1. Trang chủ
  2. » Giáo án - Bài giảng

trac nghiem toan 9

32 78 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 32
Dung lượng 1,4 MB

Nội dung

Truy cập hoc360.net để tài tài liệu giảng đề thi miễn phí 111EQUATION CHAPTER SECTION 1A PHẦN ĐẠI SỐ I/ ĐIỀU KIỆN XÁC ĐỊNH CỦA BIỂU THỨC – CĂN THỨC: Group chia sẻ tài liệu miễn phí https://www.facebook.com/groups/tailieutieuhocvathcs/ Hãy chọn câu trả lời câu sau: Căn bậc hai số học số a không âm là: A số có bình phương a B − a C a D ± a 2 Căn bậc hai số học (−3) : A −3 B C −81 D 81 Cho hàm số y = f ( x) = x − Biến số x có giá trị sau đây: A x ≤ −1 Cho hàm số: A x ≤ −1 B x ≥ y = f ( x) = C x ≤ D x ≥ −1 x + Biến số x có giá trị sau đây: B x ≥ −1 C x ≠ D x ≠ −1 C −4 D ±4 C ±5 D −25 2 Căn bậc hai số học − là: A 16 B Căn bậc ba −125 là: A B −5 Kết phép tính 25 + 144 là: A 17 B 169 C 13 D ±13 Group: https://www.facebook.com/groups/tailieutieuhocvathcs/ Truy cập hoc360.net để tài tài liệu giảng đề thi miễn phí −3 x Biểu thức x − xác định khi: A x ≥ x ≠ −1 B x ≤ x ≠ C x ≥ x ≠ C x ≤ x ≠ −1 2 Tính + (−5) có kết là: B −10 A 10 Tính: ( 1− ) − A − 2 C 50 D 10 C D −1 C x ∈∅ D x ≥ có kết là: B 2 − 11 − x + x − xác định khi: A x ∈ R B x = 12 Rút gọn biểu thức: A − x − x2 x với x > có kết là: B −1 C D x B a = −1 C a ≤ D a = C x ∈ R D x ≥ C − D − C 256 D 16 −4 C 100 D 100 13 Nếu a = −a : A a ≥ 14 Biểu thức A x > −1 x2 x + xác định khi: B x ≥ −1 15 Rút gọn − ta kết quả: A − B − 16 Tính 17 − 33 17 + 33 có kết là: A ±16 B ±256 17 Tính − 0,1 0, kết là: A 0, 18 Biểu thức B −0, −2 x − xác định : A x >1 B x ≥ C x < D x ≠ Group: https://www.facebook.com/groups/tailieutieuhocvathcs/ Truy cập hoc360.net để tài tài liệu giảng đề thi miễn phí 19 Rút gọn biểu thức a3 a với a > 0, kết là: B ± a A a D −a C a 20 Rút gọn biểu thức: x + x + với x ≥ 0, kết là: A ± C ( ) x +1 B x −1 21 Rút gọn biểu thức − ( ) x +1 D x + a3 a với a < 0, ta kết là: B a2 A a C − |a| D − a 22 Cho a, b ∈ R Trong khẳng định sau khẳng định đúng: a a = b b (với a ≥ 0; b > 0) A a b = ab B C a + b = a + b (với a, b ≥ 0) D A, B, C 23 Trong biểu thức đây, biểu thức xác định với ∀x ∈ R ( x − 1) ( x − ) A x + x − B C x + x + D Cả A, B C 24 Sau rút gọn, biểu thức A = + 13 + 48 số sau đây: A + B + C + D − 25 Giá trị lớn y = 16 − x số sau đây: A B C 16 D Một kết khác 26 Giá trị nhỏ y = + x − x + số sau đây: A − B + C − D + 27 Câu sau đúng: A B ≥ A=B⇔ A = B A = A+ B =0⇔ B = C A = B ⇔ A=B B D Chỉ có A Group: https://www.facebook.com/groups/tailieutieuhocvathcs/ Truy cập hoc360.net để tài tài liệu giảng đề thi miễn phí 28 So sánh M = + A M = N +1 , ta được: N= B M < N D M ≥ N C M > N 29 Cho ba biểu thức : P = x y + y x ; Q = x x + y y ; R = x − y Biểu thức ( x− y )( x+ y ) ( với x, y dương) A P B Q 30 Biểu thức ( ) +1 + A (1− 3) ( ) x + 3x ) A ( B 31 Biểu thức ( ( 2+ 33 Biểu thức ) P= B C D -2 bằng: x −10 36 Điều kiện xác định biểu thức − x : A x ∈ ¡ B x ≤ −1 C x < D x ≤ 1 + x2 37 Biểu thức x − xác định x thuộc tập hợp đây: x / x ≠ 1} A { C { x / x ∈ ( −1;1) } x / x ≠ ±1} B { D Chỉ có A, C Group: https://www.facebook.com/groups/tailieutieuhocvathcs/ Truy cập hoc360.net để tài tài liệu giảng đề thi miễn phí 38 Kết biểu thức: A ( M = ) −5 + (2 − ) là: C B D 10 39 Phương trình x + + x − = có tập nghiệm S là: A S = { 1; −4} B S = { 1} C S = ∅ x−2 x −1 40 Nghiệm phương trình A x > = D S = { −4} x−2 x − thoả điều kiện sau đây: B x ≥ C x < D Một điều kiện khác 41 Giá trị biểu thức S = − − + là: C −2 B A D −4 3 42 Giá trị biểu thức M = (1 − 3) + (1 − 3) A − B − C 43 Trục thức mẫu biểu thức A 7+ B D 1 + 3+ 5 + ta có kết quả: 7− C 7+ D 7− 44 Giá trị biểu thức A = − + 19 − là: A − B − C − D + 2 45 Giá trị biểu thức 2a − 4a + với a = + : A B C 2 D − 2 C D 10 + 46 Kết phép tính + 12 A B 25 16 − ( − 2) ( + 2) có kết quả: 47 Thực phép tính A − B − 48 Giá trị biểu thức: ( 6+ ) C + − 120 D + là: Group: https://www.facebook.com/groups/tailieutieuhocvathcs/ Truy cập hoc360.net để tài tài liệu giảng đề thi miễn phí A 21 B 11 C 11 D 3 6+2 −4 ta có kết quả: 49 Thực phép tính C B A D − 6 17 − 12 3− 2 50 Thực phép tính A + 2 ta có kết B + C − D − 51 Thực phép tính + − − ta có kết quả: A B ( 52 Thực phép tính A 3 − D −2 C 3−2 ) (2 − −3 ) ta có kết quả: C − 3 B + D 3 −  −  +  1 + ÷ ÷ + − 1÷ ÷ −   ta có kết là: 53 Thực phép tính  B −2 A C −2 D C −81 D 81 54 Số có bậc hai số học là: B −3 A 55 Điều kiện xác định biểu thức − 3x là: A x≥ 56 Rút gọn biểu thức B P= A −2 57 Giá trị biểu thức A − y 58 Rút gọn biểu thức x x≤− (1− 3) C − (1+ ) B −2 2− ( 3−2 B − ) x≤ D x≤ kết là: C D C D + bằng: x2 y (với x > 0; y < ) kết là: Group: https://www.facebook.com/groups/tailieutieuhocvathcs/ Truy cập hoc360.net để tài tài liệu giảng đề thi miễn phí −1 B y A y C y D − y C x=6 D x=2 59 Phương trình 3.x = 12 có nghiệm là: A x=4 B x=36 60 Điều kiện xác định biểu thức 3x − là: A x≤ B 61 Giá trị biểu thức: x≥ B=3 C ( −3) −2 B − 13 A 13 x≥− D x≤− bằng: C − D 62 Phương trình x − + = có nghiệm x bằng: A B 11 C 121 D 25 63 Điều kiện biểu thức P ( x ) = 2013 − 2014 x là: A x> 2013 2014 B x< 2013 2014 64 Kết rút gọn biểu thức A A= C ( ) x≤ −3 + 2013 2014 ( − 5) D C B −1 x≥ 2013 2014 là: D 65 Điều kiện xác định biểu thức A = 2014 − 2015 x là: A x≤ 2014 2015 66 Khi x < A x x B x≥ 2014 2015 C x≤ 2015 2014 D x≥ 2015 2014 x bằng: B x C D − II/ HÀM SỐ BẬC NHẤT, TÍNH ĐỒNG BIẾN NGHỊCH BIẾN Trong phương trình sau, phương trình phương trình bậc hai ẩn x, y: A ax + by = c (a, b, c ∈ R) B ax + by = c (a, b, c ∈ R, c≠0) C ax + by = c (a, b, c ∈ R, b≠0 c≠0) D A, B, C Cho hàm số y = f ( x) điểm A(a ; b) Điểm A thuộc đồ thị hàm số y = f ( x ) khi: A b = f (a) B a = f (b) C f (b) = D f (a) = Group: https://www.facebook.com/groups/tailieutieuhocvathcs/ Truy cập hoc360.net để tài tài liệu giảng đề thi miễn phí Cho hàm số y = f ( x) xác định với giá trị x thuộc R Ta nói hàm số y = f ( x) đồng biến R khi: A Với x1 , x2 ∈ R; x1 < x2 ⇒ f ( x1 ) > f ( x2 ) B Với x1 , x2 ∈ R; x1 > x2 ⇒ f ( x1 ) > f ( x2 ) C Với x1 , x2 ∈ R; x1 > x2 ⇒ f ( x1 ) < f ( x2 ) D Với x1 , x2 ∈ R; x1 ≠ x2 ⇒ f ( x1 ) ≠ f ( x2 ) Cặp số sau nghiệm phương trình x + y = −5 A ( ) 2;1 B ( −1; − ) C (− ) 2; −1 D (− ) 2;1 Cho hàm số y = f ( x) xác định với x ∈ R Ta nói hàm số y = f ( x) nghịch biến R khi: A Với x1 , x2 ∈ R; x1 < x2 ⇒ f ( x1 ) < f ( x2 ) B Với x1 , x2 ∈ R; x1 > x2 ⇒ f ( x1 ) > f ( x2 ) C Với x1 , x2 ∈ R; x1 = x2 ⇒ f ( x1 ) = f ( x2 ) D Với x1 , x2 ∈ R; x1 < x2 ⇒ f ( x1 ) > f ( x2 ) Cho hàm số bậc nhất: y= −2 x +1 m +1 Tìm m để hàm số đồng biến R, ta có kết là: A m ≥ −1 B m ≠ −1 C m < −1 D m > −1 Trong hàm số sau hàm số hàm số bậc nhất: A y= +3 x B y = ax + b(a, b ∈ R) C y = x + D Có câu Nghiệm tổng quát phương trình : x − y = là: A −3 y +  x =   y ∈ R Cho hàm số y= x ∈ R    y = ( x − 1) B x =  C  y = D Có câu m+2 x+m−2 m2 + Tìm m để hàm số nghịch biến, ta có kết sau: A m > −2 10 Đồ thị hàm số B m ≠ ±1 y = ax + b ( a ≠ ) C m < −2 D m ≠ −2 là: A Một đường thẳng qua gốc toạ độ b N (0; − ) M b;0 a B Một đường thẳng qua điểm ( ) C Một đường cong Parabol Group: https://www.facebook.com/groups/tailieutieuhocvathcs/ Truy cập hoc360.net để tài tài liệu giảng đề thi miễn phí b B (− ; 0) a D Một đường thẳng qua điểm A(0; b) 11 Nghiệm tổng quát phương trình : −3x + y = là: x ∈ R   y = x +1  A  2  x = y −1   B  y ∈ R 12 Cho đường thẳng (d): x =  C  y = y = 2mx + ( m ≠ ) (d'): D Có hai câu y = ( m − 1) x − m ( m ≠ 1) Nếu (d) // (d') thì: A m ≠ −1 B m = −3 C m = −1 D m ≠ −3 1  k ≠ 0; k ≠ − ÷  y = k + x − k ( )  Hai đường thẳng cắt  13 Cho đường thẳng: y = −kx + khi: A k≠− B k ≠ −3 C k =− D k = −3 3  m≠ ÷  y = ( 2m − ) x + k +   Hai y = ( m + 1) x − 2k ( m ≠ −1) 14 Cho đường thẳng đường thẳng trùng : A m = hay k =− B m = C m = k ∈ R 15 Biết điểm A ( −1; ) D thuộc đường thẳng k =− k =− 3 k ∈ R y = ax + ( a ≠ ) Hệ số đường thẳng bằng: A C −1 B 16 Điểm sau thuộc đồ thị hàm số : A ( M 0; − ) B N ( ) 2; + C D ( ) y = 1− x +1 ( P − 2;3 − 2 ) D ( Q + 2; 17 Nghiệm tổng quát phương trình : 20x + 0y = 25  x = 1, 25  A  y =  x = 1, 25  B  y ∈ R x ∈ R  C  y ∈ R D A, B 18 Hàm số y = ( m − 1) x + hàm số bậc khi: Group: https://www.facebook.com/groups/tailieutieuhocvathcs/ ) Truy cập hoc360.net để tài tài liệu giảng đề thi miễn phí A m ≠ −1 B m ≠ C m = D m ≠ 19 Biết hàm số y = ( 2a − 1) x + nghịch biến tập R Khi đó: A a>− 20 Cho hàm số B a> y = ( m − 1) x + A m < 1 2 D a< (biến x) nghịch biến, giá trị m thoả mãn: B m = 21 Số nghiệm phương trình : A Vơ số C a D m > ax + by = c ( a, b, c ∈ R; a ≠ ) b ≠ ) là: C D B 22 Cho hai đường thẳng (D): y = mx − (D'): y = ( 2m − 1) x − Ta có (D) // (D') khi: A m = B m ≠ C m ≠ D A, B, C sai 23 Cho phương trình : x − x + m = Phương trình có hai nghiệm phân biệt thì: A m > B m > −1 C m < D A, B, C sai ax + y =  24 Cho hệ phương trình  x + by = −2 với giá trị a, b để hệ phường trình có cặp nghiệm (- 1; 2): a =   b = A a =  B b = a =   b = − C  a = −2   b = − D 25 Với giá trị a, b hai đường thẳng sau trùng 2x+3y+5=0 y=ax+b a = ;b = 3 A a = − ;b = − 3 B a = ;b = 3 C a = − ;b = − 3 D ( − a ) x − y + =  26 Với giá trị a hệ phường trình ax − y − = vô nghiệm A a = B a = C a = D a = 27 Với giá trị k đường thẳng y = (3 − 2k ) x − 3k qua điểm A( - 1; 1) A k = -1 B k = C k = D k = - 28 Với giá trị a, b đường thẳng y = ax + b qua điểm A(- 1; 3) song song x y =− +2 với đường thẳng Group: https://www.facebook.com/groups/tailieutieuhocvathcs/ Truy cập hoc360.net để tài tài liệu giảng đề thi miễn phí A −1 B C ±1 D 64 Tích hai nghiệm phương trình − x + x + = có giá trị ? A B –8 C D –7 B PHẦN HÌNH HỌC I/ HỆ THỨC LƯỢNG TRONG TAM GIÁC VNG Trong hình bên, độ dài AH bằng: A 12 B −2, B H C D 2, A C Cho ∆ABC có AH đường cao xuất phát từ A (H ∈ BC) hệ thức chứng tỏ ∆ABC vuông A A BC2 = AB2 + AC2 B AH2 = HB HC C AB2 = BH BC D A, B, C · Cho ∆ABC có AH đường cao xuất phát từ A (H ∈ BC) Nếu BAC = 90 hệ thức đúng: A AB2 = AC2 + CB2 B AH2 = HB BC C AB2 = BH BC D Khơng câu µ µ Cho ∆ABC có B + C = 90 AH đường cao xuất phát từ A (H thuộc đường thẳng BC) Câu sau đúng: 1 = + 2 AB AC A AH B AH = HB.HC Group: https://www.facebook.com/groups/tailieutieuhocvathcs/ Truy cập hoc360.net để tài tài liệu giảng đề thi miễn phí C A B D Chỉ có A Cho tứ giác ABCD có hai đường chéo AC BD vng góc với tạo O M trung điểm AB, N trung điểm CD Tìm câu đúng: 2 2 A AB + CD = AD + BC C ON ⊥ AB B OM ⊥ CD D Cả ba câu ∆ABC vng có đường cao AH (H thuộc cạnh BC) Hình chiếu H AB D, AC E Câu sau sai: A AH = DE C AB AD = AC AE 1 = + 2 B DE AB AC D A, B, C Cho ∆ABC vuông A, có AB=3cm; AC=4cm Độ dài đường cao AH là: A 5cm B 2cm C 2,6cm D 2,4cm Cho ∆ABC vng A, có AB=9cm; AC=12cm Độ dài đường cao AH là: A 7,2cm B 5cm C 6,4cm D 5,4cm ∆ABC nội tiếp đường tròn đường kính BC = 10cm Cạnh AB=5cm, độ dài đường cao AH là: A 4cm B cm C cm D cm 10 ∆ABC vuông A, biết AB:AC = 3:4, BC = 15cm Độ dài cạnh AB là: A 9cm B 10cm C 6cm D 3cm 11 Hình thang ABCD vng góc A, D Đường chéo BD vng góc với cạnh bên BC, biết AD = 12cm, BC = 25cm Độ dài cạnh AB là: A 9cm B 9cm hay 16cm C 16cm D kết khác 12 ∆ABC vng A có AB =2cm; AC =4cm Độ dài đường cao AH là: A cm B cm C cm D cm 13 Tam giác ABC vng A, có AB = 2cm; AC = 3cm Khi độ dài đường cao AH bằng: 13 A 13 cm B 13 cm 10 C cm 13 D 13 cm Group: https://www.facebook.com/groups/tailieutieuhocvathcs/ Truy cập hoc360.net để tài tài liệu giảng đề thi miễn phí 14 Cho tam giác DEF vng D, có DE =3cm; DF =4cm Khi độ dài cạnh huyền : A 5cm2 B 7cm C 5cm D 10cm 15 Cho ∆ ABC vuông A, đường cao AH Biết AB =5cm; BC = 13cm Độ dài CH bằng: 25 cm A 13 12 cm B 13 cm C 13 144 cm D 13 16 Tam giác ABC vuông A, đường cao AH Biết AB =3cm; AC =4cm Khi độ dài đoạn BH bằng: 16 cm A 5 cm B cm C 16 cm D II/ TỶ SỐ LƯỢNG GIÁC CỦA GĨC NHỌN Trong hình bên, SinB : AH A AB B H B CosC AC C BC C A D A, B, C 0 Cho < α < 90 Trong đẳng thức sau, đẳng thức đúng: A Sin α + Cos α = B tg α = tg(900 − α ) C Sin α = Cos(900 − α ) D A, B, C Trong hình bên, độ dài BC bằng: A B C D 2 0 Cosα = ; ( < α < 90 ) ta có Sinα bằng: Cho A B ± 5 C B 300 C A D Một kết khác Group: https://www.facebook.com/groups/tailieutieuhocvathcs/ Truy cập hoc360.net để tài tài liệu giảng đề thi miễn phí SinA tgA − Cho tam giác ABC vng C Ta có CosB cot gB bằng: A B C D Một kết khác µ Cho biết ∆ABC vng A, góc α = B cạnh AB = 1, cạnh AC = Câu sau A 2cosα = sinα sin α − 4cosα =− C 2sin α + cosα B 2sin α = cosα D Có hai câu Cho biết tg 75 = + Tìm sin150, ta được: A 2− B 2+ 2 C 2+ 2− 2 D P = cosα − sin α Cho biết cosα + sin α = m Tính theo m, ta được: A p = − m B P = m − 2 C P = + m D A, B, C sai · Cho ∆ABC cân A có BAC = α Tìm câu đúng, biết AH BK hai đường cao A sin 2α = BH AB B 10 Cho biết < α < 90 A P= 11 Cho biết cosα = 12 A cosα = AC AH sin α cosα = B P= C sin 2α = 2sin α cosα D Câu C sai Tính P = sin α + cos 4α , ta được: P=− C P = D 13 C 15 D 12 13 giá trị tgα là: B 12 µ 12 ∆ABC vng A có AB = 3cm B = 60 Độ dài cạnh AC là: A 6cm B cm C 3 D Một kết khác 13 ∆ABC có đường cao AH trung tuyến AM Biết AH = 12cm, HB = 9cm; HC · =16cm, Giá trị tg HAM : ( làm tròn chữ số thập phân) A 0,6 B 0,28 14 ∆ABC vng A có AB = 12cm C 0,75 µ = tg B D 0,29 Độ dài cạnh BC là: Group: https://www.facebook.com/groups/tailieutieuhocvathcs/ Truy cập hoc360.net để tài tài liệu giảng đề thi miễn phí A 16cm B 18cm C 10 cm D 10 cm 15 Cho biết cosα = giá trị cot gα là: A 15 15 B C 15 16 ∆ABC vuông A, đường cao AH Cho biết CH = 6cm D 15 sin B = độ dài đường cao AH là: A 2cm B cm C 4cm D cm 17 ∆ABC vng A có AB = 3cm BC = 5cm cotgB + cotgC có giá trị bằng: 12 A 25 25 B 12 18 ∆ABC vuông A, biết A sin B = C 16 D 25 cosC có giá trị bằng: B 3 C D µ 19 ∆ABC vng A có B = 30 AB = 10cm độ dài cạnh BC là: A 10 cm B 20 cm 10 C cm 20 D cm 20 Cho tam giác ABC vuông A Khẳng định sau SAI ? A sinB=cosC B cotB=tanC C sin2B+cos2C=1 D tanB=cotC 21 Cho (O;10cm), dây đường tròn (O) có độ dài 12cm Khoảng cách từ tâm O đến dây là: A 10cm B 6cm C 8cm D 11cm 22 Cho tam giác ABC vuông A Biết tanB= AB = 4cm Độ dài cạnh BC là: A 6cm B 5cm C 4cm D 3cm 23 Cho đường tròn (O;5cm), dây AB có độ dài 6cm Khoảng cách từ tâm đường tròn đến dây AB là: A 4cm B 3cm cm C D cm Group: https://www.facebook.com/groups/tailieutieuhocvathcs/ Truy cập hoc360.net để tài tài liệu giảng đề thi miễn phí 24.Cho đường tròn (O;5cm), dây AB không qua O Từ O kể OM vng góc với AB ( M ∈ AB ), biết OM =3cm Khi độ dài dây AB bằng: A 4cm B 8cm C 6cm D 5cm 25 Cho tam giác DEF có độ dài cạnh 9cm Khi bán kính đường tròn ngoại tiếp tam giác DEF bằng: A 3cm B 3cm C 3cm D 3cm 26 Cho (O;10cm), điểm I cách O khoảng 6cm Qua I kẻ dây cung HK vuông góc với OI Khi độ dài dây HK là: A 8cm B 10cm C 12cm D 16cm III/ GÓC VỚI ĐƯỜNG TRỊN Tâm đường tròn ngoại tiếp tam giác là: A Giao điểm đường phân giác tam giác B Giao điểm đường cao tam giác C Giao điểm đường trung tuyến tam giác D Giao điểm đường trung trực tam giác Đường tròn tâm A có bán kính 3cm tập hợp điểm: A Có khoảng cách đến điểm A nhỏ 3cm B Có khoảng cách đến A 3cm C Cách A D Có hai câu 0 µ µ Cho ∆ABC nội tiếp đường tròn tâm O Biết A = 50 ; B = 65 Kẻ OH ⊥ AB; OI ⊥ AC ; OK ⊥ BC So sánh OH, OI, OK ta có: A OH = OI = OK B OH = OI > OK C OH = OI < OK D Một kết khác Trong hình bên, biết BC = 8cm; OB = 5cm B Độ dài AB bằng: cm A 20 cm B C cm D Một kết khác Group: https://www.facebook.com/groups/tailieutieuhocvathcs/ O A H C Truy cập hoc360.net để tài tài liệu giảng đề thi miễn phí Cho đường tròn (O ; R) dây AB = R , Ax tia tiếp tuyến A đường tròn · (O) Số đo xAB là: A 900 B 1200 C 600 D B C Cho đường tròn (O ; R) điểm A bên ngồi đường tròn Từ A vẽ tiếp tuyến AB (B tiếp điểm) cát tuyến AMN đến (O) Trong kết luận sau kết luận đúng: A AM AN = 2R2 B AB2 = AM MN C AO2 = AM AN D AM AN = AO2 − R2 · · Cho tứ giác ABCD nội tiếp đường tròn (O) Biết BOD = 124 số đo BAD là: A 560 B 1180 C 1240 D 640 Cho hai đường tròn (O; 4cm) (O'; 3cm) có OO' = 5cm Hai đường tròn cắt A B Độ dài AB bằng: A 2,4cm C 12 cm B 4,8cm D 5cm Cho đường tròn (O; 2cm) Từ điểm A cho OA = 4cm vẽ hia tiếp tuyến AB, AC đến đường tròn (O) (B, C tiếp điểm) Chu vi ∆ABC bằng: A cm B cm C cm D · 10 Cho đường tròn (O) góc nội tiếp BAC = 130 Số đo góc B · BOC là: A 1300 B 1000 C 2600 D 500 O 130° A C 11 Cho đường tròn (O ; R) Nếu bán kính R tăng 1,2 lần diện tích hình tròn (O ; R) tăng lần: A 1,2 B 2,4 C 1,44 D Một kết khác 12 Cho ∆ABC vng cân A AC = Bán kính đường tròn ngoại tiếp ∆ABC là: A B C 16 D Group: https://www.facebook.com/groups/tailieutieuhocvathcs/ Truy cập hoc360.net để tài tài liệu giảng đề thi miễn phí 13 Cho đường tròn (O ; R) dây AB = R Diện tích hình viên phân giới hạn dây AB cung nhỏ AB là: ( R2 3 − 4π A 12 ) R2 ( π − 3) B 12 ( R2 4π − C 12 ) ( R2 4π − 3 D 12 ) 14 Trong mệnh đề sau, mệnh đề đúng: A Nếu đường thẳng tiếp tuyến đường tròn vng góc với bán kính qua tiếp điểm B Nếu đường thẳng vng góc với bán kính đường tròn đường thẳng tiếp tuyến đường tròn C Trong hai dây cung đường tròn, dây nhỏ gần tâm D A, B, C 15 Trong tam giác, đường tròn điểm qua điểm sau đây: A ba chân đường cao C ba đỉnh tam giác B ba chân đường phân giác D không câu 16 Cho đường tròn tâm O, ngoại tiếp ∆ABC cân A Gọi D E trung điểm AC AB, G trọng tâm ∆ABC Tìm câu đúng: A E, G, D thẳng hàng C O trực tâm ∆BDG B OG ⊥ BD D A, B, C sai 17 Cho ∆ABC vng cân A có trọng tâm G, câu sau đúng: A Đường tròn đường kính BC qua G B AG = AB C BG qua trung điểm AC D Không câu 18 Cho nửa đường tròn đường kính AB có điểm C Đường thẳng d vng góc với OC C, cắt AB E, Gọi D hình chiếu C lên AB Tìm câu đúng: A EC2 = ED DO B CD = OE ED C OB2 = OD OE D CA = EO 19 Tứ giác MNPQ nội tiếp đường tròn, biết Pˆ = 3Mˆ Số đo góc P góc M là: ˆ ˆ A M = 45 ; P = 135 ˆ ˆ B M = 60 ; P = 120 Group: https://www.facebook.com/groups/tailieutieuhocvathcs/ Truy cập hoc360.net để tài tài liệu giảng đề thi miễn phí ˆ ˆ C M = 30 ; P = 90 ˆ ˆ D M = 45 ; P = 90 20 Trong hình vẽ bên có: ∆ABC cân A nội Tiếp đường tròn tâm O, số đo góc BAC 1200 Khi số đo góc ACO bằng: A 1200 B 600 C 450 D 300 21 Cho ∆ ABC có diện tích Gọi M, N, P tương ứng trung điểm cạnh AB, BC, CA X, Y, Z tương ứng trung điểm cạnh PM, MN, NP Khi diện tích tam giác XYZ bằng: A B 16 C 32 D 22 Tam giác có cạnh 8cm bán kính đường tròn nội tiếp tam giác là: A cm B cm C cm D cm 7π R 23 Một hình quạt tròn OAB đường tròn (O;R) có diện tích 24 (đvdt) số đo » AB là: A 900 B 1500 C 1200 D 1050 · » 24 ∆ ABC cân A, có BAC = 30 nội tiếp đường tròn (O) Số đo cung AB là: A 1500 B 1650 C 1350 D 1600 25 Độ dài cung AB đường tròn (O;5cm) 20cm, Diện tích hình quạt tròn OAB là: A 500cm2 B 100cm2 C 50cm2 D 20cm2 » 26 Diện tích hình quạt tròn OAB đường tròn (O; 10cm) sđ AB = 60 ( π = 3,14 ) A 48,67cm2 B 56,41cm2 C 52,33cm2 D 49,18cm2 27 Cho đường tròn (O;15cm) (I;13cm) cắt A, B Biết khoảng cách hai tâm 14cm Độ dài dây cung chung AB là: A 12cm B 24cm C 14cm D 28cm · · 28 Tìm số đo góc xAB hình vẽ biết AOB = 100 · A xAB = 1300 Group: https://www.facebook.com/groups/tailieutieuhocvathcs/ Truy cập hoc360.net để tài tài liệu giảng đề thi miễn phí · B xAB = 500 · C xAB = 1000 · D xAB = 1200 29 Trên đường tròn (O;R) lấy điểm A, B cho AB = BC = R, M, N trung điểm » · » cung nhỏ AB BC số đo góc MBN là: A 1200 B 1500 C 2400 D 1050 µ 30 Tam giác ABC nội tiếp đường tròn (O), biết C = 45 AB = a Bán kính đường tròn (O) là: a C B a A a a D 31 Tam giác ABC ngoại tiếp đường tròn có bán kính 1cm Diện tích tam giác ABC là: A 6cm B cm 3 C cm2 D 3 cm2 · 32 Cho (O) MA, MB hai tiếp tuyến (A,B tiếp điểm) biết AMB = 35 Vậy số đo cung lớn AB là: A 1450 B 1900 C 2150 D 3150 33 Từ điểm M nằm ngồi đường tròn (O), vẽ cát tuyến MAB MCD (A nằm » M B, C nằm M D) Cho biết số đo dây cung nhỏ AC 300 số đo cung nhỏ » BD 800 Vậy số đo góc M là: A 500 B 400 C 150 D 250 34 Cho đường tròn (O; 8cm) (I; 6cm) tiếp xúc A, MN tiếp tuyến chung (O) (I), độ dài đoạn thẳng MN : A 8cm B cm C cm D cm 35 Tam giác ABC có cạnh 10cm nội tiếp đường tròn, bán kính đường tròn là: A cm B cm 10 C cm D cm Group: https://www.facebook.com/groups/tailieutieuhocvathcs/ Truy cập hoc360.net để tài tài liệu giảng đề thi miễn phí 36 Hai bán kính OA, OB đường tròn (O;R) tạo với góc 75 độ dài cung nhỏ AB là: 3π R A 5π R B 12 7π R C 24 4π R D 37 Hình sau khơng nội tiếp đường tròn ? A Hình vng B Hình chữ nhật C Hình thoi D Hình thang cân 38 Hai tiếp tuyến hai điểm A, B đường tròn (O) cắt M, tạo thành góc AMB 500 Số đo góc tâm chắn cung AB là: A 500 B 400 C 1300 D 3100 39 Hai bán kính OA, OB đường tròn (O) tạo thành góc AOB 35 Số đo góc tù tạo hai tiếp tuyến A B (O) là: A 350 B 550 C 3250 D 1450 40 Hình vng có diện tích 16 (cm2) diện tích hình tròn nội tiếp hình vng có diện tích là: A 4π (cm2) B 16π (cm2) C 2π (cm2) D 8π (cm2) 41 Hình vng có diện tích 16 (cm2) diện tích hình tròn ngoại tiếp hình vng có diện tích là: A 4π (cm2) B 16π (cm2) C 8π (cm2) D 2π (cm2) 42 Độ dài cung 300 đường tròn có bán kính 4(cm) bằng: π (cm) A π (cm) B π (cm) C π (cm) D 43 Diện tích hình quạt tròn có bán kính 6(cm), số đo cung 360 bằng: π ( cm2 ) A 36 π ( cm ) B 18 π ( cm ) C 12 π ( cm ) D 44 Chu vi đường tròn 10π (cm) diện tích hình tròn là: A 10π ( cm ) B 100π ( cm ) C 25π ( cm ) D 25π ( cm ) 45 Diện tích hình tròn 64π (cm2) chu vi đường tròn là: A 64π (cm) B 8π (cm) C 32π (cm) D 16π (cm) C góc tù D góc bẹt 46 Góc nội tiếp chắn nửa đường tròn là: A góc nhọn B góc vng Group: https://www.facebook.com/groups/tailieutieuhocvathcs/ Truy cập hoc360.net để tài tài liệu giảng đề thi miễn phí 47 Cho đường tròn (O;3cm) hai điểm A, B nằm (O) cho số đo cung lớn AB 2400 Diện tích hình quạt tròn giới hạn hai bán kính OA, OB cung nhỏ AB A 3π (cm2) B 6π (cm2) C 9π (cm2) D 18π (cm2) 48 Cho đường tròn (O;3cm), số đo cung AB lớn 3000 Diện tích hình quạt tạo hai bán kính OA, OB cung nhỏ AB là: 3π cm ) ( B π cm ) ( A C π ( cm ) π cm ) ( D IV/ HÌNH KHƠNG GIAN Cho hình chữ nhật ABCD (AB = 2a; BC = a) Quay hình chữ nhật xung quanh BC hình trụ tích V1; quay quanh AB hình trụ tích V2 Khi ta có: A V1 = V2 B V1 = 2V2 C V2 = 2V1 D V1 = 4V2 Cho tam giác ABC vuông A biết AB = 3cm; AC = 2cm, người ta quay tam giác ABC quanh cạnh AC hình nón, thể tích hình nón bằng: A 6π cm B 12 cm C 4π cm D 18 cm 3 Cho nửa đường tròn tâm O, đường kính AB = 6(cm) cố định Quay nửa hình tròn quanh AB hình cầu tích : 3 A 288π ( cm ) B 9π ( cm ) C 27π ( cm ) D 36π ( cm ) Hình chữ nhật ABCD, AB = 10cm, AD = 12cm , quay hình chữ nhật ABCD quanh cạnh AB, thể tích hình sinh là: A 300 π cm3 B 1440 π cm3 C 1200 π cm3 D 600 π cm3 Hình nón có bán kính đáy 10cm, chiều cao 9cm thể tích hình nón là: A 912cm3 B 942cm3 C 932cm3 D 952cm3 Tam giác ABC vng A có AB = 6cm; AC = 8cm thể tích hình sinh quay tam giác ABC quay quanh AB : A 24 π (cm3) B 32 π (cm3) C 96 π (cm3 ) D 128 π (cm3) Một hình nón có diện tích xung quanh 72 π cm2, bán kính đáy 6cm Độ dài đường sinh là: A 6cm B 8cm C 12cm Group: https://www.facebook.com/groups/tailieutieuhocvathcs/ D 13cm Truy cập hoc360.net để tài tài liệu giảng đề thi miễn phí Một khối cầu tích 113,04cm3 Vậy diện tích mặt cầu là: A 200,96cm2 B 226,08cm2 C 150,72cm2 D 113,04cm2 Một hình trụ tích 785cm có chiều cao 10cm, bán kính đáy hình trụ là: A 10cm B 5cm C 20cm D 15cm 10 Diện tích xung quanh hình nón có chu vi đáy 40cm độ dài đường sinh 20cm là: A 400cm2 B 4000cm2 C 800cm2 D 480cm2 11 Hình nón có chu vi đáy 50,24cm, chiều cao 6cm Độ dài đường sinh là: A 9cm B 10cm C 10,5cm D 12cm 12 Một hình nón tích 4π a (đvtt) có chiều cao 2a có đơn vị độ dài bán kính đáy là: A a D a C a B 3a 13 Một hình trụ tích V = 125π cm3 có chiều cao 5cm diện tích xung quanh hình trụ là: A 25 π cm2 B 50 π cm2 D 30 π cm2 C.40 π cm2 14 Một hình nón có diện tích xung quanh 20 π cm2 bán kính đáy 4cm Đường cao hình nón bằng: A 5cm B 3cm C 4cm D 6cm 15 Cho hình vng ABCD nội tiếp đường tròn (O; R), cho hình vng ABCD quay xung quanh đương trung trực cạnh đối , phần thể tích khối cầu nằm ngồi khối trụ là: π R3 8−3 A ( ) π R3 8−3 B ( ) π R3 8−3 C ( ) π R3 8−3 D 12 ( ) » 16 Cho tam giác ABC vuông cân A, có cạnh AB = a cung tròn BC có tâm A bán » kính a Quay tam giác ABC BC quanh cạnh AB, phần khối cầu nằm ngồi khối nón là: 2π a A π a3 B 3 C 2π a D π a Group: https://www.facebook.com/groups/tailieutieuhocvathcs/ Truy cập hoc360.net để tài tài liệu giảng đề thi miễn phí 17 Cho hình trụ ABCD nội tiếp khối cầu Tâm O bán kính R, biết AB = R Thể tích khối cầu nằm khối trụ là: π R3 4−3 A ( ) π R3 16 − 3 B 12 ( ) π R3 8−3 C 12 ( ) π R3 8−3 D ( ) 18 Hai hình trụ hình nón có bán kính đáy đường cao Gọi V thể tích hình V1 trụ, V2 thể tích hình nón Tỷ số V2 là: A B C D 19 Cho hình chữ nhật MNPQ có MN = 4cm; MQ =3cm Khi quay hình chữ nhật cho vòng quanh cạnh MN ta hình trụ tích : A 48 (cm3) B 36π (cm3) C 24π (cm3) D 72π (cm3) 20 Một hình cầu có diện tích mặt cầu 64π cm2 Thể tích hình cầu bằng: 32 π (cm3 ) A 256 π (cm3 ) B C 64π (cm3) D 256π (cm3) 21.Cho hình chữ nhật có chiều dài 3m, chiều rộng 2m Quay hình chữ nhật vòng quanh chiều dài ta hình trụ, diện tích xung quanh hình trụ bằng: A 6π (m2) B π (m2) C 12 π (m2) D 18 π (m2) 22 Một hình trụ có diện tích đáy diện tích xung quanh 324 (m 2) Khi chiều cao hình trụ là: A 3,14(m) B 31,4(m) C 10(m) D 5(m) 23 Cho hình chữ nhật có chiều dài 4cm, chiều rộng 3cm Quay hình chữ nhật vòng quanh chiều dài ta hình trụ Diện tích xung quanh hình trụ là: A 12π ( cm ) B 48π ( cm ) C 24π ( cm ) D 36π ( cm ) 24 Cho tam giác MNP vuông M, MP =3cm; MN =4cm Quay tam giác vòng quanh cạnh MN hình nón Diện tích xung quanh hình nón là: A 10π ( cm ) B 20π ( cm ) C 15π ( cm ) D Group: https://www.facebook.com/groups/tailieutieuhocvathcs/ 12π ( cm ) Truy cập hoc360.net để tài tài liệu giảng đề thi miễn phí 25 Hình trụ có chiều cao h = 8(cm) bán kính mặt đáy 3(cm) diện tích xung quanh là: A 16π ( cm ) B 24π ( cm ) C 32π ( cm ) D 48π ( cm ) Group: https://www.facebook.com/groups/tailieutieuhocvathcs/ ... cao 9cm thể tích hình nón là: A 91 2cm3 B 94 2cm3 C 93 2cm3 D 95 2cm3 Tam giác ABC vng A có AB = 6cm; AC = 8cm thể tích hình sinh quay tam giác ABC quay quanh AB : A 24 π (cm3) B 32 π (cm3) C 96 π... Cho < α < 90 Trong đẳng thức sau, đẳng thức đúng: A Sin α + Cos α = B tg α = tg (90 0 − α ) C Sin α = Cos (90 0 − α ) D A, B, C Trong hình bên, độ dài BC bằng: A B C D 2 0 Cosα = ; ( < α < 90 ) ta... hoc360.net để tài tài liệu giảng đề thi miễn phí 2 29 Giả sử x1; x2 nghiệm phương trình x + 3x − = Biểu thức x1 + x2 có giá trị là: 29 A 29 C B 29 25 D m − 1) x + ( m + 1) x + m − = ( 30 Cho phương

Ngày đăng: 08/11/2018, 13:07

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w