Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 22 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
22
Dung lượng
872 KB
Nội dung
Ket-noi.com kho tài liệu miễn phí Các dạng thiếtdiện theo cách xác định mặt phẳng: 1.Thiết diệnhình chóp với mặt phẳng (P) qua điểm khơng thẳng hàng 2.Thiết diệnhình chóp với mặt phẳng (P) chứa đường thẳng song song với đường thẳng cho trước 3.Thiết diệnhình chóp với mặt phẳng (P) qua điểm song song với hai đường thẳng cho trước 4.Thiết diệnhình chóp với mặt phẳng (P) qua điểm song song với mặt phẳng cho trước 5.Thiết diệnhình chóp với mặt phẳng (P) chứa đường thẳng vuông góc đường thẳng cho trước 6.Thiết diệnhình chóp với mặt phẳng (P) qua điểm vng góc với mặt phẳng Dạng 1: Thiếtdiệnhình chóp với mặt phẳng (P) qua điểm khơng thẳng hàng Phương pháp: Bước 1: Từ hai điểm chung có sẵn, xác định giao tuyến mặt phẳng (P) với mặt hình chóp Bước 2: Cho giao tuyến vừa tìm cắt cạnh mặt hình chóp ta điểm chung (P) với mặt khác Từ xác định giao tuyến với mặt Bước 3: Tiếp tục tới đoạn giao tuyến tạo thành đa giác phẳng khép kín ta thiếtdiện Bươc 4: Dựng thiếtdiện kết luận Ví dụ 1: Cho hình chóp tứ giác S.ABCD, M điểm nằm cạnh SC (khơng trùng với S, C), N P lần luợt trung điểm AB, AD Tìm thiếtdiệnhình chóp với (MNP) S Giải: Ta có: MNP � ABCD NP M Q Kéo dài BC NP cắt I, MNP � SBC KM Kéo dài DC cắt NP J, MNP � SCD MQ J K A P MNP � SAD PQ Vậy thiếtdiện ngũ giác KMQPN D N I B C Dạng 2:Thiết diệnhình chóp với mặt phẳng (P) ((P) chứa đường thẳng a song song với đường thẳng b cho trước ( a b chéo nhau)) @Phương pháp: Bước 1: Chỉ mp (P) (Q) chứa hai đường thẳng song song a b Bước 2: Tìm điểm chung M hai mặt phẳng ( dựng thêm đường phụ) Ket-noi.com kho tài liệu miễn phí Bước 3: Khi đó: P � Q Mt P a P b Bước 4: Sử dụng cách tìm thiếtdiện biết ta tìm giao tuyến mặt phẳng (P) với mặt lại hình chóp Bước 5: Dựng thiếtdiện kết luận Ví dụ 2: Cho hình chóp S.ABCD, ABCD hình bình hành, M trung điểm SC, (P) mặt phẳng qua AM song song BD Tìm thiếtdiệnhình chóp cắt (P) Giải: Ta có: S BD P P , BD � SBD Gọi O tâm hình bình hành ABCD Gọi I SO �AM Khi P � SBD Ix P BD Ix cắt SB K, cắt SD N Do đó: P � SBC MK M K P � SCD MN P � SAB AK P � SAD AN Vậy thiếtdiện tứ giác KMNA N I A D O B C Dạng 3:Thiết diệnhình chóp với mặt phẳng (P) qua điểm song song với hai đường thẳng cho trước: @Phương pháp: Bước 1: Tìm điểm M �(P) ∩ (Q) Bước 2: Chỉ mp (P) P a ( b ) � (Q) Suy giao tuyến (P) (Q) đường thẳng qua M song song a ( b ) Bước 3: Tiếp tục tìm giao tuyến mặt khác hình chóp với (P) cách biết Bước 4: Dựng thiếtdiện kết luận Ví dụ 3: Cho hình chóp S.ABCD, ABCD hình thang ( AD song song BC ), M điểm thuộc AB ( ) mặt phẳng qua M song song với AD SB Tìm thiếtdiệnhình chóp với mặt phẳng ( ) S Giải: Ta có: M � � ABCD K P ( ) song song với AD nên: ( ) � ABCD Mx P AD Gọi N Mx �CD ( ) song song với SB nên: ( ) � SAB MP P SB A Tương tự ta có: ( ) � SAD Px P AD D M B N C Ket-noi.com kho tài liệu miễn phí Gọi K Px �SD ( ) � SCD KN Vậy thiếtdiệnhình thang MNKP Dạng 4:Thiết diệnhình chóp với mặt phẳng (P) qua điểm song song với mặt phẳng cho trước Phương pháp: Bước 1: Tìm điểm chung M hai mặt phẳng (P) mặt phẳng hình chóp Bước 2: Chỉ P P Q Tìm a P � R (b Q � R ) Khi giao tuyến đường thẳng qua M song song với a ( b ) Bước 3: Dựng thiếtdiện kết luận Ví dụ 4: Cho hình chóp S.ABCD, ABCD hình thang, cạnh đáy AB, CD AB mặt phẳng qua M cạnh AB song song với mặt phẳng (SAD) Tìm thiếtdiệnhình chóp với Giải: Ta có: M � � ABCD , S P K M � � SAB Do song song với (SAD) nên: � ABCD MN P AD � SAB MK P SA � SCD NP P SD � SBC KP Vậy thiếtdiệnhình thang KMNP A D M B N C Dạng 5:Thiết diện qua điểm vng góc với đường thẳng cho trước Giả sử cần xác định thiếtdiệnhình chóp cắt mặt phẳng (P) qua điểm M vng góc với d cho trước Phươngpháp chung: Bước 1: Tìm hai đường thẳng a b cắt vng góc với d ( đường thẳng qua điểm M) Bước 2: Khi (P) P ( a ,b) Bước 3: Tìm giao tuyến (P) với hình chóp cách biết Bước 4: Dựng thiếtdiện kết luận Chú ý: Nếu có sẵn đường thẳng cắt chéo mà vng góc với d ta chọn (P) song song với a (hay chứa a ) b song song với (P) (hay chứa b) Rồi thực bước lại Ket-noi.com kho tài liệu miễn phí Ví dụ : Cho hình chóp S.ABCD, ABCD hình chữ nhật, SA vng góc với mặt phẳng (ABCD) Gọi mặt phẳng qua A vng góc với SB Xác định thiếtdiện cắt hình chóp (S.ABCD) Giải: Ta có: S AD AB � �� AD SAB AD SA � � AD SB Từ A kẽ đường thẳng vng góc với SB H Do � HAD Khi đó: H � SAB AH � SAD AD � ABCD AD Do �AD P BC Nên � SBC Hx P BC I D A B C Gọi I Hx �SC Khi � SBC HI Vậy thiếtdiện cần tìm hình thang AHID Dạng 6: Thết diện chứa đường thẳng a vng góc với mặt phẳng Bước 1: Chọn điểm A nằm đường thẳng a cho qua A dựng đường thẳng b vng góc với mp cách dễ Bước 2: Khi đó, mp ( a ,b) mp cần dựng Bước 3: Tìm giao tuyến với hình chóp cách biết Bước 4: Dựng thiếtdiện kết luận Ví dụ 6: Cho hình chóp S.ABCD, ABCD hình chữ nhật, SA vng góc với mặt phẳng (ABCD) Gọi I, J trung điểm AB, CD Gọi (P) mặt phẳng qua Ị vng góc với mặt (SBC) Tìm thiếtdiệnhình chóp với mặt phẳng (P) Giải: IJ AB � S Ta có �� IJ SAB � IJ SB IJ SA � Từ I kẻ đường thẳng vng góc với SB K Do P � KIJ Ta có P � SAB KI P � ABCD IJ P �IJ P BC � P � SBC KN P BC P � SCD NI A K D N I Vậy giao tuyến hình thang KNIJ J B C Ket-noi.com kho tài liệu miễn phí Chú ý: Việc tìm thiếtdiên mặt phẳng với hình lăng trụ tiến hành tương tự hình chóp Nhưng ý hình lăng trụ có mặt đáy song song nhau, cắt mặt đáy cng cắt mặt đáy lại theo giao tuyến song song vơi giao tuyến vừa tìm Việc tìm thiếtdiệnhình lập phương tiến hành giống đói với hình lăng trụ Ví dụ 7: Cho hình lăng trụ tam giác ABC.A1B1C1, điểm M, N trung điểm BC CC1 Xác định thiếtdiệnhình lăng trụ với mặt phẳng (A1MN) Giải: A1MN � BCB1C1 MN A Kéo dài AC A1N cắt I Khi đó: A1MN � ABC MP C I M P A1MN � ABB1 A1 PA1 B N Vậy thiếtdiện tứ giác PMNA1 A1 C1 B1 Những khó khăn giải tốn thiếtdiện biện pháp khắc phục Tìm thiếtdiệnhình cắt mặt phẳng chẳng hạn tìm thiếtdiệnhình chóp cắt mặt phẳng P: ta tìm giao tuyến mặt phẳng (P) với mặt hình chóp Các “đoạn giao tuyến” liên tiếp tạo cắt mặt hình chóp mặt phẳng (P) hình thành đa giác phẳng, ta gọi hình đa giác thiếtdiện tạo mặt phẳng (P) với hình chóp Như vậy, thực chất tốn tìm thiếtdiện tốn tìm giao điểm mặt phẳng (P) với cạnh hình chóp tìm đoạn giao tuyến mặt phẳng (P) với mặt hình chóp Từ ta thấy khó khăn giải tốn thiếtdiệnphần lớn bắt nguồn từ khó việc tìm “giao điểm”(của mặt phẳng cạnh hình chóp cắt mặt phẳng) xác định “đoạn giao tuyến”(của mặt phẳng mặt hình cắt mặt phẳng) Ta khó khăn đó, khó khăn mà ta bắt gặp giải tốn thiếtdiện có hình vẽ thuận lợi cho việc giải tốn, hìnhhọc khơng gian (HHKG) đòi hỏi tư trừu tượng cao mà thiếtdiện vấn đề tương đối phức tạp HHKG, hình vẽ thích hợp tăng khả tư Những khó khăn việc vẽ hình khơng gian việc tìm lời giải dựa nhiều vào trực giác, thiếu sở từ định lý hay hệ dẫn lời giải sai: Hình vẽ chưa thể hết giả thiết tốn, hình vẽ sai gây nên bế tắc việc tìm lời giải, hay trực giác khơng xác dẫn tới giải sai Ket-noi.com kho tài liệu miễn phí Một số học sinh chịu ảnh hưởng nặng hìnhhọc phẳng vẽ hình HHKG lại tuân thủ cách máy móc độ dài, diện tích, góc…điều làm cho em bị bế tắt giải toán HHKG Ví dụ 0: vẽ hình chóp S.ABCD có đáy ABCD hình vng em vẽ hình chóp có đáy ABCD hình vng có đỉnh S Rõ ràng hình vẽ thỏa u cầu tốn việc vẽ S gặp nhiều khó khăn giải tốn - Thứ nhất: hình vẽ có nhiều đường khuất mà ta hạn chế Điều gây nhiều khó khăn giải tốn phức tạp - Thứ hai: cạnh AD nét khuất chưa thể hình vẽ - Thứ ba: giao diện mặt bên SAD nhỏ, điều gây nhiều khó khăn việc giải tốn mà ta cần kẻ thêm đường thẳng nằm mặt phẳng A B - Thứ tư: đa giác đáyhình vng học sinh thể hồn hình vng bên hìnhhọc phẳng Nếu đề yêu cầu thêm mặt phẳng SAD vng góc với mặt phẳng đáyhọc sinh khó mà vẽ ý Ngồi ra, việc thể hình vẽ làm cho học sinh nhiều thời gian cho việc vẽ hình Ví dụ 1: B C D Dựng thiếtdiện Cho hình lập phương ABCD A���� D C hình lập phương với mặt phẳng di qua trung điểm M cạnh DD ' , trung điểm N cạnh D ' C ' đỉnh A Học sinh giải toán sau: C' B' nên A� A CC �� D D song song với Do hai mặt bên BB� giao tuyến hai mặt với mặt phẳng AMN N song với Do D' AMN � AA ' B ' B AB ', AB�P MN AMN � AA ' D ' D AM AMN � A ' B ' C ' D ' B ' N M Vậy thiếtdiện cần tìm hình AMNB� Phân tích sai lầm: Học sinh biết giao tuyến mặt phẳng phải song A' C' C B B' N AMN mặt D A� A Plà đường thẳng qua A song phẳng BB� A song với MN Trực giác cho thấy giao tuyến đường thẳng D' Điều chưa chưa có AB� A' sở chứng minh AB� P MN Giải Ta có: AMN � AA ' D ' D AM C M B Trong mặt phẳng AA ' D ' D dựng AM cắt A ' D ' P D A Ket-noi.com kho tài liệu miễn phí AMN � A ' B ' C ' D ' PN Trong mặt phẳng A ' B ' C ' D ' P, M , B ' thẳng hàng thật vậy, Ta có: MD� PD� � AA PA� D� N Ta lại có A�� B từ suy PN qua B�và D D MN AMN � CC �� B B AB� AMN � AA�� ta nhận thấy NB� PB� Vậy thiếtdiện cần tìm hình AMNB� Đối với tốn tìm thiếtdiệnhình vẽ quan trọng @ Nguyên nhân: Vẽ hình khơng thể hết giả thiết vẽ hình sai Do bước đầu tiếp xúc với hìnhhọc khơng gian đòi hỏi trừu tượng tư cao, khơng thường xun luyện tập vẽ hình Khơng nắm vững khái niêm dó khơng thể hết giả thiết dẫn đến không đủ kiện để giải tốn Các khái niệm HS khơng nắm vững hiểu nhầm, ví dụ: “ tứ diện đều”, “ hình chóp có đáy tam giác đều”, “ hình chóp đều”, “hình lăng trụ đều”(hình lăng trụ đứng có đáy đa giác đều, mặt bên hình chữ nhật…) @ Biện pháp khắc phục: giúp học sinh nắm vững quy tắc vẽ hình khơng gian, rèn luyện cho học sinh kỹ vẽ hình khơng gian như: hình chóp( hinh chóp tứ giác đều, hình chóp có đáyhình vng,…), hình lăng trụ, hình hộp Giúp học sinh nắm vững khái niệm hình khơng gian để có cách vẽ hình xác… Các quy tắc vẽ hình không gian: - Dùng nét ( _ ) để biểu diễn cho đường nhìn thấy - Dùng nét ( -) để biểu diễn đường khuất - Hai đường thẳng song song ( cắt ) biểu diễn thành hai đường thẳng song song ( cắt ) - Hình biểu diễnhình thang hình thang - Hình biểu diễnhình thoi, hình chữ nhật, hình bình hành, hìnhSvng hình bình hành - Một tam giác ABC xem hình biểu diễn tam giác bất kì… Chú ý: vẽ hình khơng gian quy tắc chưa đủ mà phải đảm bảo thật có lợi cho việc quan sát trực giác, điều giúp ta dễ tìm lời giải cho toán Khả tư trừu tượng tạo khó khăn trực giác Khi giải số tập HS thường mắc phải sai lầm quan sát trực quan tạo A Khó khăn việc tìm lời giải từ giả thiếtHọc sinh thường rơi vào bế tắc không cho tốn tìm thiếtdiện Ví dụ 2: Cho hình chóp S ABCD có đáy ABCD hình vng, SA ABCD Gọi mặt phẳng qua A vng góc với SB D B C Ket-noi.com kho tài liệu miễn phí Hãy xác định thiếtdiệnhình chóp với mặt phẳng Trong toán học sinh thường rơi vào bế tắc, bắt đầu lời giải từ đâu, khơng thấy hình biểu diễn mặt phẳng Nguyên nhân: Do học sinh chưa nắm phươngpháp chung để giải dạng tập tìm thiếtdiện giải Trong mặt phẳng SAB dựng AM SB AD SA Ta có: AD AB AD SAB suy AD SB (1) mặt khác AM SB (2) từ (1) (2) suy ADM SB S M ADM � �AD � � �BC � SBC � Mt � SBC ta có: � AD P BC � �M � � SBC � A B N Mt P BC , Mt P AD Mt cắt SC N � SAB AM � SDC DN Vậy thiếtdiện cần tìm tứ giác DAMN D @ Biện pháp khắc phục: C - Hình thành cho học sinh phươngpháp chung để giải tốn tìm thiết diện: Tìm giao tuyến mặt phẳng với mặt hình chóp hay hình lăng trụ…Từ suy đoạn giao tuyến Nối đoạn giao tuyến ta đa giác phẳng, thiếtdiện cần tìm Phân loại dạng tập tìm thiết diện, giúp học sinh biết cách giải với dạng tốn đề cho (phần trình mục 1) - Như nói nguồn gốc khó khăn giải tốn thiếtdiện xuất phát phần lớn khó khăn tìm “giao điểm” xác định “đoạn giao tuyến” Mà việc xác định “đoạn giao tuyến” ta có khơng có sẳn xác định đoạn giao tuyến cách tìm giao điểm phổ biến (tuy nhiên có phươngpháp khác nêu sau) - Như quy cho vấn đề tìm “giao điểm” cốt lõi tốn thiếtdiện Vậy để tìm “giao điểm” chẳng hạn giao điểm hình chóp cắt mặt phẳng Khó khăn mà nguyên nhân chủ yếu em học sinh khơng nắm vững phươngpháp dẫn đến sai lầm Có thể nêu hai phươngpháp tìm giao điểm đường thẳng đường thẳng: Ket-noi.com kho tài liệu miễn phí Cách 1: Để tìm giao điểm đường thẳng a mặt phẳng (P) ta tìm giao điểm đường thẳng a đường thẳng b nằm mặt phăng (P) � b � P � a � P I � a �b I � Cách 2: Để tìm giao điểm đường thẳng a mặt phẳng (P) ta chọn mặt phẳng phụ (Q) chứa a, sau xác định giao tuyến b hai mặt phẳng (P) (Q) Khi giao điểm cần tìm giao điềm hai đường thẳng a b � a � Q � P � Q b � a � P I � � a �b I � Chú ý: cách tìm giao điểm I ta cần xác định giao tuyến hai mặt phẳng (P) (Q) Việc xác định giao tuyến hai mặt phẳng thường ta tìm hai điểm chung hai mặt phẳng Nhưng việc xác định lại gặp khó khăn từ dẫn đến khó khăn cho tốn tìm thiếtdiện Ta có cách khác tìm giao tuyến hai mặt phẳng: Ta tìm điểm chung hai mặt phẳng Nếu hai mặt phẳng chứa hai đường thẳng song song Giao tuyến đường thẳng qua điểm chung song song với hai đường thẳng Một ví dụ minh họa: Ví dụ 2.1: Cho hình chóp S.ABCD Gọi M điểm nằm tam giác SCD Xác định thiếtdiệnhình chóp cắt mp(ABM) S K M C B J I P A O D : Giải: Ket-noi.com kho tài liệu miễn phí Đầu tiên ta tìm giao điểm I AM (SBD) Gọi P SM �DC Khi mp(ABCD), gọi O AP �BD Ta có SO SAP � SBD Gọi I AM �SO Mà AM �( SAP ) Vậy ta suy I AM � SBD Trên mp(SBD), gọi J BI �SD Khi mp(SCD), gọi K JM �SC Vậy tứ giác ABKJ thiếtdiện cần tìm Ví dụ 2.2 : Cho tứ diện ABCD Gọi M N điểm nằm cạnh BC CD cho BM = 2MC CN = 2ND Gọi P trung điểm AD Xác định thiếtdiệnhình chóp cắt mp(MNP) Giải: A Q P D B E N M C Vì BM = 2MC CN = 2ND nên MN khơng song song với BD, BD MN cắt E Trên mp(ABD), PE cắt AB Q, đó: MN,NP,PQ,QM đoạn giao tuyến cắt mặt tứ diện mp(MNP) Vậy tứ giác MNPQ thiếtdiện cần tìm Những khó khăn khơng hiểu kỹ định lý, hệ dẫn đến kết luận sai - Sử dụng định lý, hệ cách chủ quan dựa trực giác ý nghĩ hìnhhọc phẳng, chẳng hạn HS thường cho không gian có định lý sau: “hai đường thẳng vng góc với đường thẳng song song với nhau”, “ hai mặt phẳng vng góc với mặt phẳng song song với nhau”,… định lý, hệ mà HS thường hiểu nhầm: + Một đường thẳng song song với mặt phẳng song song với đường thẳng nằm mặt phẳng + Hai mặt phẳng cắt theo giao tuyến, đường thẳng nằm mặt phẳng mà vng góc với giao tuyến vng góc với mặt phẳng + Ln dựng mặt phẳng qua điểm phân biệt 10 Ket-noi.com kho tài liệu miễn phí Ví dụ 3: Cho tứ diện SABC có tam giác ABC đ ều, SA ABC Lấy điểm M cạnh SC G ọi mặt phẳng qua M vuông góc với AB học sinh giải sau: SA ABC � SA AB AB Suy P SA Trong mặt phẳng (SAC) kẽ đường thẳng qua M song song với SA cắt AC Q Gọi I trung điểm AB, đó: AB CI Mặt khác MQ P SA , nên MQ ABC � MQ AB Do MQ P CI S M Suy P CI N Mà CI � ABC � ABC P Suy P BC Q A � SBC MN P BC � ABC QP P BC � SAB NP P SA C Do đó: P B Vậy thiếtdiện cần tìm tứ giác MNPQ Giải Ta c ó SA ABC � SA AB AB Suy SA P Ta có SA � SAC M � � SAC Do đ ó � SAC MQ , I S N M MQ PSA cắt AC A t ại Q gọi I trung điểm AB ta có CI AB Suy CI P P CI �( ABC ) I Do đ ó � ABC QP , QP PCI cắt AB P Ta có SA P , SA � SAB Q P � � SAB suy PN � SAB với PN PSA , PN cắt SBB N MN � SBC 11 C Ket-noi.com kho tài liệu miễn phí Vậy thiếtdiện cần tìm tứ giác MNPQ @ Ngun nhân: - Hìnhhọc khơng gian trừu tượng nên việc nắm kỹ định lý khó khăn, trực giác khơng mang lại kết hìnhhọc phẳng mà đơi đánh lừa người giải tốn họ thể sai hình vẽ - HS dựa nhiều vào kiến thưc hìnhhọc phẳng, thản nhiên áp dụng cách tùy ý cách suy diễn từ hìnhhọc phẳng sang hìnhhọc không gian @ Khắc phục: - Giúp HS nắm vững định lý SGK cách vận dụng vào giải tập Việc vận dụng định lý, hệ vào giải phải hiểu định lý, hệ thuộc quan hệ song song hay quan hệ vng góc, phát biểu xác hệ định lý - Vẽ hình rõ ràng nhằm tận dụng hết giả thiết, điều có lợi để áp dụng định lý - Phân dạng tập thiếtdiện Mỗi dạng thường vận dụng định lý, hệ nào,… Khó khăn hiểu nhầm khái niệm, dẫn tới bế tắc có lời giải sai Các khái niệm mà học sinh khơng nắm vững dẫn tới việc thể thiếu kiện toán, đưa khái niệm sai Ví dụ 4: Cho hình chóp tứ giác S.ABCD mặt bên hợp với đáy góc Hãy xác định thiếtdiện tạo nên mặt phẳng phân giác góc nhị diện cạnh BC với mặt bên hình chóp Phân tích: trực giác cho HS thấy mặt phẳng phân giác góc nhị diện cạnh BC phải chứa hai đường � SCD � phân giác góc SBA S HS tiến hành giải sau: Trong mp (SAB) ta dựng đường phân giác BM � cắt SA M góc SBA Ta có: � SAB BM N Trong mặt phẳng (SAD) dựng đường � cắt SD N phân giác góc SCD � SCD CN C D M � SAD MN � ABCD BC S Vậy thiếtdiện cần tìm tứ giác BCNM Nguyên nhân dẫn đến sai lầm đó: học sinh khơng hiểu mặt phẳng phân giác góc nhị diện gì, định nghĩa B góc hai mặt phẳng Giải: Gọi P mặt phẳng phân giác góc nhị diện cạnh BC ,C P qua BC � ABCD BC N A K D M Dựng trung điểm I, J cạnh BC BD Ta có: SI BC ( tam giác SBC cân S ) IJ BC � góc phẳng nhị diện cạnh BC Do SIJ I J 12 B A Ket-noi.com kho tài liệu miễn phí � cắt SJ K Dựng phân giác IK góc SIJ Vậy P � BC , IK Ta có: BC P AD, BC � P , AD � SAD K � P � SAD Do MN P � SAD MN P AD, MN P BC với MN qua K cắt SA, SD M N MB P � SAB NC P � SCD Vậy thiếtdiện cần tìm tứ giác BCNM @ Nguyên nhân: không nắm khái niệm,các định nghĩa, dựa vào quan sát trực giác để hình thành khái niệm sở hìnhhọc phẳng… @ Khắc phục: - Giúp học sinh nắm vững khái niệm, định nghĩa chẳng hạn: góc hai mặt phẳng, góc đường thẳng mặt phẳng, hai mặt phẳng song song, đường thẳng song song với mặt phẳng… - Hình thành cho học sinh phươngpháp xác định góc hai mặt phẳng, góc đường thẳng mặt phẳng, cách chứng minh hai mặt phẳng song song,… CÁC KỸ NĂNG CẦN RÈN LUYỆN CHO HỌC SINH TRONG QUÁ TRÌNH GIẢI CÁC BÀI TOÁN THIẾTDIỆN a) Rèn luyện cho học sinh kỹ vẽ hình xác, giúp cho em cao khả tư tưởng tượng hìnhhọc khơng gian chẳng hạn ví dụ sau: S - Nếu đáyS tứ giác lồi tùy ý, ta vẽ hình thường dùng là: B A D A D B C C - Nếu đáyhình bình hành, hình chữ nhật, hình thoi, hình vng: S A D 13 B C Ket-noi.com kho tài liệu miễn phí S Nếu đáyhình thang: A D B Hay cho em biết thiếtdiện tứ diện khơng thểC ngũ giác, tứ diện có bốn mặt, thiếtdiện tứ diện khơng thiết tứ giác … Ví dụ 1: Chẳng hạn ví dụ 2, mà ta xét sau b) Nâng cao kỹ giải toán tìm giao tuyến hai mặt phẳng Thực chất tốn tìm giao tuyến hai mặt phẳng tìm hai điểm chung hai mặt phẳng, giao tuyến đường thẳng qua hai điểm chung Chú ý giúp học sinh hiểu định lý : “Nếu đường thẳng qua hai điểm phân biệt mặt phẳng điểm đường thẳng nằm mặt phẳng đó” + Trường hợp: đề cho sẵn hai điểm chung hai mặt phẳng ta cần dựng giao tuyến đường thẳng qua hai điểm + Trường hợp đề cho điểm chung hai mặt phẳng ta có hai cách tìm giao tuyến sau: cách 1: dựng thêm điểm chung khác cách kéo dài đường thẳng cắt thuộc hai mặt phẳng A Ví dụ 2: Cho tứ diện ABCD Gọi M, N, K điểm AB, AD BC cho MN khơng song song với BD Tìm thiếtdiện tứ diện với mặt phẳng (MNK) M Giải: Ta có: N MNK � ABC MK MNK � ABD MN D I B P 14 K C Ket-noi.com kho tài liệu miễn phí Trong mặt phẳng ABD dựng MN cắt BD I ta MNK � ABC IK , IK cắt DC P MNK � ADC NP Vậy thiếtdiện cần tìm tứ giác MNPK Cách 2: từ điểm chung có ta sử dụng định lý quan hệ song song để tìm quan hệ giao tuyến với đường thẳng có mà ta dựng đường giao tuyến Chẳng hạn sử dụng hệ quả: “nếu hai mặt phẳng chứa hai đường thẳng song song cắt theo giao tuyến giao tuyến song song với hai đường thẳng đó” Ví dụ 3: Cho hình chóp S ABCD đáy ABCD hình bình hành Gọi I , J lầm lượt trọng tâm tam giác SAB tam giác SAD M trung điểm CD Xác định thiếtdiệnhình chóp với mặt phẳng IJM Trong mặt phẳng SLN ta có SJ SI IJ P LN JL IN S IJ � JIM , NL � ABCD M � JIM � ABCD Suy Mt � JIM � ABCD V Mt cắt AD, BC T W ta được: T U J D I A L MW � JIM � ABCD TJ JIM � SAD M Trong mặt phẳng SAD dựng JT cắt SA, SD X N U V C UI JIM � SAB , Trong mặt phẳng SAB dựng UI cắt SB X 15 W B Ket-noi.com kho tài liệu miễn phí Ta có XW JIM � SBC MV JIM � SCD , thiếtdiện cần tìm ngũ giác UVMWX c) Rèn luyện cho học sinh kỹ có phươngpháp giải dạng tốn tốn thiếtdiện (trình bày mục 1) d) Rèn luyện cho học sinh kỹ phân tích dự đốn trường hợp xảy yêu cầu toán giải tốn thiếtdiện Ví dụ 4: Cho tứ diện ABCD Gọi H, K trung điểm cạnh AC, BC Trong tam giác BCD lấy điểm M cho hai đường thẳng KM CD cắt Tìm thiếtdiện tứ diện với mặt phẳng (HKM) Giải A Gọi P KM �CD Ta có hai trường hợp: Trường hợp 1: Điểm P thuộc đoạn CD Khi ta được: HKM � BCD KP HKM � ACD HP H B D HKM � ABC KH Do đó, thiếtdiện cần tìm HKP M K A Trường hợp 2: điểm P ngồi đoạn CD Khi đó: C Gọi I KM �BD N HKM � ABC KH HKM � BCD KI B H I Trong mặt phẳng (ACD) dựng HP cắt AD N Khi : K HKM � ACD HN HKM � ABD NI Vậy thiếtdiện tứ giác KHNI P D M C P 16 Ket-noi.com kho tài liệu miễn phí Ví dụ 5: Cho tứ diện S.ABC có ABC tam giác cạnh a SA a vng góc với mặt phẳng (ABC) Gọi M điểm tùy ý cạnh AC, mặt phẳng qua M vng góc với AC Tùy theo vị trí điểm M cạnh AC, có nhận xét thiếtdiện tạo với tứ diện S.ABC Giải Gọi E trung điểm AC, ta có BE AC Do đó, ta cần xét hai trường hợp khác vị rí M cạnh AC ta giả sử dựng SA ABC � SA AC Trường hợp 1: M thuộc CE Ta có: SA ABC � SA AC AC Do đó: SA P , SA � SAC M � � SAC Vậy � SAC Mt P SA , Mt cắt SC N S Do � SAC MN Ta có BE AC nên tương tự ta có: N � ABC Mx P BE Mx cắt BC P Do � ABC MP � SBC NP E A M S C Vậy thiếtdiện cần tìm tam giác vuông MNP vuông M P Trường hợp 2: M thuộc đoạn AE ( trừ điểm E) Gọi E trung điểm AC, ta có BE AC B Ta có: SA ABC � SA AC AC Do đó: SA P , SA � SAC P Q A E M C M � � SAC N 17 B Ket-noi.com kho tài liệu miễn phí Vậy � SAC Mt P SA , Mt cắt SC P Do � SAC MP Ta có BE AC nên tương tự ta có: � ABC Mx P BE Mx cắt AB N Do � ABC MN Do đó: SA P , SA � SAB N � � SAB Vậy � SAB Ny P SA , My cắt SB Q Do � SAB NQ � SBC QP Như vậy, trường hợp ta thiếtdiệnhình thang vuông MNQP ( vuông M N) d) Rèn luyện cho học sinh kỹ tìm đoạn giao tuyến thông qua việc dựng thêm chi tiết ( điểm, đoạn thẳng, mặt phẳng ) hình vẽ Ví dụ 6: Cho hình chóp SABCD đáyhình bình hành tâm O Gọi M, N, P trung điểm SB, SD OC Tìm thiếtdiệnhình chóp với mặt phẳng (MNP) Giải Ta tìm đoạn giao tuyến mặt phẳng MNP Với mặt hình chóp S Ta có MN P BD mà MN � MNP , BD � ABCD P � MNP � ABCD K Nên MNP � ABCD Pt với Pt P MN , Pt P BD Trong mặt phẳng ABCD dựng N M Pt P BD cắt AB, BC , CD T , L, Q A Vậy MNP � ABCD LQ D O Trong mặt phẳng SAB nối KM cắt T B18 L P Q C Ket-noi.com kho tài liệu miễn phí SA M ta được: MNP � SAB MK MNP � SAD KN MNP � SCD NQ MNP � SBC LM Vậy thiếtdiện cần tìm ngũ giác MKNQL CÁC BÀI TỐN VỀ THIẾTDIỆN Dạng 1:Thiết diệnhình chóp mặt phẳng (P) qua điểm không thẳng hàng Bài : Cho hình chóp đỉnh S có đáyhình thang ABCD với AB đáy lớn Gọi M,N theo thứ tự trung điểm cạnh SB SC Tìm thiếtdiệnhình chóp S.ABCD cắt mặt phẳng (AMN) Bài : Cho hình chóp S.ABCD, ABCD hình bình hành Gọi M, N,P, trung điểm SA, BC, CD Dựng thiếtdiệnhình chóp cắt mặt phẳng (MNP) Bài : Cho tứ diện ABCD Gọi M, N trung điểm AB AC, E điểm cạnh CD với ED = EC F điểm cạnh BD cho EF // BC Tìm thiếtdiện tạo mặt phẳng (MNE) tứ diện ABCD Bài : Cho hình chóp tứ giác S.ABCD cạnh bên cạnh đáy a.Gọi M, N, P trung điểm AB, AD SC a) Dựng thiếtdiện tạo mặt phẳng (MNP) b) Tìm diện tích thết diện c) Chứng minh thiếtdiện chia hình chóp thành hai phần tương đương ( tức hai phần tích nhau) Dạng : Thiếtdiệnhình chóp mặt phẳng (P) qua đường thẳng a song song với đường thẳng b ( a b chéo nhau) Bài : Cho tứ diện ABCD Trên cạnh AB, CD cho điểm M, N Gọi (P) qua MN song song với AD XÁc định thiếtdiện (P) tứ diện (ABCD) Bài : Cho hinh chóp S.ABCD, M, N hai điểm lấy cạnh AB CD Gọi (P) mặt phẳng qua MN song song với SA Tìm thiếtdiện (P) hình chóp S.ABCD Bài : Cho tứ diện ABCD Gọi M, N điểm lấy BD AC, (P) mặt phẳng qua MN song song với AD.Tìm thiếtdiện tứ diện mặt phẳng 19 Ket-noi.com kho tài liệu miễn phí Bài : Cho hình chóp S.ABCD có đáy ABCD hình bình hành Gọi M trung đểm AB N điểm thuộc BC Gọi (P) mặt phẳng qua MN song song với SD Xác định thiếtdiệnhình chóp mặt phẳng (P) Dạng 3: Thiếtdiệnhình chóp mặt phẳng (P) qua điểm song song với hai đường thảng cho trước Bài 1: Cho hình chóp S.ABCD có đáy tứ giác lồi, O giao điểm hai đường chéo AC BD Xác định thiếtdiệnhình chóp cắt mặt phẳng qua O, song song với AB SC Thiếtdiệnhình gì? Bài 2: Cho hình chóp S.ABCD có đáyhình bình hành Xác định thiếtdiệnhình chóp cắt mặt phẳng qua trung điểm M cạnh AB song song với BD SA Bài 3: Cho hình chóp S.ABCD có đáyhình bình hành ABCD O giao điểm AC BD, M trung điểm SA Tìm thiếtdiện mặt phẳng (P) vói hình chóp S.ABCD (P) qua M đồng thời song song với SC AD Dạng 4: Thiếtdiệnhình chóp mặt phẳng (P) song song với mặt phẳng cho trước: Bài 1: Cho hình chóp S.ABCD với đáyhình thang ABCD có AD song song với BC, AD =2BC Gọi E trung điểm AD O giao điểm AC BE I điểm di động cạnh AC khác với A C Qua I, ta vẽ mặt phẳng (P) song song với (SBE) Tìm thiếtdiện tạo (P) hình chóp S.ABCD Bài 2: Cho hình chóp S.ABCD có đáyhình bình hành ABCD, O giao điểm hai đường chéo, AC a, BD b, tam giác SBD Gọi I điểm di động đoạn AC với AI x(0 x a) Lấy (P) mặt phắng qua I song song với mặt phẳng (SBD) a) Xác định thiếtdiện mặt phẳng (P) với hình chóp S.ABCD b) Tìm diện tích S thiếtdiện câu a) theo a, b, x Tìm x để S lớn Bài 3: Cho tứ diện SABC cạnh A Gọi I trung điểm đoạn AB, M điểm di động đoạn AI Qua M vẽ mặt phẳng (P) song song với (SIC) Tìm thiếtdiện tạo ((P) SABC Dạng 5: Thiếtdiệnhình chóp mặt phẳng (P) qua điểm M cho trước vng góc với đường thẳng d cho trước Bài 1: Cho hai mặt phẳng vng góc (P) (Q) có giao tuyến Lấy A, B thuộc lấy C � P , D � Q cho AC AB, BD AB AB AC BD Xác định thiếtdiện tứ diện ABCD cắt bới mặt phẳng qua điểm A vng góc với CD Tính diện tích thiếtdiện AC AB BD a Bài 2: Cho tứ diện SABC có đáy tam giác cạnh SA vuong góc với mặt phẳng ABC Gọi (P) mặt phẳng qua B vng góc với SC Tìm thiếtdiện tứ diện SABC cắt mặt phẳng (P) Bài 3: Cho hình chóp S.ABCD có đáy ABCD hình thang vng A Cạnh SA vng góc với mặt phẳng (ABCD) Gọi M điểm cạnh AB (P) mặt phẳng qua M vng góc với AB Tìm thiếtdiệnhình chóp S.ABCD mặt phẳng (P) 20 Ket-noi.com kho tài liệu miễn phí Bài 4: Cho hình chóp S.ABCD có đáy ABCD hình bình hành SA vng góc với mặt (ABCD) Gọi O giao điểm AC BD Mặt phẳng (P) mặt phẳng qua O vuông gốc với AD Xác định thiếtdiệnhình chóp S.ABCD mặt phẳng (P) � 600 Cạnh Bài 5: Cho hình chóp S.ABC, ABC tam giác vng A, với AB a, ABC SC a vng góc với (ABC) a) Tìm thiếtdiện qua M �SA vng góc SA b) Đặt AM x Tính diện tích thiếtdiện c) Vẽ đường biểu diễndiện tích Tìm vị trí M để thiếtdiện đạt diện tích lớn Dạng 6: Thiếtdiệnhình chóp mặt phẳng (P) chứa đường thẳng a vng góc với mặt phẳng (Q) Bai 1: Cho hình vng ABCD cạnh A Trên đường thẳng vng góc với mặt phẳng (ABCD) A lấy điểm S Gọi (P) mặt phẳng chứa AB vuông góc với mặt phẳng (SCD) Hãy xác định mặt phẳng (P) Mặt phẳng (P) cắt hình chóp S.ABCD theo thiếtdiện gì? Bài 2: Cho hình chóp S.ABCD có SA vng góc với mặt đáy (ABCD) ABCD hình chữ nhật tâm O Gọi (P) mặt phẳng qua SO vng góc với mặt phẳng (SAD) Hãy tìm thiếtdiệnhình chóp S.ABCD mặt phẳng (P) Bài 3: Cho hình chóp S.ABCD có đáy ABCD hình vng Cạnh bên SA vng góc với mặt phẳng (ABCD) Gọi (P) mặt phẳng chứa AB vuông góc với mặt phẳng (SCD) Hãy xác định thiếtdiện mặt phẳng (P) hình chóp S.ABCD Bài 4: Cho hình chóp S.ABCD có đáy ABCD hình chữ nhật, SA vng góc với mặt phẳng (ABCD) Gọi I,J trung điểm AB CD Gọi (P) mặt phẳng qua I,J vng góc với mặt phẳng (SBC) Tìm thiếtdiện (P) hình chóp S.ABCD Bài 5: Cho hình chóp tứ giác có mặt bên tạo với đáy góc a) Tìm thiếtdiện qua AC vng góc với mặt phẳng (SAD) b) Tìm tỉ số thể tích V1 hai phầnhình chóp bị chia thiếtdiện nói V2 Một số tốn khác Bài 1: Cho hình hộp ABCD A ' B ' C ' D ' Hai điểm M N nằm hai cạch AD CC ' cho AM CN Xác định thiếtdiệnhình hộp cắt mặt phẳng qua MN song song với mặt phẳng MD NC ' ACB ' Bài 2: Cho hình lập phương ABCD A ' B ' C ' D ' trung điểm E,F cạnh AB, DD ' Hãy xác định thiếtdiệnhình lập phương cắt mặt phẳng (EFB), EFC ' (AFK) với K trung điểm cạnh B ' C ' Bài 3: Cho hình lập phương ABCD A ' B ' C ' D ' Gọi O tâm hình lập phương a) Tìm thiếtdiện qua O vng góc với đường chéo A ' C b) Chứng minh thiếtdiện chia hình lập phương thành hai phần tương đương 21 Ket-noi.com kho tài liệu miễn phí Bài 4: Cho hình lập phương ABCD A ' B ' C ' D ' Gọi M N tâm đáy ABCD mặt bên DCC ' D ' a) Tìm thiếtdiện tạo A ' MN b) Tìm tỉ số thể tích V1 hai phầnhình lập phương bị chia thiếtdiện nói V2 Bài 5: Cho hình lập phương ABCD A ' B ' C ' D ' cạnh a M điểm di động AB a) Tìm thiếtdiện tạo A ' MC Thiếtdiệnhình b) Xác định vị trí M để thiếtdiệnhình chữ nhật Có vị trí M để thiếtdiệnhình vng khơng? c) Xác định vị trí M để thiếtdiện có diện tích bé tính giá trị 22 ... thiết diện tạo A ' MC Thiết diện hình b) Xác định vị trí M để thiết diện hình chữ nhật Có vị trí M để thiết diện hình vng khơng? c) Xác định vị trí M để thiết diện có diện tích bé tính giá trị... NB� PB� Vậy thiết diện cần tìm hình AMNB� Đối với tốn tìm thiết diện hình vẽ quan trọng @ Nguyên nhân: Vẽ hình khơng thể hết giả thiết vẽ hình sai Do bước đầu tiếp xúc với hình học khơng gian... ) - Hình biểu diễn hình thang hình thang - Hình biểu diễn hình thoi, hình chữ nhật, hình bình hành, hìnhSvng hình bình hành - Một tam giác ABC xem hình biểu diễn tam giác bất kì… Chú ý: vẽ hình