Tài liệu tham khảo |
Loại |
Chi tiết |
[1] Sonnenschein, H. (1971), Demand Theory without Transitive Pref- erences, with Application to the Theory of Competitive Equilibrium, Preferences, Utility, and Demand, Edited by J. S. Chipman, L. Hur- wicz, M. K. Richter, and H. Sonnenschein, Harcourt Brace Jovanovich, New York, New York |
Sách, tạp chí |
Tiêu đề: |
Demand Theory without Transitive Preferences, with Application to the Theory of Competitive Equilibrium |
Tác giả: |
H. Sonnenschein |
Nhà XB: |
Harcourt Brace Jovanovich |
Năm: |
1971 |
|
[3] Border, K. C. (1985), Fixed-Point, Theorems with Application to Eco- nomic and Game Theory, Cambridge University Press, Cambridge, England |
Sách, tạp chí |
Tiêu đề: |
Fixed-Point Theorems with Application to Economic and Game Theory |
Tác giả: |
K. C. Border |
Nhà XB: |
Cambridge University Press |
Năm: |
1985 |
|
[5] Fan, K. (1953), Minimax Theorem, Proceedings of the National Academy of Sciences, Vol. 39, pp. 42-47 |
Sách, tạp chí |
Tiêu đề: |
Minimax Theorem |
Tác giả: |
K. Fan |
Nhà XB: |
Proceedings of the National Academy of Sciences |
Năm: |
1953 |
|
[8] Aubin, J. P. (1979), Mathematical Methods of Game and Economic Theory, North-Holland, Amsterdam, Holland |
Sách, tạp chí |
Tiêu đề: |
Mathematical Methods of Game and Economic Theory |
Tác giả: |
Aubin, J. P |
Nhà XB: |
North-Holland |
Năm: |
1979 |
|
[10] Aubin, J. P., and Ekeland, I. (1984), Applied Nonlinear Analysic, John Wiley and Sons, New York, New York |
Sách, tạp chí |
Tiêu đề: |
Applied Nonlinear Analysic |
Tác giả: |
J. P. Aubin, I. Ekeland |
Nhà XB: |
John Wiley and Sons |
Năm: |
1984 |
|
[11] Takahashi (1976), Nonlinear Variational Inequalities and Fixed-Point Theorems, Journal of the Mathematical Society of Japan, Vol. 28, pp.477-481 |
Sách, tạp chí |
Tiêu đề: |
Nonlinear Variational Inequalities and Fixed-Point Theorems |
Tác giả: |
Takahashi |
Nhà XB: |
Journal of the Mathematical Society of Japan |
Năm: |
1976 |
|
[13] Bardaro, C., and Ceppitelli, R. (1989), Applications of the Generalized Knaster-Kuratowski-Mazurkiewicz Theorem to Variational Inquelities, Journal of Mathematical Analysis and Applications, Vol. 137, pp. 46- 58 |
Sách, tạp chí |
Tiêu đề: |
Applications of the Generalized Knaster-Kuratowski-Mazurkiewicz Theorem to Variational Inquelities |
Tác giả: |
Bardaro, C., Ceppitelli, R |
Nhà XB: |
Journal of Mathematical Analysis and Applications |
Năm: |
1989 |
|
[14] Bardaro, C., and Ceppitelli, R. (1988), Some Further Generaliza- tions of the Knaster-Kuratowski-Mazurkiewicz Theorem to Minimax Inquelities, Journal of Mathematical Analysis and Applications, Vol.132, pp. 484-490 |
Sách, tạp chí |
Tiêu đề: |
Some Further Generalizations of the Knaster-Kuratowski-Mazurkiewicz Theorem to Minimax Inequalities |
Tác giả: |
Bardaro, C., Ceppitelli, R |
Nhà XB: |
Journal of Mathematical Analysis and Applications |
Năm: |
1988 |
|
[2] Yannelis, N. C., and Prabhakar, N. D. (1983), Existence of Maximal, Elements and Equilibria in Linear Topoligical Space, Journal of Math- ematical Economics, Vol. 12, pp. 233-245 |
Khác |
|
[4] Knaster, B., Kuratowski, C., and Mazurkiewicz, S. (1929), Ein Be- wei des Fixpunktsatze n-Demensionale Simpliexe, Fundamental Math- ematica, Vol. 14, pp. 132-137 |
Khác |
|
[6] Fan, K. (1962), Generalization of Tychonoff’s Fixed-Point Theorem, Mathematicche Annalen, Vol. 142, pp. 305-310 |
Khác |
|
[7] Fan, K. (1984), Some Properties of Convex Sets Related to Fixed- Points Theorems, Mathematicche Annalen, Vol. 266, pp. 519-537 |
Khác |
|
[9] Yen, C. L. (1981), Minimax Inequality and Its Application to Varia- tional Inequalities, Pacific Journal of Mathematics, Vol. 132, pp. 477- 481 |
Khác |
|
[12] Zhou, J., and Chen, G. (1988), Diagonal Convexity Conditions for Problems in Comvex Analysis and Quasi-Variational Inequalities, Journal of Mathematical Analysis and Applications, Vol. 132, pp. 213- 225 |
Khác |
|
[15] Shih, M. H., and Tan, K. K. (1985), Generalized Quasi-Variational Inequalities in Locally Convex Topological Vecto Spaces, Journal of Mathematical Analysis and Applications, Vol. 108, pp. 333-343 |
Khác |
|
[16] Shih, M. H., and Tan, K. K. (1985), Browder-Hartman-Stampacchia Variational Inequalities for Multivalued Monotone Operator, Journal of Mathematical Analysis and Applications, Vol. 108, pp. 333-343 |
Khác |
|
[17] Tian, G. (1992), Generalizations of the KKM Theorem and the Ky Fan Minimax Inequality, with Applications to Maximal Element, Price Equilibrium, and Complementarity, Journal of Mathematical Analysis and Applications, Vol. 170, pp. 457-471 |
Khác |
|
[18] Tian, G. (1993), Necessary and Sufficient Conditions for Maximiza- tion of a Class of Preference Relations, Review of Economic Studies, Vol. 60, pp. 949-958 |
Khác |
|
[19] Tian, G. (1993), Generalized Quasi-Variational-Like Inequality, Math- ematic of Operations Research, Vol. 18, pp. 752-764 |
Khác |
|
[20] Tian, G., and Zhou, J. (1992), Quasi-Variational Inequalities without Concavity Assumptions, Journal of Mathematical Analysis and Appli- cations, Vol. 172, pp. 289-299 |
Khác |
|