛❧♠♦st ❛✉t♦♠♦r♣❤✐❝ ♥Õ✉ ✈➭ ❝❤Ø ♥Õ✉ ❧➭ ♠ét ❞➲② ❛❧♠♦st ❛✉t♦♠♦r♣❤✐❝✳ ✸✸ ◆➝♠ ✷✵✵✻✱ tr♦♥❣ ❬✶✸❪✱ ❝➳❝ t➳❝ ❣✐➯ ①Ðt ♣❤➢➡♥❣ tr×♥❤ dx(t) = A(t)x(t) + f (t), t ∈ R, dt ë ➤ã f ❧➭ ♠ét ❤➭♠ sè ❛❧♠♦st tr trị tr q trì tế ó sử u(t) ♥Õ✉ ✭✸✳✸✮ (U (t, s))t≥s ✱ ❧➭ t♦➳♥ tö s✐♥❤ t✉➬♥ ❤♦➭♥ ❝❤✉ ❦× ✶ tr♦♥❣ ❦❤➠♥❣ ❣✐❛♥ ❇❛♥❛❝❤ ❧➭ ♠ét ♥❣❤✐Ư♠ ❜Þ ❝❤➷♥ ❝đ❛ ✭✸✳✸✮✳ ❑❤✐ ➤ã u(n)n∈Z X A(t) u(t) X ✳ ●✐➯ ❛❧♠♦st ❛✉t♦♠♦r♣❤✐❝ ♥Õ✉ ✈➭ ❝❤Ø ❧➭ ♠ét ❞➲② ❛❧♠♦st ❛✉t♦♠♦r♣❤✐❝✳ ❚✐Õ♣ t❤❡♦✱ ✈➭♦ ♥➝♠ ✷✵✵✼✱ tr♦♥❣ ❬✶✹❪ ❝➳❝ t➳❝ ❣✐➯ ①Ðt ♣❤➢➡♥❣ tr×♥❤ dx(t) = Ax ([t]) + f (t), t ∈ R, dt ë ➤ã A ✭✸✳✹✮ ❧➭ t♦➳♥ tư t✉②Õ♥ tÝ♥❤ ❜Þ ❝❤➷♥ tr➟♥ ❦❤➠♥❣ ❣✐❛♥ ❇❛♥❛❝❤ ❛❧♠♦st ❛✉t♦♠♦r♣❤✐❝✱ ✈➭ [t] ❧➭ ♣❤➬♥ ♥❣✉②➟♥ ❝đ❛ t ✳ ●✐➯ sư u ♣❤➢➡♥❣ tr×♥❤ ✭✸✳✹✮✳ ❈➳❝ t➳❝ ❣✐➯ ❝ị♥❣ ➤➲ ❝❤ø♥❣ ♠✐♥❤ ➤➢ỵ❝ ♥Õ✉ ✈➭ ❝❤Ø ♥Õ✉ ❞➲② ❝➳❝ q✉❛♥ s➳t {u(n)}n∈Z X f ✱ ❧➭ ♠ét ❤➭♠ sè ❧➭ ♠ét ♥❣❤✐Ư♠ ❜Þ ❝❤➷♥ ❝đ❛ u(t) ❧➭ ❛❧♠♦st ❛✉t♦♠♦r♣❤✐❝ ❧➭ ❛❧♠♦st ❛✉t♦♠♦r♣❤✐❝✳ ◆❤÷♥❣ ♥❣➢ê✐ q✉❛♥ t➞♠ ❝ã t❤Ĩ ①❡♠ ❝➳❝ ❦Õt q✉➯ ✈Ị ❜➭✐ t♦➳♥ ♥➭② tr♦♥❣ ❬✺✱ ✾✱ ✶✼✱ ✶✽✱ ✶✾❪✳ ▼ô❝ ➤Ý❝❤ ❝đ❛ ❝❤ó♥❣ t➠✐ tr♦♥❣ ❝❤➢➡♥❣ ♥➭② ❧➭ sÏ ❝❤ø♥❣ ♠✐♥❤ ❝➳❝ ❦Õt q✉➯ tr➟♥ ✈➱♥ ➤ó♥❣ ♥Õ✉ f (x, t) t❤á❛ ♠➲♥ ➤✐Ị✉ ❦✐Ư♥ ▲✐♣s❝❤✐t③ t❤❡♦ x ✱ ➤Ị✉ t❤❡♦ t ✳ ▼ét ❤➭♠ sè ❛❧♠♦st ❛✉t♦♠♦r♣❤✐❝ t❤× ❦❤➠♥❣ ♥❤✃t t❤✐Õt ♣❤➯✐ ❧✐➟♥ tơ❝ ➤Ị✉✱ ❝❤Ý♥❤ ✈× ✈❐② ❝➳❝ ♣❤➢➡♥❣ ♣❤➳♣ ❝❤ø♥❣ ♠✐♥❤ tr➢í❝ ➤➞② ➤è✐ ✈í✐ ♣❤➢➡♥❣ tr×♥❤ ✈✐ ♣❤➞♥ ❤➬✉ t✉➬♥ ❤♦➭♥ ❞ù❛ tr➟♥ tÝ♥❤ ❧✐➟♥ tơ❝ ➤Ị✉ ❝đ❛ ♥❣❤✐Ư♠ ✈➭ ❝đ❛ ✈Õ ♣❤➯✐ ✸✹ f ❧➭ ❦❤➠♥❣ ❝ß♥ ❤✐Ư✉ q✉➯✳ ➜Ĩ ❜✐Õt t❤➟♠ ✈Ị ♣❤➢➡♥❣ ♣❤➳♣ ♥➭②✱ ❝ã t❤Ó ①❡♠ t❤➟♠ tr♦♥❣ ❬✶✱ ✼✱ ✶✶✱ ✶✻✱ ✷✵✱ ✶✺❪ ✳ ❍➡♥ ♥÷❛✱ ➤è✐ ✈í✐ ❤➭♠ sè ❤➬✉ t✉➬♥ ❤♦➭♥✱ ❝❤ó♥❣ t❛ ❝ã t✐➟✉ ❝❤✉➮♥ ❇♦❤r ➤Ĩ ❦✐Ĩ♠ tr❛ ♠ét ❤➭♠ sè ❝ã ❤➬✉ t✉➬♥ ❤♦➭♥ ❤❛② ❦❤➠♥❣ ❞ù❛ tr➟♥ ✈✐Ư❝ ❦✐Ĩ♠ tr❛ tÝ♥❤ trï ♠❐t t➢➡♥❣ ➤è✐ ❝đ❛ t❐♣ ✲❞Þ❝❤ ❝❤✉②Ĩ♥ ❝đ❛ ♥ã✳ ❚r♦♥❣ ❦❤✐ ➤ã ➤è✐ ✈í✐ ❤➭♠ sè ❛❧♠♦st ❛✉t♦♠♦r♣❤✐❝✱ t❤❡♦ ❤✐Ĩ✉ ❜✐Õt ❝đ❛ t➳❝ ❣✐➯✱ ❤✐Ö♥ ♥❛② ❝❤➢❛ ❝ã ♠ét t✐➟✉ ❝❤✉➮♥ ♥➭♦ t➢➡♥❣ tù ♥❤➢ ✈❐②✳ ➜➞② ❝ò♥❣ ❝❤Ý♥❤ ❧➭ ❝➳❝ ❦❤ã ❦❤➝♥ ♠➭ t➳❝ ❣✐➯ ❣➷♣ ♣❤➯✐ tr♦♥❣ q✉➳ tr×♥❤ ❝❤ø♥❣ ♠✐♥❤✳ ✸✳✷ ❈➳❝ ❦Õt q✉➯ ❝❤Ý♥❤ ➜Þ♥❤ ♥❣❤Ü❛ ✸✳✷✳✶✳ ❍➭♠ sè f : RìX X ợ ọ st tr t t R ề t x tr ỗ t ❝♦♠♣❛❝t ❝đ❛ X ♥Õ✉ ✈í✐ ♠ä✐ ❞➲② sè t❤ù❝ (sk )✱ tå♥ t➵✐ ♠ét ❞➲② sè ❝♦♥ (sk ) s❛♦ ❝❤♦ lim f (t + sk , x) = g(t, x), ỗ tR ọ x X, lim g(t − sk , x) = f (t, x), ỗ tR ọ x X k ✈➭ k→∞ ❇ỉ ➤Ị ✸✳✷✳✶✳ t❤❡♦ ◆Õ✉ f : R×X → X ❧➭ ♠ét ❤➭♠ sè ❛❧♠♦st ❛✉t♦♠♦r♣❤✐❝ t❤❡♦ x tr ỗ t t ủ X ế f x ➤Ị✉ t❤❡♦ t✱ ❦❤✐ ➤ã ❤➭♠ sè ➤✐Ị✉ ❦✐Ư♥ ▲✐♣s❝❤✐t③ t❤❡♦ ❈❤ø♥❣ ♠✐♥❤✳ g t ➤Ò✉ t❤á❛ ♠➲♥ ➤✐Ò✉ ❦✐Ư♥ ▲✐♣s❝❤✐t③ t❤❡♦ ①➳❝ ➤Þ♥❤ tr♦♥❣ ➜Þ♥❤ ♥❣❤Ü❛ ✸✳✷✳✶ tr➟♥ ❝ị♥❣ t❤á❛ ♠➲♥ x ➤Ị✉ t❤❡♦ t✳ ❳❡♠ ❬✶✼✱ ➜Þ♥❤ ❧ý ✷✳✷✳✺ ❪✳ ✸✺ ➜Þ♥❤ ❧ý ✸✳✷✳✶✳ ➤Ị✉ t❤❡♦ t❤❡♦ ❈❤♦ f : R × X → X ❧➭ ♠ét ❤➭♠ sè ❛❧♠♦st ❛✉t♦♠♦r♣❤✐❝ t❤❡♦ t ∈ R x tr➟♥ ỗ t t ủ Rk sử f t❤á❛ ♠➲♥ ➤✐Ị✉ ❦✐Ư♥ ▲✐♣s❝❤✐t③ x ➤Ị✉ t❤❡♦ t ∈ R✳ ●✐➯ sư u(t) ❧➭ ♠ét ♥❣❤✐Ư♠ ❜Þ ❝❤➷♥ ❝đ❛ ♣❤➢➡♥❣ tr×♥❤ ➤ã✱ ♥❣❤✐Ư♠ ✭✸✳✶✮✳ ❑❤✐ u(t) ❧➭ ❛❧♠♦st ❛✉t♦♠♦r♣❤✐❝ ♥Õ✉ ✈➭ ❝❤Ø ♥Õ✉ ❞➲② ❝➳❝ q✉❛♥ s➳t {u(n)}n∈Z ❧➭ ❛❧♠♦st ❛✉t♦♠♦r♣❤✐❝✳ ❈❤ø♥❣ ♠✐♥❤✳ t❤× ➜✐Ị✉ ❦✐Ư♥ ❝➬♥✿ ❍✐Ĩ♥ ♥❤✐➟♥✱ ♥Õ✉ {u(n)}n∈Z u(t) ❧➭ ♠ét ❤➭♠ sè ❛❧♠♦st ❛✉t♦♠♦r♣❤✐❝ ❧➭ ♠ét ❞➲② sè ❛❧♠♦st ❛✉t♦♠♦r♣❤✐❝✳ ➜✐Ị✉ ❦✐Ư♥ ➤đ✿ ●✐➯ sư ♠✐♥❤ u(t) {u(n)}n∈Z ❧➭ ♠ét ❞➲② sè ❛❧♠♦st ❛✉t♦♠♦r♣❤✐❝✳ ❚❛ sÏ ❝❤ø♥❣ ❧➭ ♠ét ❤➭♠ sè ❛❧♠♦st ❛✉t♦♠♦r♣❤✐❝✳ ❈❤ø♥❣ ♠✐♥❤ ❝đ❛ ❝❤ó♥❣ t➠✐ ➤➢ỵ❝ ❝❤✐❛ ❧➭♠ ✸ ❜➢í❝ ♥❤➢ s❛✉✳ ❇➢í❝ ✶✳ ➜➬✉ t✐➟♥✱ ❣✐➯ sư ❞➲② sè ❝♦♥ {nk } ✈➭ {nk } {v(n)} ❧➭ ♠ét ❞➲② sè ♥❣✉②➟♥ ❝❤♦ tr➢í❝✳ ❑❤✐ ➤ã tå♥ t➵✐ ♠ét s❛♦ ❝❤♦ lim v(n − nk ) = u(n), lim u(n + nk ) = v(n), k→∞ k→∞ lim g(t − nk , x) = f (t, x), lim f (t + nk , x) = g(t, x), k ỗ tR ❝è ➤Þ♥❤✱ ❦Ý ❤✐Ư✉ {t} = t − [t] ✮✳ ❑❤✐ ➤ã ✈í✐ ❱× g k→∞ [t] i∈Z ❧➭ ♣❤➬♥ ♥❣✉②➟♥ ❝✉❛t ✱ ❣ä✐ (v i ) (t) = g(t, v i ), ∀n ∈ Z v i (t) t ✈➭ {t} ✭✸✳✺✮ ∀t ∈ R ✭✸✳✻✮ ❧➭ ♣❤➬♥ ♣❤➞♥ ❝đ❛ t ✱ ❧➭ ♥❣❤✐Ư♠ ❝đ❛ ❜➭✐ t♦➳♥ ❈❛✉❝❤② s❛✉✿ ✈í✐ ➤✐Ị✉ ❦✐Ư♥ ❜❛♥ ➤➬✉ v i |t=i = u(i) t❤á❛ ♠➲♥ ➤✐Ị✉ ❦✐Ư♥ ▲✐♣❝❤✐t③ ♥➟♥ ❝➳❝ ❜➭✐ t♦➳♥ ❈❛✉❝❤② tr➟♥ ➤Ị✉ ❝ã ♥❣❤✐Ư♠ ❞✉② ♥❤✃t✱ ✈➭ ❝➳❝ ♥❣❤✐Ư♠ v i (t) ợ ị tr ✸✻ (i − δi , i + δi ) ✳ ❍➡♥ ♥÷❛✱ ❝❤ó♥❣ t❛ ❝ã t❤Ĩ ❝❤ä♥ t❤❡♦ t ✳ ❤➭♠ sè δi = δ ✈í✐ ♠ä✐ ❇➺♥❣ ❝➳❝ ✬♥è✐✬ ❝➳❝ ❤➭♠ sè v(t), t ∈ R i∈Z ❞♦ g t❤á❛ ♠➲♥ ➤✐Ị✉ ❦✐Ư♥ t❤❡♦ v i (t), t ∈ (i − δ, i + δ) x ➤Ị✉ ✈í✐ ♥❤❛✉✱ t❛ ➤Þ♥❤ ♥❣❤Ü❛ ♥❤➢ s❛✉✿ ✭❛✮ v(t) ✭❜✮ v(t) = v i (t), ∀t ∈ (i − δ, i + δ) ❧➭ ❤➭♠ sè ❧✐➟♥ tô❝ tr➟♥ R ❚❤❡♦ ❝➠♥❣ t❤ø❝ ❜✐Õ♥ t❤✐➟♥ ❤➺♥❣ sè✱ ✱ ✈➭ ✳ v i (t) t❤á❛ ♠➲♥ ♣❤➢➡♥❣ tr×♥❤ t i g(s, v i (s))ds, ∀t ∈ (i, i + δ) v (t) = u([t]) + [t] ❉♦ ➤ã✱ ❤➭♠ sè v(t) sÏ t❤á❛ ♠➲♥ ♣❤➢➡♥❣ tr×♥❤ s❛✉ ➤➞② t g(s, v(s))ds, ∀t ∈ v(t) = u([t]) + (i, i + δ) [t] ❈❤ó♥❣ t❛ sÏ ❝❤Ø r❛ i∈Z lim u(t + nk ) = v(t) , ∀t ∈ k→∞ (i, i + δ) ✳ i∈Z ✸✼ ❚❤❐t ✈❐②✱ ✈í✐ k ➤đ ❧í♥✱ t❛ ❝ã u(t + nk ) − v(t) = t+nk t f (s, u(s))ds − u([t]) − = u([t] + nk ) + g(s, v(s))ds [t]+nk [t] t+nk ≤ u([t] + nk ) − u([t]) + t f (s, u(s))ds − g(s, v(s))ds [t]+nk [t] t = u([t] + nk ) − u([t]) + f (s + nk , u(s + nk )) − g(s, v(s)) ds [t] t u([t] + nk ) − u([t]) = f (s + nk , u(s + nk )) − g(s, u(s + nk )) ds + [t] ≤ε✭ t❤❡♦ ❣✐➯ t❤✐Õt ❝đ❛ ❜➢í❝ ✶✮ ≤ε✭t❤❡♦ ❣✐➯ t❤✐Õt ❝đ❛ ❜➢í❝ ✶✮ t g(s, u(s + nk )) − g(s, v(s)) ds + [t] ≤L u(s+nk )−v(s) ✭g ▲✐♣s❝❤✐t③✮ t ≤ 2ε + L u(s + nk ) − v(s) ds, ∀t ∈ [t] (i, i + δ) i∈Z ❚❤❡♦ ❜ỉ ➤Ị ●r♦❧❧✇❛❧❧✱ t❛ ❝ã u(t + nk ) − v(t) ≤ 2εeL , ∀t ∈ (i, i + δ) i∈Z ❉♦ ➤ã✱ lim u(t + nk ) = v(t), ∀t ∈ k→∞ (i, i + δ) ✳ i∈Z ❚➢➡♥❣ tù✱ ❝ã t❤Ó ❝❤Ø r❛ lim v(t − nk ) = u(t), ∀t ∈ k→∞ ❇➢í❝ ✷✳ ❇➞② ❣✐ê ①Ðt tr➢ê♥❣ ❤ỵ♣ tỉ♥❣ q✉➳t✱ ë ➤ã ♥❤✃t t❤✐Õt ❧➭ ❞➲② sè ♥❣✉②➟♥✳ {sk } k ✳ ❱× {tk } ✳ ❧➭ ♠ét ❞➲② sè ❜✃t ❦×✱ ❦❤➠♥❣ ❱Ị ❝➡ ❜➯♥ ❝❤ø♥❣ ♠✐♥❤ ❝ị♥❣ sÏ t➢➡♥❣ tù ♥❤➢ ❜➢í❝ ✶✱ ❝é♥❣ t❤➟♠ ✈í✐ tÝ♥❤ t✐Ị♥ ❝♦♠♣❛❝t ❝đ❛ ủ số ỗ (i, i + ) i∈Z ❧➭ ♠ét ❞➲② sè ♥➺♠ tr♦♥❣ ❦❤♦➯♥❣ ✸✽ f ✳ ➜➷t [0, 1) nk = [sk ] ✈➭ tk = {sk } ♥➟♥ ❝ã t❤Ĩ ❝❤ä♥ ➤➢ỵ❝ ❞➲② sè ❝♦♥ {nk } tõ {nk } s❛♦ ❝❤♦ lim v(n − nk ) = u(n), lim u(n + nk ) = v(n), k→∞ k→∞ ∀n ∈ Z, lim g(t − nk , x) = f (t, x), lim f (t + nk , x) = g(t, x), k→∞ ✭✸✳✼✮ ∀t ∈ R, k→∞ ✭✸✳✽✮ lim tk = t0 ∈ [0, 1] ✭✸✳✾✮ k→∞ ❳Ðt ❤❛✐ tr➢ê♥❣ ❤ỵ♣✿ ❚❍✶✮ {t + t0 } > ◆Õ✉ ✱ t❛ sÏ ❝❤Ø r❛ lim u(t + sk ) = v(t + t0 ) , ∀t + t0 ∈ k→∞ ➜➬✉ t✐➟♥ t❛ sÏ ❝❤Ø r❛✱ (i, i + δ) i∈Z lim u(t + sk ) = lim u(t + t0 + nk ) ✳ ❚❤❐t ✈❐②✱ ✈í✐ k→∞ k→∞ k ➤đ ❧í♥✱ t❛ ❝ã u(t + sk ) − u(t + t0 + nk ) = u(t + tk + nk ) − u(t + t0 + nk ) ≤ u([t + tk ] + nk ) − u([t + t0 ] + nk ) t+tk +nk t+t0 +nk f (s, u(s))ds − + [t+tk ]+nk f (s, u(s))ds [t+t0 ]+nk t+tk +nk = u([t + tk ] + nk ) − u([t + t0 ] + nk ) + f (s, u(s))ds t+t0 +nk ≤ε✭✈í✐ k ➤đ ❧í♥✮ ≤ε✭✈í✐ k ≤ 2ε, ∀t + t0 ∈ ➤đ ❧í♥✮ (i, i + δ) i∈Z ▲➷♣ ❧➵✐ ❝➳❝ ❝❤ø♥❣ ♠✐♥❤ ❝đ❛ ❜➢í❝ ✶ ♥ã✐ tr➟♥✱ t❛ ❝ã lim u(t + t0 + nk ) = v(t + k→∞ t0 ), ∀t + t0 ∈ (i, i + δ) ✳ i∈Z ❚❍✷✮ ◆Õ✉ {t + t0 } = ✱ ❦❤✐ ➤ã✱ t + t0 ❧➭ ♠ét sè ♥❣✉②➟♥✳ ◆Õ✉ ❝❤ó♥❣ t❛ ❝ã t❤Ĩ ❧➷♣ ❧➵✐ ❝➳❝ ❜➢í❝ ❝❤ø♥❣ ♠✐♥❤ ♥❤➢ ë tr➟♥✳ ❈ß♥ ♥Õ✉ ✸✾ t + tk ↓ t + t0 t + tk ↑ t + t0 ✱ ✱ t❛ ❝ã [t + tk ] = t + t0 − ✈➭ {t + tk } → ✈➭ tÝ♥❤ t✐Ò♥ ❝♦♠♣❛❝t ❝ñ❛ ❞➯✐ ❝ñ❛ ❤➭♠ sè ✳ ❉♦ ➤ã✱ tõ tÝ♥❤ ❜Þ ❝❤➷♥ ❝đ❛ ❞➲② sè f {u(n)} ❞➱♥ ➤Õ♥ u(t + sk ) − u(t + t0 + nk ) = u(t + tk + nk ) − u(t + t0 + nk ) = t+tk +nk = u([t + tk ] + nk ) − u([t + t0 ] + nk ) + f (s, u(s))ds t+t0 −1+nk ≤ε✭✈í✐ k ➤đ ❧í♥ ✮ ≤ε✭✈í✐ k ≤ 2ε, ∀t + t0 ∈ ➤đ ❧í♥✮ (i, i + δ) i∈Z ❈✉è✐ ❝ï♥❣✱ ➤Ĩ ý t❤✃② r➺♥❣ ❜✃t ❦× ♠ét ❞➲② sè ❤é✐ tô ♥➭♦✱ ❤♦➷❝ ♥ã ❧➭ ♠ét ❞➲② sè ➤➡♥ ➤✐Ư✉✱ ❤♦➷❝ ❝ã t❤Ĩ ➤➢ỵ❝ ❝❤✐❛ t❤➭♥❤ ❤❛✐ ❞➲② sè ❝♦♥ ➤➡♥ ➤✐Ö✉✱ ♠ét ❞➲② ❝♦♥ ➤➡♥ ➤✐Ö✉ t➝♥❣ ✈➭ ♠ét ❞➲② ❝♦♥ ➤➡♥ ➤✐Ö✉ ❣✐➯♠✳ ◆❤❐♥ ①Ðt ♥➭② ➤➲ ❦Õt t❤ó❝ ❝❤ø♥❣ ♠✐♥❤ ❜➢í❝ sè ✷ ❝đ❛ ❝❤ó♥❣ t❛✳ ❇➢í❝ ✸✳ ❚r♦♥❣ ❝➳❝ ❇➢í❝ ✶ ✈➭ ✷ ♥ã✐ tr➟♥✱ ❝❤ó♥❣ t❛ ➤➲ ❝❤Ø r❛ r➺♥❣✱ ♥Õ✉ ❧➭ ♠ét ❞➲② sè ❛❧♠♦st ❛✉t♦♠♦r♣❤✐❝ t❤× ✈í✐ ♠ä✐ ❞➲② sè t❤ù❝ ❝♦♥ (sk ) lim u(t + sk ) = v1 (t), ∀t ∈ ✱ tå♥ t➵✐ ♠ét ❞➲② sè lim v1 (t − sk ) = u(t), ∀t ∈ ①Ðt ❞➲② ♠í✐ {u(n + δ/2)}n∈Z (i, i + δ), ✈➭ i∈Z k→∞ tô❝ (sk ) s❛♦ ❝❤♦ k→∞ ❚✐Õ♣ {u(n)}n∈Z (i, i + δ) i∈Z ✳ ❉➲② sè ♥➭② ❝ò♥❣ ❧➭ ❛❧♠♦st ❛✉t♦♠♦r♣❤✐❝ t❤❡♦ ♥❤➢ ❦Õt q✉➯ ✈õ❛ ❝❤Ø r❛ ë tr➟♥✳ ❇➺♥❣ ❝➳❝❤ ❧➷♣ ❧➵✐ ❝➳❝ ❝❤ø♥❣ ♠✐♥❤ t➢➡♥❣ tù ♥❤➢ ❝➳❝ ❜➢í❝ ✶ ✈➭ ✷ ë tr➟♥✱ ❝❤ó♥❣ t❛ ❝ã t❤Ĩ ❝❤Ø r❛✱ ✈í✐ ♠ä✐ ❞➲② sè t❤ù❝ ✹✵ (sk ) ✱ tå♥ t➵✐ ♠ét ❞➲② sè ❝♦♥ (sk ) s❛♦ ❝❤♦ lim u(t + sk ) = v2 (t), ∀t ∈ k→∞ (i + δ/2, i + 3δ/2), ✈➭ i∈Z lim v2 (t − sk ) = u(t), ∀t ∈ k→∞ (i + δ/2, i + 3δ/2) i∈Z ế tụ q trì ế ợ ❝đ❛ ❝➳❝ t❐♣ ❤ỵ♣ ♥ã✐ tr➟♥ ❧✃♣ ➤➬② trơ❝ sè R ✳ N ◆❤➢ ✈❐② ❝❤ó♥❣ t❛ ➤➲ ❝❤Ø r❛ ➤➢ỵ❝ ❝ã u(t + sk ) → vj (t) ✈➭ vj (t − sk ) → u(t) ❤➭♠ sè ✈í✐ ♠ä✐ v1 (t), v2 (t), , vN (t) t∈ (i + i∈Z ❚✐Õ♣ t❤❡♦ t❛ ①➞② ❞ù♥❣ ột số tụ tr ỗ t (i + i∈Z v(t) (2j−3)δ ,i + v(t) ①➳❝ ➤Þ♥❤ tr➟♥ (2j−1)δ )✱ ✈í✐ ♠ä✐ (2j−3)δ ,i R s❛♦ ❝❤♦ + (sk ) (2j−1)δ )✳ v(t) = vj (t) j = 1, , N ①➞② ❞ù♥❣ t❤❡♦ ❝➳❝❤ ♥➭② t❤á❛ ♠➲♥ ➤✐Ò✉ s❛✉ ➤➞②✿ ỗ số tự t ột số s❛♦ ❝❤♦ ✳ ❍➭♠ sè (sk ) s❛♦ ❝❤♦ lim u(t + sk ) = v(t), ∀t ∈ R, ✈➭ k→∞ lim v(t − sk ) = u(t), ∀t ∈ R k→∞ ❉♦ ➤ã✱ u ❧➭ ♠ét ❤➭♠ sè ❛❧♠♦st ❛✉t♦♠♦r♣❤✐❝ tr➟♥ ✹✶ R ✳ ➜✐Ò✉ ♣❤➯✐ ❝❤ø♥❣ ♠✐♥❤✳ ✱ tå♥ ❑Õt ❧✉❐♥ ❈➳❝ ❦Õt q✉➯ ❝➡ ❜➯♥ ❝ñ❛ ❧✉❐♥ ✈➝♥ ❧➭✿ ✶✳ ❳➞② ❞ù♥❣ ➤➢ỵ❝ ♠ét t✐➟✉ ❝❤✉➮♥ ✭➤✐Ị✉ ❦✐Ư♥ ➤đ✮ ➤Ĩ ❦✐Ĩ♠ tr❛ ❦❤✐ ♥➭♦ ♠ét ❞➲② ❝➳❝ q✉❛♥ s➳t ✷✳ {x(tn )}n∈Z ❧➭ ❤➬✉ t✉➬♥ ❤♦➭♥ ✭▼Ö♥❤ ➤Ị ✶✳✷✳✶✮✳ ▼ë ré♥❣ ❦Õt q✉➯ ❝đ❛ ❬✼✱ ➜Þ♥❤ ❧ý ✾✳✼❪ ❝❤♦ tr➢ê♥❣ ❤ỵ♣ ❞➲② ❝➳❝ q✉❛♥ s➳t ♠➲♥ tn − n → ❦❤✐ n→∞ tn t❤á❛ ✭➤Þ♥❤ ❧ý ✷✳✷✳✶✮✳ ❍Ư ❝đ❛ trù❝ t✐Õ♣ ❝đ❛ ❦Õt q✉➯ ♥➭② ❧➭ t➳❝ ❣✐➯ ➤➲ ♠ë ré♥❣ ♠ét sè ❦Õt q✉➯ ➤➲ ❜✐Õt tr♦♥❣ ❬✶✶❪ ❝❤♦ tr➢ê♥❣ ❤ỵ♣ ❞➲② ❝➳❝ q✉❛♥ s➳t tn t❤á❛ ♠➲♥ tn − n → ❦❤✐ n→∞ ✭①❡♠ ❝➳❝ ➤Þ♥❤ ❧ý ✷✳✷✳✷ ✈➭ ✷✳✷✳✸ tr♦♥❣ ❧✉❐♥ ✈➝♥✮✳ ✸✳ ▼ë ré♥❣ ❦Õt q✉➯ ❝ñ❛ ❝➳❝ t➳❝ ❣✐➯ tr♦♥❣ ❬✶✹✱ ❇ỉ ➤Ị ✸✳✸❪ ✈➭ ❬✶✸✱ ❇ỉ ➤Ị ✸✳✶❪ ❝❤♦ tr➢ê♥❣ ❤ỵ♣ ❤➭♠ sè f (x, t) ❛❧♠♦st ❛✉t♦♠♦r♣❤✐❝ t❤❡♦ ✹✷ t ✱ ➤Ị✉ t❤❡♦ x ✳ ❉❛♥❤ ♠ơ❝ ❝➠♥❣ tr×♥❤ ❝đ❛ t➳❝ ❣✐➯ ❝ã ❧✐➟♥ q✉❛♥ tí✐ ❧✉❐♥ ✈➝♥ ✶✳ ❇✉✐ ❳✉❛♥ t❤❡ ❉✐❡✉✱ ❍❛ r❡❧❛t✐♦♥s❤✐♣ ❇✐♥❤ ❜❡t✇❡❡♥ ▼✐♥❤✱ ❉♦ ❞✐s❝r❡t❡ ❉✉❝ ❛♥❞ ❚❤✉❛♥ ❛♥❞ ❝♦♥t✐♥✉♦✉s ◆❣✉②❡♥ ❱❛♥ ♦❜s❡r✈❛t✐♦♥s ♦❢ ▼✐♥❤✱ ✬✬❖♥ ❞②♥❛♠✐❝❛❧ s②st❡♠s✬✬✱ s✉❜♠✐tt❡❞ t♦ ❆❜str❛❝t ❛♥❞ ❆♣♣❧✐❡❞ ❆♥❛❧②s✐s ✭❆❆❆✴✷✹✽✻✵✷✮ ♦♥ ✵✸✱ ❖❝t♦❜❡r✱ ✷✵✶✵✳ ✷✳ ❍❛ ❇✐♥❤ ▼✐♥❤✱ ❇✉✐ ❳✉❛♥ ❉✐❡✉✱ ❛♥❞ ❉♦ ❉✉❝ ❚❤✉❛♥✱ ✬✬❖♥ t❤❡ r❡❧❛t✐♦♥s❤✐♣ ♦❢ ❛❧♠♦st ❛✉t♦♠♦r♣❤② ❜❡t✇❡❡♥ ❝♦♥t✐♥✉♦✉s ❛♥❞ ✶✵✴✷✵✶✵✳ ✹✸ ❞✐s❝r❡t❡ ❞②♥❛♠✐❝❛❧ s②st❡♠s✬✬✱ ♣r❡♣r✐♥t ❑✐Õ♥ ♥❣❤Þ ❝❤♦ ❝➳❝ ♥❣❤✐➟♥ ❝ø✉ t✐Õ♣ t❤❡♦ • ❚✐Õ♣ tơ❝ ♥❣❤✐➟♥ ❝ø✉ s➞✉ t❤➟♠ ✈Ị ♠è✐ ❧✐➟♥ ❤Ư ❣✐÷❛ ❝➳❝ q✉❛♥ s➳t rê✐ r➵❝ ✈➭ ❧✐➟♥ tơ❝ ❝đ❛ ❤Ư ➤é♥❣ ❧ù❝✳ s➳t {tn } ❍✐Ư♥ ♥❛②✱ ❜➭✐ t♦➳♥ tỉ♥❣ q✉➳t ①Ðt ①❡♠ ✈í✐ t❐♣ ❝➳❝ q✉❛♥ ♥❤➢ tế tì ó tể ị ệ x(t) ủ ♣❤➢➡♥❣ tr×♥❤ ✈✐ ♣❤➞♥ ❤➬✉ t✉➬♥ ❤♦➭♥ ✭✷✳✶✮ ❧➭ ❤➬✉ t✉➬♥ ❤♦➭♥ ♥Õ✉ ✈➭ ❝❤Ø ♥Õ✉ ❞➲② ❝➳❝ q✉❛♥ s➳t {x(tn )}n∈Z ❧➭ ♠ét ❞➲② sè ❤➬✉ t✉➬♥ ❤♦➭♥✱ t❤❡♦ ❤✐Ĩ✉ ❜✐Õt ❝đ❛ t➳❝ ❣✐➯✱ ✈➱♥ ➤❛♥❣ ❧➭ ♠ét ❜➭✐ t♦➳♥ ♠ë ✈➭ ❝ã ♥❤✐Ò✉ ý ♥❣❤Ü❛ tr♦♥❣ t❤ù❝ tÕ✳ • ❳➞② ❞ù♥❣ ♠ét t✐➟✉ ❝❤✉➮♥ ✭➤✐Ị✉ ❦✐Ư♥ ❝➬♥ ✈➭ ➤đ✮ ➤Ĩ ❦✐Ĩ♠ tr❛ ①❡♠ ❦❤✐ ♥➭♦ t❤× ❞➲② ❝➳❝ q✉❛♥ s➳t • {x(tn )}n∈Z ❧➭ ♠ét ❞➲② sè ❤➬✉ t✉➬♥ ❤♦➭♥✳ ➜è✐ ✈í✐ ♣❤➢➡♥❣ tr×♥❤ ✈✐ ♣❤➞♥ ❛❧♠♦st ❛✉t♦♠♦r♣❤✐❝ ✭✸✳✶✮✱ t✐Õ♣ tơ❝ ♥❣❤✐➟♥ ❝ø✉ ①❡♠ ✈í✐ ➤✐Ị✉ ❦✐Ư♥ ♥➭♦ t❤× ♥❣❤✐Ư♠ x(t) ❝đ❛ ♣❤➢➡♥❣ tr×♥❤ ✭✸✳✶✮ ❧➭ ❛❧♠♦st ❛✉t♦✲ ♠♦r♣❤✐❝ ♥Õ✉ ✈➭ ❝❤Ø ♥Õ✉ ❞➲② ❝➳❝ q✉❛♥ s➳t • {x(tn )}n∈Z ❧➭ ❛❧♠♦st ❛✉t♦♠♦r♣❤✐❝✳ ◆❣❤✐➟♥ ❝ø✉ ①❡♠ ❧✐Ö✉ ❝ã t❤Ó ➤➢❛ r❛ ♠ét t✐➟✉ ❝❤✉➮♥ ➤Ó ❦✐Ó♠ tr❛ ❦❤✐ ♥➭♦ ♠ét ❤➭♠ sè✱ ❞➲② sè ❧➭ ❛❧♠♦st ❛✉t♦♠♦r♣❤✐❝ ❣✐è♥❣ ♥❤➢ t✐➟✉ ❝❤✉➮♥ ❇♦❤r ❝❤♦ ❤➭♠ sè ❤➬✉ t✉➬♥ ❤♦➭♥✳ ✹✹ ❚➭✐ ❧✐Ö✉ t❤❛♠ ❦❤➯♦ ❬✶❪ ❈✳❏✳❑✳ ❇❛tt②✱ ❲✳ ❍✉tt❡r✱ ❋✳ ❘⑥ ❛❜✐❣❡r ✭✶✾✾✾✮✱ ✬✬❆❧♠♦st ♣❡r✐♦❞✐❝✐t② ♦❢ ♠✐❧❞ s♦❧✉t✐♦♥s ♦❢ ✐♥❤♦♠♦❣❡♥❡♦✉s ♣❡r✐♦❞✐❝ ❈❛✉❝❤② ♣r♦❜❧❡♠s✬✬✱ ❏♦✉r♥❛❧ ♦❢ ❉✐❢✲ ❢❡r❡♥t✐❛❧ ❊q✉❛t✐♦♥s✱ ❱♦❧✳✶✺✻✱ ♣♣✳ ✸✵✾✲✸✷✼✳ ❬✷❪ ❙❡r❣✐♦ ❇✐tt❛♥t✐✱ P❛tr✐③✐♦ ❈♦❧❛♥❡r✐ ✭✷✵✵✵✮✱ ✬✬■♥✈❛r✐❛♥t r❡♣r❡s❡♥t❛t✐♦♥s ♦❢ ❞✐s❝r❡t❡✲t✐♠❡ ♣❡r✐♦❞✐❝ s②st❡♠s✬✬✱ ❆✉t♦♠❛t✐❝❛✱ ❱♦❧✳✸✻✱ ♣♣✳ ✶✼✼✼✲✶✼✾✸✳ ❬✸❪ ▼✳ ❇♦❤♥❡r✱ ❆✳ P❡t❡rs♦♥ ✭✷✵✵✶✮✱ ❉②♥❛♠✐❝ ❡q✉❛t✐♦♥s ♦♥ t✐♠❡ s❝❛❧❡s✳ ❆♥ ✐♥tr♦❞✉❝t✐♦♥ ✇✐t❤ ❛♣♣❧✐❝❛t✐♦♥s✱ ❇✐r❦❤❛✉s❡r ❇♦st♦♥✱ ■♥❝✳✱ ❇♦st♦♥✱ ▼❆✳ ❬✹❪ ▼✳ ❇♦❤♥❡r ✭✶✾✻✷✮✱ ✬✬❆ ♥❡✇ ❛♣♣r♦❛❝❤ t♦ ❛❧♠♦st ♣❡r✐♦❞✐❝✐t②✬✬✱ Pr♦❝✳ ◆❛t✳ ❆❝❛❞✳ ❙❝✐✳ ❯❙❆✱ ♣♣✳ ✷✵✸✾✲✷✵✹✸✳ ❬✺❪ ❚✳ ❉✐❛❣❛♥❛✱ t♦♠♦r♣❤✐❝ ●✳ ◆✬●✉❡r ➆ ❡❦❛t❛✱ ➆ s♦❧✉t✐♦♥s ♦❢ ◆❣✉②❡♥ ❡✈♦❧✉t✐♦♥ ❱❛♥ ▼✐♥❤ ❡q✉❛t✐♦♥s✬✬✱ ✭✷✵✵✹✮✱ Pr♦❝✳ ✬✬❆❧♠♦st ❆♠❡r✳ ▼❛t❤✳ ❛✉✲ ❙♦❝✳ ❱♦❧✳✶✸✷ ✱ ♣♣✳ ✸✷✽✾✲✸✷✾✽✳ ❬✻❪ ❆✳▼✳ ❋✐♥❦ ✭✶✾✻✾✮✱ ✬✬❊①t❡♥s✐♦♥s ♦❢ ❆❧♠♦st ❆✉t♦♠♦r♣❤✐❝ ❙❡q✉❡♥❝❡s✬✬✱ ❏✳ ▼❛t❤✳ ❆♥❛❧✳ ❆♣♣❧✳ ✱ ❱♦❧✳✷✼✱ ♣♣✳ ✺✶✾✲✺✷✸✳ ❬✼❪ ❆✳▼✳ ❋✐♥❦ ✭✶✾✼✹✮✱ ❆❧♠♦st P❡r✐♦❞✐❝ ❉✐❢❢❡r❡♥t✐❛❧ ❊q✉❛t✐♦♥s✱ ❙♣r✐♥❣❡r✲ ❱❡r❧❛❣✳ ❬✽❪ ❚❡ts✉♦ ❋✉r✉♠♦❝❤✐✱ ❚♦s❤✐❦✐ ◆❛✐t♦ ✭✷✵✵✾✮✱ ✬✬P❡r✐♦❞✐❝ s♦❧✉t✐♦♥s ❡♥❝❡ ❡q✉❛t✐♦♥s✬✬✱ ◆♦♥❧✐♥❡❛r ❆♥❛❧②s✐s✱ ❱♦❧✳✼✶✱ ♣♣✳ ✷✷✶✼✲✷✷✷✷✳ ✹✺ ♦❢ ❞✐❢❢❡r✲ ❬✾❪ ❏✳ ▲✐✉✱ ◆✬●✉❡r ◆❣✉②❡♥ ❱❛♥ ▼✐♥❤ ✭✷✵✵✹✮✱ ✬✬❆ ▼❛ss❡r❛ t②♣❡ t❤❡♦✲ ➆ ❡❦❛t❛✱ ➆ r❡♠ ❢♦r ❛❧♠♦st ❛✉t♦♠♦r♣❤✐❝ s♦❧✉t✐♦♥s ♦❢ ❞✐❢❢❡r❡♥t✐❛❧ ❡q✉❛t✐♦♥s✬✬✱ ❏✳ ▼❛t❤✳ ❆♥❛❧✳ ❆♣♣❧✳✱ ❱♦❧✳✷✵✾✭✷✮✱ ♣♣✳ ✺✽✼✲✺✷✽✳ ❬✶✵❪ ❏✳ ▲✐✉✱ ◆✬●✉❡r ◆❣✉②❡♥ ❱❛♥ ▼✐♥❤ ✭✷✵✵✽✮✱ ❚♦♣✐❝s ♦♥ st❛❜✐❧✐t② ❛♥❞ ➆ ❡❦❛t❛✱ ➆ ♣❡r✐♦❞✐❝✐t② ✐♥ ❛❜str❛❝t ❞✐❢❢❡r❡♥t✐❛❧ ❡q✉❛t✐♦♥s✱ ❲♦r❧❞ ❙❝✐❡♥t✐❢✐❝ P✉❜❧✐s❤✐♥❣ ❈♦✳ Pt❡✳ ▲t❞✳ ❬✶✶❪ ●✳ ❍✳ ▼❡✐st❡rs ✭✶✾✺✾✮✱ ✬✬❖♥ ❆❧♠♦st P❡r✐♦❞✐❝ ❙♦❧✉t✐♦♥s ♦❢ ❛ ❈❧❛ss ♦❢ ❉✐❢✲ ❢❡r❡♥t✐❛❧ ❊q✉❛t✐♦♥s✬✬✱ Pr♦❝✳ ♦❢ t❤❡ ❆♠❡r✳ ▼❛t❤✳ ❙♦❝✳✱ ❱♦❧✳✶✵✭✶✮✱ ♣♣✳ ✶✶✸✲ ✶✶✾✳ ❬✶✷❪ ◆❣✉②❡♥ ❱❛♥ ▼✐♥❤✱ ●❛st♦♥ ◆✬●✉❡r ❙t❡❢❛♥ ❙✐❡❣♠✉♥❞ ✭✷✵✵✾✮✱ ✬✬❈✐r✲ ➆ ❡❦❛t❛✱ ➆ ❝✉❧❛r s♣❡❝tr✉♠ ❛♥❞ ❜♦✉♥❞❡❞ s♦❧✉t✐♦♥s ♦❢ ♣❡r✐♦❞✐❝ ❡✈♦❧✉t✐♦♥ ❡q✉❛t✐♦♥s✬✬✱ ❏♦✉r♥❛❧ ♦❢ ❉✐❢❢❡r❡♥t✐❛❧ ❊q✉❛t✐♦♥s✱ ❱♦❧✳✷✹✻✱ ♣♣✳ ✸✵✽✾✲✸✶✵✽✳ ❬✶✸❪ ◆❣✉②❡♥ ❱❛♥ ▼✐♥❤✱ ❚✳ ◆❛✐t♦✱ ●✳ ▼✳ ◆✬●✉❡r ➆ ❡❦❛t❛ ➆ ✭✷✵✵✻✮✱ ✬✬❆ ❙♣❡❝tr❛❧ ❈♦✉♥t❛❜✐❧✐t② ❈♦♥❞✐t✐♦♥ ❢♦r ❆❧♠♦st ❆✉t♦♠♦r♣❤② ♦❢ ❙♦❧✉t✐♦♥s ♦❢ ❉✐❢❢❡r✲ ❡♥t✐❛❧ ❊q✉❛t✐♦♥s✬✬✱ Pr♦❝✳ ♦❢ t❤❡ ❆♠❡r✳ ▼❛t❤✳ ❙♦❝✳✱ ❱♦❧✳✶✸✹✱ ♣♣✳ ✸✷✺✼✲✸✷✻✻✳ ❬✶✹❪ ◆❣✉②❡♥ ♦❢ ❱❛♥ ❜♦✉♥❞❡❞ ▼✐♥❤✱ ❚r❛♥ s♦❧✉t✐♦♥s ♦❢ ❚❛t ❉❛t ✭✷✵✵✼✮✱ ❞✐❢❢❡r❡♥t✐❛❧ ✬✬❖♥ ❡q✉❛t✐♦♥s t❤❡ ✇✐t❤ ❛❧♠♦st ♣✐❡❝❡✇✐s❡ ❛r❣✉♠❡♥t✬✬✱ ❏✳ ▼❛t❤✳ ❆♥❛❧✳ ❆♣♣❧✳ ✱ ❱♦❧✳✸✷✻✱ ♣♣✳ ✶✻✺✲✶✼✽✳ ✹✻ ❛✉t♦♠♦r♣❤② ❝♦♥st❛♥t ❬✶✺❪ ❙✳ ▼✉r❛❦❛♠✐✱ ◆❛✐t♦✱ ◆❣✉②❡♥ ❱❛♥ ▼✐♥❤ ✭✷✵✵✹✮✱ ✬✬▼❛ss❡r❛ t❤❡♦r❡♠ ❢♦r ❛❧♠♦st ♣❡r✐♦❞✐❝ s♦❧✉t✐♦♥s ♦❢ ❢✉♥❝t✐♦♥❛❧ ❞✐❢❢❡r❡♥t✐❛❧ ❡q✉❛t✐♦♥s✬✬✱ ❏✳ ▼❛t❤✳ ❙♦❝✳ ❏❛♣❛♥✱ ❱♦❧✳✺✻✭✶✮✱ ♣♣✳ ✷✹✼✲✷✻✽✳ ❬✶✻❪ ❚♦s❤✐❦✐ ◆❛✐t♦✱ ◆❣✉②❡♥ ❱❛♥ ▼✐♥❤ ✭✶✾✾✾✮✱ ✬✬❙❡♠✐❣r♦✉♣s ❛♥❞ ❙♣❡❝tr❛❧ ❈r✐✲ t❡r✐❛ ❢♦r ❆❧♠♦st P❡r✐♦❞✐❝ ❙♦❧✉t✐♦♥s ♦❢ P❡r✐♦❞✐❝ ❊✈♦❧✉t✐♦♥ ❊q✉❛t✐♦♥s✬✬ ❏♦✉r♥❛❧ ♦❢ ❉✐❢❢❡r❡♥t✐❛❧ ❊q✉❛t✐♦♥s✱ ❱♦❧✳✶✺✷✱ ♣♣✳ ✸✺✽✲✸✼✻✳ ❬✶✼❪ ●✳ ▼✳ ◆✬●✉❡r ➆ ❡❦❛t❛ ➆ ✭✷✵✵✶✮✱ ❆❧♠♦st ❆✉t♦♠♦r♣❤✐❝ ❛♥❞ ❆❧♠♦st P❡r✐♦❞✐❝ ❋✉♥❝t✐♦♥s ✐♥ ❆❜str❛❝t ❙♣❛❝❡s✱ ❑❧✉✇❡r✱ ❆♠st❡r❞❛♠✳ ❬✶✽❪ ●✳ ▼✳ ◆✬●✉❡r ✭✷✵✵✺✮✱ ❚♦♣✐❝s ✐♥ ❆❧♠♦st ❆✉t♦♠♦r♣❤②✱ ❙♣r✐♥❣❡r✱ ◆❡✇ ➆ ❡❦❛t❛ ➆ ❨♦r❦✳ ❬✶✾❪ ●✳ ▼✳ ◆✬●✉❡r ✭✶✾✾✾✮✱ ✬✬❆❧♠♦st ❛✉t♦♠♦r♣❤✐❝ ❢✉♥❝t✐♦♥s ❛♥❞ ❛♣♣❧✐❝❛✲ ➆ ❡❦❛t❛ ➆ t✐♦♥s t♦ ❛❜str❛❝t ❡✈♦❧✉t✐♦♥ ❡q✉❛t✐♦♥s✬✬✱ ❈♦♥t❡♠♣♦r❛r② ▼❛t❤✱ ❱♦❧✳✷✺✷✱ ♣♣✳ ✼✶✲✼✻✳ ❬✷✵❪ ❘♦♥❣ ❨✉❛♥ ✭✷✵✵✼✮✱ ✬✬❖♥ ❛❧♠♦st ♣❡r✐♦❞✐❝ s♦❧✉t✐♦♥s ♦❢ ❧♦❣✐st✐❝ ❞❡❧❛② ❞✐❢❢❡r✲ ❡♥t✐❛❧ ❡q✉❛t✐♦♥s ✇✐t❤ ❛❧♠♦st ♣❡r✐♦❞✐❝ t✐♠❡ ❞❡♣❡♥❞❡♥❝❡✬✬✱ ❏✳ ▼❛t❤✳ ❆♥❛❧✳ ❆♣♣❧✳ ✱ ❱♦❧✳✸✸✵✱ ♣♣✳ ✼✽✵✲✼✾✽✳ ✹✼

Ngày đăng: 28/02/2021, 07:39

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
[1] C.J.K. Batty, W. Hutter, F. R}abiger (1999), ''Almost periodicity of mild solutions of inhomogeneous periodic Cauchy problems'', Journal of Dif- ferential Equations, Vol.156, pp. 309-327 Sách, tạp chí
Tiêu đề: Almost periodicity of mild solutions of inhomogeneous periodic Cauchy problems
Tác giả: C.J.K. Batty, W. Hutter, F. R}abiger
Nhà XB: Journal of Differential Equations
Năm: 1999
[2] Sergio Bittanti, Patrizio Colaneri (2000), ''Invariant representations of discrete-time periodic systems'', Automatica, Vol.36, pp. 1777-1793 Sách, tạp chí
Tiêu đề: Invariant representations of discrete-time periodic systems
Tác giả: Sergio Bittanti, Patrizio Colaneri
Nhà XB: Automatica
Năm: 2000
[3] M. Bohner, A. Peterson (2001), Dynamic equations on time scales. An introduction with applications, Birkhauser Boston, Inc., Boston, MA Sách, tạp chí
Tiêu đề: Dynamic equations on time scales. An introduction with applications
Tác giả: M. Bohner, A. Peterson
Nhà XB: Birkhauser Boston, Inc.
Năm: 2001
[4] M. Bohner (1962), ''A new approach to almost periodicity'', Proc. Nat.Acad. Sci. USA, pp. 2039-2043 Sách, tạp chí
Tiêu đề: A new approach to almost periodicity
Tác giả: M. Bohner
Nhà XB: Proc. Nat.Acad. Sci. USA
Năm: 1962
[5] T. Diagana, G. N'Gu’er’ekata, Nguyen Van Minh (2004), ''Almost au- tomorphic solutions of evolution equations'', Proc. Amer. Math. Soc.Vol.132 , pp. 3289-3298 Sách, tạp chí
Tiêu đề: Almost automorphic solutions of evolution equations
Tác giả: T. Diagana, G. N'Guérékata, Nguyen Van Minh
Nhà XB: Proc. Amer. Math. Soc.
Năm: 2004
[7] A.M. Fink (1974), Almost Periodic Differential Equations, Springer- Verlag Sách, tạp chí
Tiêu đề: Almost Periodic Differential Equations
Tác giả: A.M. Fink
Nhà XB: Springer-Verlag
Năm: 1974
[9] J. Liu, N'Gu’er’ekata, Nguyen Van Minh (2004), ''A Massera type theo- rem for almost automorphic solutions of differential equations'', J. Math.Anal. Appl., Vol.209(2), pp. 587-528 Sách, tạp chí
Tiêu đề: A Massera type theorem for almost automorphic solutions of differential equations
Tác giả: J. Liu, N'Guérékata, Nguyen Van Minh
Nhà XB: J. Math.Anal. Appl.
Năm: 2004
[10] J. Liu, N'Gu’er’ekata, Nguyen Van Minh (2008), Topics on stability and periodicity in abstract differential equations, World Scientific Publishing Co. Pte. Ltd Sách, tạp chí
Tiêu đề: Topics on stability and periodicity in abstract differential equations
Tác giả: J. Liu, N'Gu’er’ekata, Nguyen Van Minh
Nhà XB: World Scientific Publishing Co. Pte. Ltd
Năm: 2008
[11] G. H. Meisters (1959), ''On Almost Periodic Solutions of a Class of Dif- ferential Equations'', Proc. of the Amer. Math. Soc., Vol.10(1), pp. 113- 119 Sách, tạp chí
Tiêu đề: On Almost Periodic Solutions of a Class of Differential Equations
Tác giả: G. H. Meisters
Nhà XB: Proc. of the Amer. Math. Soc.
Năm: 1959
[12] Nguyen Van Minh, Gaston N'Gu’er’ekata, Stefan Siegmund (2009), ''Cir- cular spectrum and bounded solutions of periodic evolution equations'', Journal of Differential Equations, Vol.246, pp. 3089-3108 Sách, tạp chí
Tiêu đề: Circular spectrum and bounded solutions of periodic evolution equations
Tác giả: Nguyen Van Minh, Gaston N'Guérékata, Stefan Siegmund
Nhà XB: Journal of Differential Equations
Năm: 2009
[13] Nguyen Van Minh, T. Naito, G. M. N'Gu’er’ekata (2006), ''A Spectral Countability Condition for Almost Automorphy of Solutions of Differ- ential Equations'', Proc. of the Amer. Math. Soc., Vol.134, pp. 3257-3266 Sách, tạp chí
Tiêu đề: A Spectral Countability Condition for Almost Automorphy of Solutions of Differential Equations
Tác giả: Nguyen Van Minh, T. Naito, G. M. N'Guérékata
Nhà XB: Proc. of the Amer. Math. Soc.
Năm: 2006
[14] Nguyen Van Minh, Tran Tat Dat (2007), ''On the almost automorphy of bounded solutions of differential equations with piecewise constant argument'', J. Math. Anal. Appl. , Vol.326, pp. 165-178 Sách, tạp chí
Tiêu đề: On the almost automorphy of bounded solutions of differential equations with piecewise constant argument
Tác giả: Nguyen Van Minh, Tran Tat Dat
Nhà XB: J. Math. Anal. Appl.
Năm: 2007
[20] Rong Yuan (2007), ''On almost periodic solutions of logistic delay differ- ential equations with almost periodic time dependence'', J. Math. Anal.Appl. , Vol.330, pp. 780-798 Sách, tạp chí
Tiêu đề: On almost periodic solutions of logistic delay differential equations with almost periodic time dependence
Tác giả: Rong Yuan
Nhà XB: J. Math. Anal. Appl.
Năm: 2007
[6] A.M. Fink (1969), ''Extensions of Almost Automorphic Sequences'', J.Math. Anal. Appl. , Vol.27, pp. 519-523 Khác
[8] Tetsuo Furumochi, Toshiki Naito (2009), ''Periodic solutions of differ- ence equations'', Nonlinear Analysis, Vol.71, pp. 2217-2222 Khác
[15] S. Murakami, Naito, Nguyen Van Minh (2004), ''Massera theorem for almost periodic solutions of functional differential equations'', J. Math.Soc. Japan, Vol.56(1), pp. 247-268 Khác
[16] Toshiki Naito, Nguyen Van Minh (1999), ''Semigroups and Spectral Cri- teria for Almost Periodic Solutions of Periodic Evolution Equations'' Journal of Differential Equations, Vol.152, pp. 358-376 Khác
[17] G. M. N'Gu’er’ekata (2001), Almost Automorphic and Almost Periodic Functions in Abstract Spaces, Kluwer, Amsterdam Khác
[18] G. M. N'Gu’er’ekata (2005), Topics in Almost Automorphy, Springer, New York Khác
[19] G. M. N'Gu’er’ekata (1999), ''Almost automorphic functions and applica- tions to abstract evolution equations'', Contemporary Math, Vol.252, pp.71-76 Khác

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN