1. Trang chủ
  2. » Tài Chính - Ngân Hàng

Stochastic differential equations solutions i, oksendal

33 306 5

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 33
Dung lượng 275,08 KB

Nội dung

Remark: When an Itˆo diffusion is explicitly given, it’s usually straightforward to find its infinitesimalgenerator, by Theorem 7.3.3.. The converse is not so trivial, as we’re faced wit

Trang 1

Stochastic Differential Equations, Sixth Edition

Solution of Exercise Problems

Yan Zeng July 16, 2006

This is a solution manual for the SDE book by Øksendal, Stochastic Differential Equations, Sixth Edition

It is complementary to the books own solution, and can be downloaded at www.math.fsu.edu/˜zeng If youhave any comments or find any typos/errors, please email me at yz44@cornell.edu

This version omits the problems from the chapters on applications, namely, Chapter 6, 10, 11 and 12 Ihope I will find time at some point to work out these problems

Trang 2

Proof WLOG, we assume t = 1, then

By Problem EP1-1 and the continuity of Brownian motion

+ 4(Bt− Bj−1

n

)2B2j−1 n

so E[(B2(j−1)/n− B2

t)2] = 3(t − (j − 1)/n)2+ 4(t − (j − 1)/n)(j − 1)/n, and

Z nj

j−1 n

E[(B2j−1 n

Trang 3

By looking at a subsequence, we only need to prove the L -convergence Indeed,

− Btj)2

The first term converges in L2(P ) toRT

0 BtdBt For the second term, we note

j



Btj +tj+1 2

j



Btj +tj+1 2

− Btj2−tj+1− tj

2

 

Btk+tk+1 2

t − t)2] = E[B4

t − 2tB2

t + t2] = 3E[B2

t]2− 2t2+ t2= 2t2 SoX

j

Btj +tj+1 2

Trang 4

j

√K|tj− t0

s )2] = E[(Wt(N ))2] − 2E[Wt(N )]E[Ws(N )] + E[(Ws(N ))2] = 2E[(Wt(N ))2] − 2E[Wt(N )]2

Since the RHS=2V ar(Wt(N )) is independent of s, we must have RHS=0, i.e Wt(N ) = E[Wt(N )] a.s Let

N → ∞ and apply dominated convergence theorem to E[Wt(N )], we get Wt= 0 Therefore W·≡ 0

Trang 5

XsdX +

Z t 0

|vs|2ds = X02+ 2

Z t 0

XsvsdBs+

Z t 0

E

"

Z s 0

vudBu

2#ds

Z t 0

Trang 6

cos BsdBs−1

2

Z t∧τ 0

Xsds

=

Z t 0

cos Bs1{s≤τ }dBs−1

2

Z t∧τ 0

p

1 − X2dBs−1

2

Z t∧τ 0

Trang 7

Proof E[Xt] = e E[X0] and

Ft= eα2tF0e−αBt − 1 α2t= F0e−αBt + 1 α2t.Choose F0= 1 and plug it back into equation (1), we have d(FtYt) = rFtdt So

Trang 8

Proof E[Xt] = e E[X0] + m(1 − e ) and

b(s, Xs)ds

2#+ E

"

Z t 0

(1 + |Xs|)2ds] + C2E[

Z t 0

(1 + |Xs|2)ds])

≤ 3E[|Z|2] + 12C2T + 12C2

Z t 0

5.11

Trang 9

Proof First, we check by integration-by-parts formula,

E[Xt2] = (1 − t)2

Z t 0

ds(1 − s)2 = (1 − t) − (1 − t)2

So Xt converges in L2 to 0 as t → 1 Since Xt is continuous a.s for t ∈ [0, 1), we conclude 0 is the uniquea.s limit of Xt as t → 1

substitu-−dXt

X2 t

= −rKZtdt + rdt − βZtdBt+ 1

X3 t

β2Xt2dt = rdt − rKZtdt + β2Ztdt − βZtdBt

Define Yt= e(rK−β2)tZt, then

dYt= e(rK−β2)t(dZt+ (rK − β2)Ztdt) = e(rK−β2)t(rdt − βZtdBt) = re(rK−β2)tdt − βYtdBt.Now we imitate the solution of Exercise 5.6 Consider an integrating factor Nt, such that dNt= θtdt + γtdBt

and

d(YtNt) = NtdYt+ YtdNt+ dNt· dYt= Ntre(rK−β2)tdt − βNtYtdBt+ Ytθtdt + YtγtdBt− βγtYtdt

Trang 10

Solve the equation

So dYt−1 = −Yt−2dYt= (−rKYt−1+ rFt−1)dt, and

Trang 11

Proof Assume A 6= 0 and define ω(t) =Rt

0v(s)ds, then ω0(t) ≤ C + Aω(t) andd

dt(e

−Atω(t)) = e−At(ω0(t) − Aω(t)) ≤ Ce−At

So e−Atω(t) − ω(0) ≤ CA(1 − e−At), i.e ω(t) ≤ CA(eAt− 1) So v(t) = ω0(t) ≤ C + A ·CA(eAt− 1) = CeAt.5.18 (a)

Proof Let Yt= log Xt, then

= κ(α − Yt)dt + σdBt−σ

2X2

tdt2X2 t



= exp σ2(1 − e−2κt)



Trang 12

AK2 tK

2T 22K+2AK2(K + 1)! T

K+1

P

sup

0≤t≤T

Ngày đăng: 23/03/2018, 09:02

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
[1] C. Dellacherie and P. A. Meyer. Probabilities and potential B. North-Holland Publishing Co., Amster- dam, 1982 Sách, tạp chí
Tiêu đề: Probabilities and potential
Tác giả: C. Dellacherie, P. A. Meyer
Nhà XB: North-Holland Publishing Co.
Năm: 1982
[2] R. Durrett. Probability: theory and examples. Second edition. Duxbury Press, Belmont, CA, 1995 Sách, tạp chí
Tiêu đề: Probability: theory and examples
Tác giả: R. Durrett
Nhà XB: Duxbury Press
Năm: 1995
[3] R. Durrett. Stochastic calculus: A practical introduction. CRC Press, Boca Raton, 1996 Sách, tạp chí
Tiêu đề: Stochastic calculus: A practical introduction
Tác giả: R. Durrett
Nhà XB: CRC Press
Năm: 1996
[4] G. L. Gong and M. P. Qian. Theory of stochastic processes. Second edition. Peking University Press, Beijing, 1997 Sách, tạp chí
Tiêu đề: Theory of stochastic processes
Tác giả: G. L. Gong, M. P. Qian
Nhà XB: Peking University Press
Năm: 1997
[6] S. W. He, J. G. Wang and J. A. Yan. Semimartingale theory and stochastic calculus. Science Press, Beijing; CRC Press, Boca Raton, 1992 Sách, tạp chí
Tiêu đề: Semimartingale theory and stochastic calculus
Tác giả: S. W. He, J. G. Wang, J. A. Yan
Nhà XB: Science Press
Năm: 1992
[7] B. ỉksendal. Stochastic differential equations: An introduction with applications. Sixth edition. Springer- Verlag, Berlin, 2003 Sách, tạp chí
Tiêu đề: Stochastic differential equations: An introduction with applications
Tác giả: B. ỉksendal
Nhà XB: Springer-Verlag
Năm: 2003
[8] D. Revuz and M. Yor. Continous martingales and Brownian motion. Third edition. Springer-Verlag, Berline, 1998 Sách, tạp chí
Tiêu đề: Continous martingales and Brownian motion
Tác giả: D. Revuz, M. Yor
Nhà XB: Springer-Verlag
Năm: 1998
[9] A. N. Shiryaev. Probability. Second edition. Graduate Texts in Mathematics, 95. Springer-Verlag, New York, 1996 Sách, tạp chí
Tiêu đề: Probability
Tác giả: A. N. Shiryaev
Nhà XB: Springer-Verlag
Năm: 1996
[10] J. A. Yan. Lecture notes on measure theory. Science Press, Beijing, China, 2000.A Probabilistic solutions of PDEs (based on [7]) Sách, tạp chí
Tiêu đề: Lecture notes on measure theory
Tác giả: J. A. Yan
Nhà XB: Science Press
Năm: 2000
2. Parabolic equation: heat equation via Kolmogorov’s backward equation (dP t f /dt = P t Af = AP t f ). If X is a diffusion with generator A, then for f ∈ C c 2 ( R n ), E x [f (X t )] := E[f(X t x )] solves the initial value problem of parabolic PDE( ∂u∂t = Au, t > 0, x ∈ R n u(0, x) = f (x); x ∈ R n . Remark Sách, tạp chí
Tiêu đề: Parabolic equation: heat equation via Kolmogorov’s backward equation
[5] G. L. Gong. Introduction to stochastic differential equations. Second edition. Peking University Press, Beijing, 1995 Khác

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w