Instructor’s Solutions Manual to accompany Experimental Methods for Engineers Eighth Edition J.. Holman Professor of Mechanical Engineering Southern Methodist University Boston Bur
Trang 1Instructor’s Solutions Manual
to accompany
Experimental Methods for
Engineers
Eighth Edition
J P Holman
Professor of Mechanical Engineering Southern Methodist University
Boston Burr Ridge, IL Dubuque, IA Madison, WI New York San Francisco St Louis
Bangkok Bogotá Caracas Lisbon London Madrid Mexico City Milan New Delhi Seoul Singapore Sydney Taipei Toronto
PROPRIETARY MATERIAL © 2012 The McGraw-Hill Companies, Inc All rights reserved No part of this Manual may be displayed,
reproduced, or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGrawit without permission -Hill for their individual course preparation A student using this manual is using
Chapter 2
2-3
Trang 21
Amplitude ratio = Fk0 ìïïïïíỵï éêëê1 - ( ww 1n )2
ùúúûú+ éêêë2(ca c )( ww 1n
)úùúûïïïïþüýïï ê
=
amplitude ratio 0.99 (Use Figure 2-5)
F t( ) = F0 sin wt x t1 ;( ) = x0 sin(wt1 - )
time lag = t xmax - t Fmax
F t( ) = F0 = max (when sin wt1 = 1)
\ wt1 = sin- 11 = ; t Fmax
2
1
=
w1 2
ỉ1 ưỉ ưỉ t Fmax = çççè40 øè
øè÷÷÷÷çççπ2 ÷÷÷÷ççç21π ừ÷÷÷÷=
x t( ) = x0 = max (whensin(wt1 - ) = 1 \ (wt1 - ) = sin- 11 =
1 ỉçççèπ2 + ÷÷÷÷ừ
t xmax = w1
2(cc c )(ww 1n ) = tan- 1 2
= tan- 1
2 1 -
= 33.7° (Use Figure 2-6)
1 é ỉçççè180 ừ÷÷÷÷ùúúû= 0.054 sec
t xmax = 40 2êêë + 33.7
\ time lag = 0.54 - 0.000625 time lag = 0.0478sec
2-4
=
Trang 3k
w1 = 0.306 which
gives
w n
w n = (100)(2 ) = 628 rad/sec
w1 = (0.306)(628) w1 = 192.1
rad/sec = 30.6 Hz
ïïỵíïï éêëê1 - ( ww 1n ) úúúûù + éêëê2(cc c
)( ww 1n ) úúûúùïïïïïïþý k ï
ï ê ê
4
For x F00 = 1.00 + 0.01 = 1.01we have ỉççççè
ww 1n ừ÷÷÷÷÷ k w1 ® imaginary
4
For x F00 = 1.00 - 0.01 = 0.99 we haveỉççççè
ww 1n ừ÷÷÷÷÷ -
2
0.04
ỉèçççç ww 1n ư÷÷÷÷÷ + 1 - çççèỉ1.011 øư÷÷÷÷2 = 0 and
ø
2
ỉèçççç ww 1n ư÷÷÷÷÷ + 1 - ççỉèç0.991÷÷÷÷ừ2 = 0
Trang 42-5
T - T¥ = e- ( RC1 )t
T - T
At t = 3sec,T = 200°F
T - T¥
= 0.435 At t
= T0 - T¥
T - T¥ =
0.1304 T0 - T¥
1 - 0.632 =
0.328 RC » 3.4
sec
2-6
P = E AB2
R
E AB = Eæççç
R ö÷÷÷÷÷ çè R +
R i ø
2
5sec, T = 270°F
P = RR i
0 ¥
1
1
R
R
R R+
ö
ç ÷ ø
è
Trang 5
2-7
®inch Readability
®inch Least count
2-8
t = RC = time constant t =
(106ohms)(10- 5f) = 10 sec
t = 10 sec
2-9
% error = éê(R + R i ) - R ùú´ 100 êêë
(R + R i) úúû
ç
% error = 20%
2-10
E2
P = AB ; E AB = E +RR i
E = 100 v
R = 20,000 ohms
R i = 5000 ohms
P = E2 æç R ÷÷ö2 = 104
é 2 ´ 104 ù = 0.32 Watts ê
Maximum power occurs when = 0 ® R = R i dR
P =
max E2 æçççè2PR øö÷÷÷÷2 = 2.010´ 4104 = 5000
Watts
R
When R = 1000 ohms and R i = 5000 ohms:
104 é
ê 103 ù 2
= 10 volts2 = 0.278 Watts
P = 3 ê6 ´ 103 úúû 36 ohm
10 êë
\ R = 5000 ohms
Trang 6
5
R Rèçç + R i ÷÷ø
2(10)4
êêë2.5´ 104
úúû dP
mx + kx = 0
® w n = k
x + k x = 0 where w n2 = k
m m m
From the static deflection: k = mg where = deflection = 0.5 cm
k g g 980 seccm 2
= ® w n = =
44.3 rad/sec
2-12
= 0.25 inch; g = 386 in/sec2
w n = g = 986 secin 2 = 39.4 rad/sec
0.25 in
2-14
w n = 39.4 rad/sec = 6.27 Hz
w x0 for c = 0
w w n F0 c c
k
2-11
Trang 760 9.57 0.011
2-15
dV
At = 0, V = 10 liters, = - 6
d
c = 0.6 hr- 1
2-16
(1 lbf/in )(4.448 N/lbf)(144 in /ft )(3.28 ft /2 2 2 2 2 m )2
= 6890 N/m2
1 lbf/in2 = (6890)(9.806) = 67570 kgf/m2 = 6.757 kp/cm2
2-17
(mi/gal)(5280 ft/mi)çççèỉ 2311 gal/in3÷
÷÷÷ừ(1728 in /ft3 3)
´ (35.313 ft /m33)ỉ
çççè1000 1 m /l3
ø÷÷÷÷ư´ (3.2808´ 10- 3 km/ft)
= 4.576 km/l
2-18
ỉ lbm ft ư
2-19
(kJ/kg·°C)çççè1.055 kJ
ø÷÷÷÷(0.454 kg/lbm) èççç9 °C/ F° ø÷÷÷÷= 0.2391 Btu/lbm· F°
(kJ/kg·°C)çççỉ4.1821 kcalkJ ø÷÷÷÷ưỉççèçç10001
kg
g ÷÷÷÷ưø= 2.391´ 10- 4 kcal/g- C° è
(lbf-s/ft2) 32.17çççè lbf s2 ø÷÷÷÷=
= 47.92 kg/ms·
(0.454 kg/lbm)(3.2808 ft/m)
Trang 8
7
2-20
3)æ çççè4541 lbm/gö æ
ø (g/m )(0.02832 m /ft3 3
è÷÷÷÷´ ççç32.171 slug/lbmö
ø÷÷÷÷
= 1.939 ´ 10- 6 slug/ft3
2-21
sec/hö÷
÷÷÷´
J/Btu° )ççæ 1 (Btu/h-ft- F)(1055
(107 erg/J)æ
èççç95° °F/ Cö
ø÷÷÷÷
çè3600 ø
æ çççè12 ´ 12.54 ft/cmøö÷÷÷÷
= 5.275 ´ 106 erg/s·ft· C° ´
= 1.731´ 105 erg/s·cm· C°
2-22
2
/s2 )æ çççè2.541´ 12 cmft ö÷÷÷÷ø = 1.076 ft /2 s
(cm
2-23
(W/m3) 3.413ççèçæçW·hBtu ø÷÷÷÷öèæççç3.28081 mft ö÷÷÷ø÷3 =
0.09664 Btu/h·ft3
2-24
(dyn s/cm· 2)(10- 5 N/dyn)(0.2248 lbf/N) ´ (2.54 ´ 12
cm/ft)2ççæ32.17 lbm ft2 ö÷
÷÷
= 0.0672 lbm/s ft· ´ 3600 s/h
lhm
= 241.8
h ft·
çè lbf s ø÷
2-25
W 3.413 Btu/W h·
´ c m
3
Trang 9( 2.541 )2 cmin 22 ´ 1441
inft 22
W Btu/hr-ft2
cm2
2-26
R = 1545lbm molft-lbf·· R ´ 0.30480.454mftkg´
lbm ´ 9 R
2-27
cms 3ỉçççè ừ÷÷÷÷3 cmin33 ´ 2311
gal in2
´
cm3
gal/min s
2-28
R = K
J
2-29
= 105, T0 = 30 C, T¥ = 100 C
Rise time 90 = 2.303 = 23.03s
0.01 = e - t t
= 4.605
t(99 ) = 46.05 sec
2-30
A = 20 C = 0.01Hz = 0.0628 rad/s
= tan- 1 T
= tan-
1[(0.0628)(
10)]
= - 32.14 deg
0.561rad
t =
=
= 8.93sec
0.0628
2-31
c
n = 10,000 Hz
= 0.3, 0.4
c
c
c
For= 0.3, resonance
at = 0.9,
= 9000
n c
For= 0.4, resonance at = 0.8, = 8000 Hz
c c
2-32
n
c
= 0.2 and 0.4 for
c
At 2000 Hz
= 0.3
Trang 10
9
k
= tan- 1 éêêë(2)(0.3)(0.2)1 - 0.22 ùúúû=
7.13deg At 4000 Hz
k
= tan- 1
éêêë(2)(0.3)(0.4)
1 - 0.42 ùúúû=
15.9deg
Hz Hz
k
From Fig 2-6,
c
For = 1.0 c c
10
0.3
2-34
= - 50 = - tan- 1
= (2)(1.1918) = 2.3835
0.643
2-35
= 3 Hz = 18.85 rad/s = 0.5 sec
( ) = - tan - 1[(18.85)(0.5)] = - 8.39
1/2 = 0.1055
21 / 2
1 [1 + 2.384]
0.3
n
>
<
21 / 2
1 [1 + 1.1918]
Trang 11
2-36
T0 = 35 C T¥ = 110 C (8 secT ) = 75 C
= e - t/
t
= 810.7621 = 10.497 sec 90 rise
time = 2.303 = 24.174 sec
2-38 static sens = 1.0
V/kgf
output = (10)(1.0) = 10.0 V
2-39 rise time =
0.003 ms e - t/ = e- Rc1
t = 0.1
1 = 7.86 ´ 105
RC
RC = 1.303 ´ 10- 6
R in ohm, C in farads
2-42
= 0.1sec
T t( ) = 17 C
T0 = 100 C T¥ = 15
C
= e - t/0.1
t
= 3.75
0.1
t = 0.375 sec
2-43
= 0.9
= 0.4843 to 4.84 rad/s
( ) = - tan- 1(0.4843) = - 25.84 = 0.451 rad
0.451
Dt = = 0.093 sec
4.84
Trang 12
11
2-44
=
500
Hz
3
0.98 = ( ) 2 ( ) ( ) 2üïïï1/2
ìïïïíïîïï êéë1 - 13 2 úûùú +
ëêêé(2) cc c 13 úûùú ýïïþï ê
c
= 0.619 c c
2-45
t = 1´ 10- 6 sec = 90% rise time
1
- (1 10´ - 6)
t = 2 hr = 3600sec = ( )
0.1 = e RC
RC = 4.34 ´ 10- 7
R in ohm, C in farads
2-46
t = 2 hr
1
cyc/hr 2 9.27 10- 5rad/sec
1
n
n
Trang 13= 0.2679
0.2679
= = 3685sec = 1.024 hr
7.27 ´
Amp response = = 0.966
2-47 m = 1.3 kg k = 100
N/m
k æ100 ö1/2
n = m = çççè1.3 ø÷÷÷÷= 8.77 rad/s
c c = 2 mk = 2[(1.3)(100)]1/2 = 72.11 c
= 1.0
c c
From Figure 2-8, n t = 3.6 for 90
3.6
t = = 0.41sec
8.77
2-48
c
= 0.1
c c From Figure 2-9, n t = 3.1
3.1
t = = 0.353 sec
8.77
2-49
x t( ) c
= 0.9 = 1.5
x0 c c
From Figure 2-9 n t = 6.2,
2-50
t = 1sec, n t = 8.77 c 5.7
c = 5.7 = = c c
72.11
x
From Figure 2-9, » 1.8
x0
2-51
Rise time = 10- 12 s
6.2
t = = 0.71sec
8.77
Trang 14
13
0.79
2-53
T0 = 20°C T¥ = 125°C e - t/ =
0.1
= 34.54 sec
= exp
T t20( ) 125125 ỉçççè- t
ừ÷÷÷÷=
T t( ) =
20.15°C
2-54
t = 0.05 sec
e- ( )
1 = 0.02088 lbf sec/ft× m
s×
2-55
English units
= lbm/ft ,3 u = ft/sec x =
ft, = lbm/s-ft
SI units
= kg/m ,3 u = m/s
x = m, = kg/m-s
2-56
SI system
g = m/s ,2 = 1 / °C, = kg/m3
T = °C, x = m, = kg/m-s
At = 1.0 c c and x0 n t 3.6, n = 3.7 ´ 10 rad/s = 0.9,
12
f = 5.7 ´ 1011 Hz = 570 GHz
2-52
m = 1000 lbm = 2203 kg
1000 lbf
÷÷÷÷ư1/2 = 7.29 rad/s
1.5
12
0
lbf/ft
8000 117,000 N/m
117,000
2203
3.6
0.495 s
7.29
n
n c
k
k
m
c
x
t
c
x
t
ỉ
ç
=
ø
è
=
=
=
Trang 15(5 9
English system
g = ft/s ,2 = 1/ F,° = lbm/ft3
T = °F, x = ft, = lbm/ft-s
2-57
W-cm 0.01 m/cm
´
in - F2 ° (2.54 cm/in.) (0.01 m/cm2)2 °C/ F° )
W-cm in - F2
´ W/m-
C°
2-58
T0 = 45, T¥ = 100 rise time = 0.2 s T(0.1s) = ?
0.2 = 2.303 , = 0.0868 s
(T - 100)/(45 - 100) = exp( 0.1/0.0868)- = 0.316 T =
82.6ºC
2-59
m = 6000/4 = 1500 lbm = 3303 kg
k = 1500/(1/12) = 18,000 lb/ft = 263,250 N/m
n = (263250/3303)1/2 = 8.93 rad/s
For critically damped system:
0.9 = 1 - (1 + n t)exp( - n t)
Solution is n t = 3.8901
t = (3.8901)(8.93) = 0.435s
2-60
= 400 Hz, n = 1200 Hz / n = 400/1200 = 1/3
0.98 = 1/{[1 - (1/3) ]2 2 + [(2)(c c/ c)(1/3)] }2 1/2 c c/ c = 0.619
2-61
Insert function in Equations (2-38) and (2-39), manipulate algebra and the indicated result will be given
2-62
t = 1.5 h, = 1/24 cyc/h = 2 /(24)(3600) = 7.27 ´ 10- 5 rad/sec
(1.5)(3600) = 5400 s = ( )/
( ) = (5400)(0.0000727) = 0.3926 = - tan- 1( )
= 0.414
Trang 16
15
= 0.414/7.27 ´ 10- 5 = 5695 s = 1.58 h
2-63
T0 = 45 T¥ = 100 T(6s) = 70
(70 - 45)/(100 - 45) = exp( 6/ )-
For 90% rise time exp(- /7.61) = 0.1
Rise time = 17.52 s
2-64
Insert function in Equations (2-38) and (2-39), manipulate algebra to give the indicated result
2-65
= 8 s, T0 = 40, T¥ = 100
Rise time = 2.303 = 18.424 s
T(99%) = 99 C
(99 - 100)/(40 - 100) = exp(- t/8) t =
32.75 s
2-66
= 5 Hz, = 0.6 s
= (2π)(5) = 31.4 rad/s
( ) = - tan- 1( ) = - 8.7°
1/[1 + ( ) ]2 1/2 = 0.053
2-67
A = 15, = 0.01 Hz = 0.0628 rad/s
( ) = - tan- 1 = - tan- 1(0.0628)(8) = - 26.7°
Attenuation = 1/[1 + ( ) ]2 1/2 = 0.894
Trang 17SM: Experimental Methods for Engineers Chapter 2
Trang 1813