1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2019 2020 Phần 2 (15 đề kèm hướng dẫn giải)

74 111 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 74
Dung lượng 1,55 MB

Nội dung

Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 20192020Phần 2 (15 đề kèm hướng dẫn giải);https:123doc.orgtrangcanhan3408296loctintai.htm. Gmail: loctintaigmail.com;Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 20192020Phần 2;ĐỀ THI TUYỂN SINH LỚP 10 THPT NĂM HỌC 20192020MÔN THI: TOÁNThời gian làm bài: 120 phút (không kể thời gian giao đề)ĐỀ SỐ: 01(Đề tuyển sinh vào lớp 10 THPT môn Toán – Sở GDĐT Quảng Ngãi, ngày thi 0562019)ĐỀ BÀIBài 1. (1,0 điểm) a) Cho biểu thức So sánh A với b) Giải hệ phương trình: Bài 2. (2,5 điểm)1. Cho Parabol và đường thẳng a) Vẽ trên cùng một mặt phẳng tọa độ .b) Viết phương trình đường thẳng song song với và tiếp xúc với .2. Cho phương trình (m là tham số)a) Biết phương trình có một nghiệm bằng . Tính nghiệm còn lại. b) Xác định m để phương trình có hai nghiệm thỏa mãn Bài 3. (2,0 điểm) Một đội công nhân đặt kế hoạch sản xuất 250 sản phẩm. Trong 4 ngày đầu, họ thực hiện đúng kế hoạch. Mỗi ngày sau đó, họ đều vượt mức 5 sản phẩm nên đã hoàn thành công việc sớm hơn 1 ngày so với dự định. Hỏi theo kế hoạch, mỗi ngày đội công nhân đó làm được bao nhiêu sản phẩm? Biết rằng năng suất làm việc của mỗi công nhân là như nhau.Bài 4. (3,5 điểm) Cho tam giác nhọn ABC (AB 2m = 40,25= > m = 20,25Vậy m = 2 là giá trị cần tìm.0,253Giải phương trình x2 – x – 6 = 0.1,0 điểm = (1)2 – 4.( 6) = 1 + 24 = 250,25 = 250,25Vậy phương trình đã cho có hai nghiệm là x = 20,25 x = 30,254Vẽ đồ thị của hàm số y = x21,0 điểmBảng sau cho một số giá trị tương ứng của và (nếu đúng 3 cặp (x, y) thì được 0,25 điểm)0,5Vẽ đồ thị: (nếu vẽ qua đúng 3 điểm thì được 0,25 điểm)0,55Tìm tọa độ giao điểm của đường thẳng (d1): y = 2x + 1 và đường thẳng (d2): y = x + 3.1,0 điểmPhương trình hoành độ giao điểm của (d1) và (d2) là 0,25= > x = 20,25Với x = 2 tìm được y = 5 0,25Vậy tọa độ giao điểm của (d1) và (d2) là (2; 5).0,256Cho tam giác ABC vuông cân tại A có đường trung tuyến BM (M thuộc cạnh AC). Biết AB = 2a. Tính theo a độ dài AC, AM và BM.1,0 điểm AC = AB = 2a 0,25 AM = AC : 2 = a 0,25 0,25 0,257Hai ô tô khởi hành cùng một lúc từ Ađến B. Vận tốc của ô tô thứ nhất lớn hơn vận tốc của ô tô thứ hai là 10 kmh nên ô tô thứ nhất đến B trước ô tô thứ hai giờ. Tính vận tốc mỗi ô tô biết quãng đường AB dài 150 km. 1,0 điểmGọi x (kmh) là vận tốc ô tô thứ nhất. Điều kiện x > 10.0,25Khi đó vận tốc ô tô thứ hai là x – 10 (kmh) Từ giả thiết ta có 0,25 Do x > 10 nên nhận x = 60.0,25Vậy vận tốc của ô tô thứ nhất là 60 kmh và vận tốc của ô tô thứ hai là 50 kmh .0,258Tìm các giá trị nguyên của m để phương trình x2 – 4x + m + 1 = 0 có hai nghiệm phân biệt x1 và x2 thảo mãn x13 + x23 < 100. 1,0 điểmPhương trình đã cho có hai nghiệm phân biệt khi và chỉ khi 0,25 .Ta có 0,25Kết hợp với điều kiện ta được 0,25Vậy các giá trị nguyên của m cần tìm là 0,259Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O . Gọi I là trung điểm AB. Đường thẳng qua I vuông góc AO và cắt AC tại J. Chứng minh: B, C, J và I cùng thuộc một đường tròn1,0 điểm Gọi là trung điểm ; là giao điểm của và Ta có ( góc ở tâm và góc chắn cung)0,25Tam giác cân tại nên 0,25Mặt khác 0,25Từ và suy ra . Vậy bốn điểm B, C, J và I cùng thuộc một đường tròn.0,2510Cho đường tròn (C) có tâm I và có bán kính . Xét điểm M thay đổi sao cho IM = a. Hai dây AC, BD đi qua M và vuông góc với nhau. (A, B, C, D thuộc ). Tìm giá trị lớn nhất của diện tích tứ giác ABCD.1,0 điểm Đặt lần lượt là trung điểm của và , là diện tích tứ giác . .0,25 .0,25Do nên .0,25 khi .Vậy giá trị lớn nhất của diện tích tứ giác là .0,25Hết .ĐỀ THI TUYỂN SINH LỚP 10 THPT NĂM HỌC 20192020MÔN THI: TOÁNThời gian làm bài: 120 phút (không kể thời gian giao đề)ĐỀ SỐ: 03(Đề thi tuyển sinh vào lớp 10 THPT môn Toán – Sở GDĐT Long An, ngày thi 05062019)ĐỀ BÀICâu 1: (2,0 điểm) 1. Rút gọn các biểu thức: 2. Rút gọn các biểu thức: (với ) 3. Giải phương trình: Câu 2: (2,0 điểm) Trong mặt phẳng tọa độ Oxy ,cho Parabol (P): y = 2x2 và đường thẳng (d): y = 2x + 4. 1.Vẽ Parabol (P) và đường thẳng (d) trên cùng một mặt phẳng tọa độ . 2.Tìm tọa độ giao điểm của Parabol (P) và đường thẳng (d) bằng phép tính.3.Viết phương trình đường thẳng . Biết rằng song song với (d) và đi qua điểm N(2; 3).Câu 3: (2,0 điểm) 1.Giải phương trình: (không giải trực tiếp bằng máy tính cầm tay)2.Giải hệ phương trình: (không giảitrực tiếp bằng máy tính cầm tay)3.Cho phương trình (ẩn ) : a)Tìm giá trị để phương trình có hai nghiệm phân biệt . b)Tìm giá trị để phương trình có hai nghiệm phân biệt thỏa mãn điều kiện .Câu 4: (4,0 điểm) 1. Cho tam giác ABC vuông tại A có đường cao AH, biết AB = 5cm, BH = 3cm. Tính AH , AC và sin CAH.2. Cho đường tròn , đường kính AB. Kẻ tiếp tuyến với đường tròn và lấy trên tiếp tuyến đó điểm P sao cho AP > R, từ P kẻ tiếp tuyến thứ hai tiếp xúc với đường tròn (O, R) tại M.a) Chứng minh tứ giác APMO nội tiếp được đường tròn.b) Chứng minh BM song song OP.c) Biết đường thẳng vuông góc với AB tại O cắt BM tại N, AN cắt OP tại K, PM cắt ON tại I, PN cắt OM tại J. Chứng minh ba điểm K, I, J thẳng hàng.HếtHƯỚNG DẪN GIẢI ĐỀ SỐ: 03(Đề thi tuyển sinh vào lớp 10 THPT môn Toán – Sở GDĐT Long An, ngày thi 05062019)Câu 1: (2,0 điểm)1. .2. .3. Vậy Câu 2: (2,0 điểm)1. Học sinh tự vẽ hình.2. Phương trình hoành độ giao điểm của (P) và (d) là: Vậy tọa độ giao điểm là .3. Vì song song với nên .Vì và đi qua điểm N(2; 3). nên . Thay vào ta có 3 = 2.2 + b = > b = 1 (TMĐK ).Vậy phương trình : y = 2x – 1.Câu 3: (2,0 điểm)1. . Ta có Phương trình có hai nghiệm phân biệt: ; 2. Vậy hệ phương trình có nghiệm (x; y) = (2; 1).3. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 20192020Phần 2 (15 đề kèm hướng dẫn giải);

Đề tuyển sinh vào lớp 10 THPT mơn Tốn năm học 2019-2020-Phần (15 đề kèm hướng dẫn giải)   ĐỀ THI TUYỂN SINH LỚP 10 THPT NĂM HỌC 2019-2020 MƠN THI: TỐN ĐỀ SỐ: 01 Thời gian làm bài: 120 phút (không kể thời gian giao đề)  (Đề tuyển sinh vào lớp 10 THPT mơn Tốn – Sở GD&ĐT Quảng Ngãi, ngày thi 05/6/2019) ĐỀ BÀI Bài 1. (1,0 điểm)         a) Cho biểu thức  A  16  25   So sánh A với     x  y  5    x  y  11 b) Giải hệ phương trình:   Bài 2. (2,5 điểm)  1. Cho Parabol   P  : y   x  và đường thẳng   d  : y  x    a) Vẽ   P   d   trên cùng một mặt phẳng tọa độ  Oxy   b) Viết phương trình đường thẳng   d'  song song với   d   và tiếp xúc với   P    2. Cho phương trình  x  x  m   (m tham số)  a) Biết phương trình có một nghiệm bằng  1  Tính nghiệm cịn lại.   b) Xác định m để phương trình có hai nghiệm  x1 ,x2  thỏa mãn   x1  1 x2  1    Bài 3. (2,0 điểm)     Một đội cơng nhân đặt kế hoạch sản xuất 250 sản phẩm. Trong 4 ngày đầu,  họ thực hiện đúng  kế hoạch. Mỗi ngày sau đó, họ đều vượt mức 5 sản phẩm nên đã hồn  thành  cơng  việc  sớm  hơn  1  ngày  so  với  dự định.  Hỏi  theo  kế  hoạch,  mỗi  ngày  đội  cơng  nhân  đó  làm  được bao nhiêu sản phẩm? Biết rằng năng suất làm việc của mỗi cơng nhân là như nhau.  Bài 4. (3,5 điểm)  Cho tam giác nhọn ABC (AB

Ngày đăng: 30/06/2020, 16:20

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w