Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 127 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
127
Dung lượng
4,13 MB
Nội dung
1 mở đầu lý chọn đề tài 1.1 Đổi phương pháp dạyhọc nhằm pháthuy tính tích cực nhận thức họcsinh yêu cầu tất yếu cấp bách Giáo dục Để đáp ứng yêu cầu nghiệp công nghiệp hóa, đại hóa đất nước, thách thức trước nguy tụt hậu đường tiến vào kỷ XXI cạnh tranh trí tuệ đòi hỏi phải đổi Giáo dục, có việc đổi phương pháp dạy học, sớm tiếpcận trình độ giáo dục Phổ thông nước phát triển khu vực Thế giới (đây vấn đề riêng nước ta, mà vấn đềquan tâm quốc gia) nhằm nâng cao chất lượng giáo dục toàn diện hệ trẻ, phát triển nguồn nhân lực giai đoạn mới, phục vụ yều cầu đa dạng Kinh tế – Xã hội Sự phát triển với tốc độ mang tính bùng nổ khoa học công nghệ thể qua đời nhiều thành tựu khả ứng dụng chúng vào thực tế cao, rộng nhanh đòi hỏi phải đổi Giáo dục Trong bối cảnh hội nhập giao lưu, họcsinhtiếp nhận nhiều nguồn thông tin đa dạng, phong phú, từ nhiều mặt sống, nên hiểu biết linh hoạt thực tế nhiều, so với hệ lứa trước chục năm (đặc biệt họcsinh THPT) Vì vậy, đòi hỏi Giáo dục - Đào tạo phải xác định lại mục tiêu, nội dung, phương pháp, phương tiện, tổ chức, cách đánh giá, theo định hướng đổi phương pháp dạyhọc xác định tài liệu sau: + Nghị Trung ương khóa VII (1- 1993) đề nhiệm vụ ''đổi phương pháp dạyhọc tất cấp học, bậc học" + Nghị Trung ương khóa VIII (12- 1996) rõ: "phương pháp Giáo dục - Đào tạo chậm đổi mới, chưa pháthuy tính tích cực, chủ động sáng tạo người học" + Luật Giáo dục (12- 1998), cụ thể hóa thị Bộ Giáo dục - Đào tạo, đặc biệt thị số 14 (4-1999) + Luật Giáo dục, điều 28.2, ghi: ''Phương pháp Giáo dục Phổ thông phải pháthuy tính tích cực, tự giác, chủ động, sáng tạo học sinh; phù hợp với đặc điểm lớp học, môn học; bồi dưỡng phương pháp tự học, rèn luyện kỹ năng, vận dụng kiến thức vào thực tiễn; tác động đến tình cảm, đem lại niềm vui hứng thú cho học sinh’' Như vậy, quanđiểm chung hướng đổi phương pháp dạyhọc (và xu dạyhọc đại Thế giới), có phương pháp dạyhọc môn Toán khẳng định, không vấn đềđể tranh luận nữa: Cốt lõi phương pháp dạyhọcpháthuyTTCNThọc tập học sinh, khơi dậyphát triển khả tự học, nhằm hình thành cho họcsinh tư tích cực, độc lập, sáng tạo, để tạo cho họcsinhhọc tập cáchtích cực, chủ động, chống lại thói quen học tập thụ động Đó hướng tới học tập hoạt động hoạt động, tức cho họcsinh suy nghĩ nhiều hơn, thảo luận nhiều hơn, hoạt động nhiều hơn, đứng trước vấn đề nội dung học hay yêu cầu thực tiễn sống Đây tiêu chí, thước đo, đánh giá đổi phương pháp dạyhọc Trên tinh thần đó, việcdạyhọc thực nhiệm vụ trang bị cho học sinh, kiến thức cần thiết môn dạy, mà điều có ý nghĩa to lớn chổ hình thành rèn luyện cho họcsinh tính tích cực, độc lập sáng tạo trình học tập, đểhọcsinhchủ động, tự lực, tự đào tạo, tự hoàn thiện tri thức hoạt động thực tiễn sau Do đó, việc thiết kế nội dung dạyhọc cụ thể, nhằm tạo môi trường để tư nhận thức họcsinh hoạt động tích cực, cần thiết Chẳng hạn, dạyhọckháiniệmchủđềGiớihạn minh chứng rõ nét cho việcdạyhọc theo hướng pháthuyTTCNThọcsinh 1.2 Chủđề''Giớihạn'' chương quan trọng, bản, tảng khó Giảitích Toán họcTHPTKháiniệmGiớihạn không kiến thức tảng Giảitích vì: ''không có GiớihạnGiảitích Hầu hết kháiniệmGiảitích liên quan đến Giớihạn'' [37, tr 147] mà kháiniệm Toán học khó họcsinh Có thể nói họcchủđềGiớihạn trình biến đổi chất nhận thức học sinh, họcsinh xem xét kiện mối liên hệ qua lại giới khách quan rõ ràng Vì ta biết Đại số đặc trưng kiểu tư “hữu hạn”, “rời rạc”, “tĩnh tại”, họcGiảitích kiểu tư chủ yếu vận dụng liên quan đến “vô hạn”, “liên tục”, “biến thiên” KháiniệmGiớihạn sở cho phép nghiên cứu vấn đề gắn liền với “vô hạn’’, ‘’liên tục’’, ‘’biến thiên’’ Do vậy, nắm vững nội dung kháiniệmGiớihạn khâu đầu tiên, tiền đềquantrọngđể xây dựng cho họcsinh khả vận dụng vững chắc, có hiệu kiến thức Giảitích Toán học phổ thông ChủđềGiớihạn có vai trò quantrọng toán học phổ thông lẽ : "khái niệmGiớihạn sở, hàm số liên tục vật liệu để xây dựng kháiniệm đạo hàm tích phân Đây nội dung bao trùm chương trình Giảitích THPT’’ [4, tr 12] Để hiểu chứng minh, nắm vững nội dung kháiniệmGiớihạncần thiết phải có phương thức sư phạm tốt, cách thức phương tiện thích hợp, lời nói sinh động, hình ảnh trực quan, ví dụ cụ thể, rèn luyện phát triển khả chuyển đổi từ ngôn ngữ thông thường sang ngôn ngữ Toán học, khả thực thao tác tư bản, sơ đồ, bảng biểu, tập thích hợp tình sư phạm ) Trong trình dạy học, giáo viên phối hợp sử dụng với nội dung học hợp lý để góp phần tạo nên hoạt động giao lưu giáo viên với họcsinhhọcsinh với học sinh, nhằm đạt mục tiêu dạyhọcchủđềquantrọng 1.3 Thực tiễn đổi chương trình, cải cách phương pháp dạyhọc cho thấy việc sử dụng phương thức sư phạm thích hợp theo hướng pháthuyTTCNThọcsinh nâng cao chất lượng dạyhọcHọc vấn nhà trường trang bị thâu tóm tri thức mong muốn Vì giáo viên phải coi trọngviệcdạy chiếm lĩnh kiến tạo kiến thức loài người Đối với nội dung kiến thức, giáo viên phải biết khai thác sử dụng phương thức sư phạm với qui trình dạyhọc thích hợp đểpháthuyTTCNThọc sinh, sở người học có lực thói quen tiếp tục học tập suốt đời Xã hội đòi hỏi người có học vấn đại, khả lấy từ trí nhớ tri thức có sẵn lĩnh hội nhà trường phổ thông, mà phải có khả chiếm lĩnh biết cách thức sử dụng tri thức cách độc lập, có khả đánh giá kiện, tượng tư tưởng cách thông minh sáng suốt, gặp sống lao động quan hệ với người Do có thay đổi đối tượng giáo dục, họcsinhtiếp nhận nhiều nguồn thông tin đa dạng, phong phú, từ nhiều mặt sống, hiểu biết nhiều hơn, linh hoạt thực tế so với hệ lứa tuổi trước Mặt khác, học tập họcsinh không thỏa mãn với vai trò người tiếp thu thụ động, không chấp nhận giải pháp có sẵn đưa ra, lứa tuổi nảy sinh yêu cầu trình: lĩnh hội độc lập tri thức phát triển kĩ Để hình thành phương thức học tập cách độc lập, pháthuy vai trò tích cực học tập họcsinhcáchchủ định cần phải có hướng dẫn giáo viên, biện pháp, phương thức sư phạm thích hợp nội dung học cụ thể, giúp họcsinhhọc tập hứng thú, vận dụng tốt tiềm lực sẵn có đểpháthuy cao TTCNT Vì lý đây, chọn đề tài nghiên cứu luận văn: “Quan điểmGiảitíchcáchtiếpcậnkháiniệmGiớihạnviệcpháthuyTTCNThọcsinhdạyhọcchủđềGiớihạnbậcTHPT'' Mục đích nghiên cứu 2.1 Xác định sở lý luận pháthuyTTCNThọcsinh qua học môn Toán 2.2 Thiết kế xây dựng phương thức sư phạm thích hợp cho việcdạyhọcchủđềGiớihạn theo hướng pháthuyTTCNThọcsinh Nhiệm vụ nghiên cứu 3.1 Tìm hiểu dạyhọcchủđềGiớihạn lớp 11-THPT 3.2 Xác định làm rõ sở lý luận, sáng tỏ vai trò vị trí Giảitích nói chung chủđềGiớihạn nói riêng THPTviệcpháthuyTTCNThọcsinh 3.3 Vạch rõ chất, đề xuất định hướng từ xây dựng phương thức sư phạm thích hợp theo hướng pháthuyTTCNThọcsinh thông qua dạyhọcchủđềGiớihạn đặc biệt kháiniệm "Giới hạndãy số hàm số, hàm số liên tục " cho họcsinh lớp 11-THPT 3.4 Thực nghiệm sư phạm nhằm kiểm tra, đánh giá tính khả thi hiệu nội dung phương thức đề xuất Giả thUYết khoa học Trên sở tôn trọng nội dung chương trình SGK hành định hướng việc xây dựng phương thức sư phạm thích hợp vào dạyhọcchủđềGiớihạn theo hướng pháthuyTTCNT kích thích tính tích cực, tự giác, chủ động, độc lập, sáng tạo học sinh, từ nâng cao hiệu dạyhọcchủđềGiớihạn nói riêng, chất lượng dạyhọc Toán nói chung Phương pháp nghiên cứu 5.1 Nghiên cứu lý luận: Nghiên cứu văn kiện Đảng, văn bản, tài liệu nghành Giáo dục- Đào tạo có liên quan đến việcdạyhọc môn Toán trường THPT, tài liệu tâm lý giáo dục pháthuyTTCNThọcsinhđể phục vụ cho đề tài luận văn - Tìm hiểu phân tích chương trình, SGK, lý luận dạyhọcGiảitíchchủđềGiớihạn tài liệu tham khảo khác có liên quan 5.2 Tìm hiểu, điều tra thực tiễn: Quan sát dự thực dạyhọc sinh, tổng kết kinh nghiệm dạyhọcchủđềGiớihạn 5.3 Thực nghiệm sư phạm: Tiến hành dạy thực nghiệm số tiết trường THPTđể xác định tính khả thi hiệu đề tài luận văn Đóng góp luận văn 6.1 Về mặt lý luận: - Hệ thống hóa số vấn đề lý luận pháthuyTTCNThọcsinh - Xây dựng thực nghiệm phương thức sư phạm thích hợp dạyhọcGiảitíchchủđềGiới hạn, nhằm pháthuyTTCNThọcsinh 6.2 Về mặt thực tiễn: - Qua Luận văn giúp giáo viên hiểu rõ nắm vững hệ thống phương thức sư phạm thích hợp dạyhọc nhằm pháthuyTTCNThọcsinh thông qua dạyhọcchủđềGiớihạn - Có thể sử dụng Luận văn để làm tài liệu tham khảo cho giáo viên Toán để góp phần nâng cao hiệu dạyhọc trường THPT Cấu trúc luận văn Luận văn, phần mở đầu, kết luận tài liệu tham khảo, có chương sau đây: Chương 1: Cơ sở lý luận thực tiễn 1.1 Pháthuy tính tích cực nhận thức họcsinhdạyhọc 1.1.1 Quanniệm tính tích cực nhận thức (TTCNT) họcsinh 1.1.2 Vì phải pháthuyTTCNThọc sinh? 1.1.3 Các cấp độ TTCNT 1.1.4 Một số biểu TTCNThọcsinhhọc tập môn Toán 1.1.5 Các phương thức sư phạm thích hợp nhằm pháthuyTTCNThọcsinhdạyhọc nội dung chủđềGiớihạn 1.2 QuanđiểmGiảitích vị trí đặc điểmGiớihạnTHPT 1.2.1 Vị trí đặc điểmGiớihạnGiảitíchTHPT 1.2.2 Quanđiểm thứ nhất: Giảitích mà Đại số hóa tăng cường THPT 1.2.3 Quanđiểm thứ hai: Giảitích xấp xỉ THPT 1.2.4 Quanđiểm thứ ba: Giảitích hỗn hợp THPT 1.3 Thực tiễn dạyhọcchủđềkháiniệmGiớihạnGiảitíchTHPT 1.4 Kết luận chương Chương 2: cáchtiếpcậnkháIniệmGIớIHạNVàVIệCPHáTHUY TíNH tíCH cực NHậN THức HọCSINHTRONGDạYHọCchủđềGiớIHạNbậcTHPT 2.1 CáccáchtiếpcậnkháiniệmGiớihạnTHPT 2.1.1 Cáccáchtiếpcận định nghĩa kháiniệm “ Giớihạndãy số” 2.1.2 Cáccáchtiếpcận định nghĩa kháiniệm “ Giớihạn hàm số” 2.1.3 Cáccách định nghĩa liên tục - gián đoạn hàm số điểm 2.1.4 Vềviệc mở rộng kháiniệmgiớihạndãy số hàm số 2.2.Ví dụ minh họa dạyhọcchủđềGiớihạn theo hướng pháthuyTTCNT 2.2.1 Thực kế hoạch học theo phương pháp dạyhọctích cực với kháiniệmđềgiớihạn 2.2.2 Minh họa dạyhọckháiniệmGiớihạn 2.2.3 Minh họa dạyhọc tập Giớihạn với chức pháthuyTTCNT 2.2.4 Dự đoán phát nguyên nhân hướng khắc phục khó khăn sai lầm họcsinhhọcchủđềGiớihạn 2.3 Kết luận chương chương 3: thực nghiệm sư phạm 3.1 Mục đích thực nghiệm 3.2 Tổ chức nội dung thực nghiệm 3.3 Đánh giá kết thực nghiệm 3.4 Kết luận chương thực nghiệm sư phạm Chương 10 CƠ Sở Lý LUậN Và THựC TIễN 1.1 PHáTHUYTTCNTCủAHọCSINHTRONGDạyHọC Theo Rubinstein X L : ''Người ta bắt đầu tư có nhu cầu hiểu biết Tư thường xuất phát từ vấn đề hay câu hỏi, từ ngạc nhiên hay điều trăn trở'', mà hạt nhân TTCNT hoạt động tư duy, nên pháthuy tính tích cực nhận thức (TTCNT) nhằm phát triển tư duy, đặc biệt tư toán học cho học sinh, TTCNThọcsinhhọc tập ? 1.1.1 QuanniệmTTCNThọcsinh Theo Kharlamop: ''Tính tích cực trạng thái hoạt động chủ thể, TTCNT trạng thái hoạt động học sinh, đặc trưng khát vọng học tập, cố gắng trí tuệ nghị lực cao trình nắm vững kiến thức'' Nhiều nhà khoa học nước nhận định TTCNThọcsinh trình học tập theo góc độ, dấu hiệu khác chủ thể khách thể, là: - Sự căng thẳng ý, tưởng tượng, phân tích tổng hợp, ( Rôđac I.I.) - Lòng mong muốn không chủ định gây nên biểu bên bên hoạt động (Ôkôn V.) - Cường độ, độ sâu, nhịp điệu hoạt động, quan sát, ý, tư ghi nhớ thời gian định ( TS Phạm Thị Diệu Vân) 113 họcsinh ; kiểm nghiệm tính đắn Giả thuyết khoa học 3.2 Tổ chức nội dung thực nghiệm 3.2.1 Tổ chức thực nghiệm Thực nghiệm sư phạm tiến hành trường THPT Nguyễn Công Trứ, Nghi xuân, Hà tĩnh Lớp thực nghiệm: 11A có 51 học sinh, giáo viên dạy Đào Thị Thu Hà ; Lớp đối chứng : 11B có 57 họcsinh , giáo viên dạy Phan Thị Hằng Với chất lượng khảo sát đầu năm hai lớp tương đối Thời gian thực nghiệm sư phạm tiến hành tháng theo phân phối chương trình Bộ Giáo dục Đào tạo sách Giải tích- Đại số lớp 11, với nội dung chủđềGiớihạn Tác giả chọn số chủđềdạy thực nhiệm : + Giớihạndãy số ; + Luyện tập tập Giớihạn hàm số Với phong phú tập nội dung chủđề nên số tập dạng củng cố, nâng cao, khắc sâu giảng dạy cho họcsinh tiết học tự chọn ngoại khóa, phụ đạo bồi dưỡng 3.2.2 Nội dung thực nghiệm Tổ chức thực dạyhọc Chương Giớihạn *) Tại lớp thực nghiệm 114 + ) Giáo viên thực hành theo tiến trình dạyhọc theo hướng pháthuy TTTNT họcsinh +) Quan sát hoạt động học tập học sinh, đánh giá hai mặt định tính định lượng để nhận định kết TTCNThọcsinh *) Tại lớp đối chứng +) Giáo viên dạyhọc bình thường không tiến hành lớp thực nghiệm quan sát điều tra kết học tập họcsinh lớp đối chứng Thực nghiệm tiến hành 19 tiết Chương Giớihạn Sau dạy thực nghiệm, cho họcsinh làm đề kiểm tra tiết Cụ thể nội dung kiểm tra là: Đề kiểm tra (45 phút ) : Câu 1: Tìm số hạng dãy u n = khoảng cách chúng đến số : b) nhỏ n cho n+9 a) nhỏ ; 10 Câu 2: Hãy cho biết dãy số có giớihạn ? Nếu dãy số có giớihạngiớihạndãy số ? Kể từ số hạng thứ trở z n nhỏ 0,00001 ? a ) un = (-1)nn ; d) zn = ( − 1) b) v n = (-1)n ; c) w n = n ; n n x3 + x − x2 − x − ( ) g x Câu : Cho ba hàm số: f ( x ) = ; = ; h( x ) x = x − x −1 x Các đường cong C1, C2, C3( h.1,2,3) đồ thị ba hàm số này, xét tập R\ { 0} , (không xếp theo thứ tự) 115 a) Quan sát đồ thị nêu nhận xét dự đoán giớihạn hàm số x → 0+, x → - , x → - ∞ , x → + ∞ ? b) Chỉ dùng kết tính giớihạn hàm số f ( x ) , g( x) , h( x ) khi: x→0 - , x → 0+, x→-∞, x → + ∞ từ xác định đường cong đồ thị hàm số cho ? y y y x (Hình ) x ( Hình 2) x ( Hình ) * Dụng ý sư phạm đề kiểm tra (45 phút) : Câu 1: Cũng nhằm kiểm tra họcsinh có nắm chất kháiniệmdãy số có giớihạn L ≠ qua vận dụng định nghĩa, cách cụ thể tương ứng với số dương (ở 116 ngầm hiểu số ε ) tương ứng cụ thể; Câu 2: Kiểm tra họcsinh nắm vững kháiniệm định nghĩa dãy có giới hạn, dãy số có giớihạn hữu hạn ( L ≠ ) có giớihạn vô cực ( ± ∞ ), dãy số có giớihạngiớihạndãy số cách vận dụng định nghĩa áp dụng với dãy số z n nhỏ 0,00001; Câu : Nhằm kiểm tra họcsinh nhận định trực quan dựa vào đồ thị nêu nhận xét dự đoán giớihạn hàm số, từ xác định đồ thị hàm số tương ứng 3.3 Đánh giá kết thực nghiệm 3.3.1 Đánh giá định tính Chủđềkháiniệmgiớihạn hàm số nội dung khó chương trình toán THPT Thông qua trình thực nghiệm, kiểm tra chất lượng trả lời câu hỏi, như, kiểm tra học sinh, rút số nhận xét sau: a) Đối với lớp dạy thực nghiệm Nhìn chung lớp em tích cực hoạt động, lớp học sôi không khí thoãi mái họcpháthuyTTCNT , tính độc lập sáng tạo phương pháp dạyhọchuy động họcsinh tham gia vào trình nhận thức phù hợp với trình độ tiếp thu họcsinh Nhưng có mặt hạn chế số họcsinh lớp bở ngỡ , qua tìm hiểu thực trạng học tập em yếu thực tế em chưa thực ý thức tham gia vào hoạt động học tập cáchtích cực Như với hình thức dạyhọc phù hợp với tất đối tượng họcsinh lớp họcsinh chất lượng tương đương b) Đối với lớp học đối chứng 117 Hoạt động học tập họcsinh ít, chủ yếu tiếp thu kiến thức cách thụ động nên mở rộng hay làm tập tổng hợp hay nâng cao đòi hỏi phải tư em chưa tự phát hiện, pháthuy tính độc lập sáng tạo kiến thức em nắm đIểm khác biệt lớp đối chứng so với lớp dạy thực nghiệm Vậy thực tế cho thấy họcsinh lớp dạy thực nghiệm pháthuy tính tích cực độc lập sáng tạo có khả tiếp thu kiến thức cáchchủ động nhiều so với lớp đối chứng 3.3.2 Đánh giá định lượng Kết làm kiểm tra họcsinh 11A lớp thực nghiệm (TN) họcsinh 11B lớp đối chứng (ĐC) thể thông qua Bảng thống kê sau đây; Bảng Lớ p Điể m TN: Số họcsinh (tỷ lệ%) ĐC: Số họcsinh (tỷ lệ%) (0%) (0%) (0%) (0%) 2 (3,9%) (0%) (0%) (5,3%) (11,8%) 13(22,8% ) (13,7%) (12,3%) (13,7%) 17 (29,8%) 10 (19,6%) (15,8%) (17,6%) 4(7%) 9 (17,6%) (7%) (2%) (0%) 10 118 TN ĐC 6,6 điểm 5,8 điểm Tỷ lệ đạt yêu cầu 84,3% 71,9% Tỷ lệ điểm Tỷ lệ điểm trung bình Tỷ lệ điểm 15,7% 28,1% 27,4% 42,1% 37,2% 28,8% Tỷ lệ điểmgiỏi 19,6% 7% Lớp Trung bình Bảng cho thấy: điểm trung bình cộng; tỷ lệ đạt yêu cầu; tỷ lệ đạt điểm khá, giỏi lớp thực nghiệm cao so với lớp đối chứng Câu hỏi đặt là: Có phải phương pháp dạy lớp thực nghiệm tốt phương pháp dạy lớp đối chứng không, hay ngẫu nhiên mà có ? Chúng ta đề Giả thuyết thống kê H 0: “Không có khác hai phương pháp” sử dụng Phương pháp U[23, tr 58] nhằm bác bỏ H0 (xem bảng) Bảng Điểm số TN ĐC 22 44444 555 5555 666 6666 Xếp hạng TN ĐC 1,5 1,5 333 44444 44 44444 555 5555 66666 66666 66666 15 15 15 15 15 15 444 15 15 15 15 15 15 15 15 15 15 15 15 15 36,5 36,5 36,5 36,5 36,5 36,5 36,5 36,5 36,5 36,5 36,5 36,5 36,5 36,5 55,5 55,5 55,5 55,5 55,5 55,5 55,5 55,5 55,5 55,5 55,5 55,5 55,5 55,5 55,5 55,5 55,5 55,5 55,5 55,5 55,5 55,5 55,5 55,5 119 77777 77777 88888 8888 99999 9999 77777 777 8888 9999 10 n1 = 51 n2 = 57 77 77 77 77 77 77 77 77 77 77 77 77 77 77 77 77 77 77 77 93 93 93 93 93 93 93 93 93 106 106 106 106 106 106 106 106 106 106 113 93 93 93 93 R1 = 3411 106 106 106 106 R2 = 2696 n ( n + 1) 51× 52 = 3411 = 3411 – 1326 = 2085 2 n (n + 1) 57 × 58 U2 = R − 2 = 2696 = 2696 – 1653 = 1043 2 n × n2 51× 57 n 1n ( n + n + 1) µ= = = 1453,5 ; σ= = 2 12 161 2318− 1350 U −µ u= = = 3,92 153,7 σ Với mức ý nghĩa α = 0,05 giá trị tới hạn U α = 1,64 Vì u = 3,92 > 1,64 = U α nên Giả thuyết H0 bị bác bỏ Vậy phương pháp dạy lớp thực nghiệm tốt so với phương pháp dạy lớp đối chứng U1 = R − 3.4 Kết luận chung thực nghiệm Quá trình thực nghiệm kết rút sau thực nghiệm cho thấy: mục đích thực nghiệm hoàn thành, tính khả thi hiệu quanđiểm khẳng định Thực phương thức góp phần pháthuyTTCNThọc sinh, đồng thời góp phần quantrọng vào việc nâng cao hiệu dạyhọc môn Toán trường THPT 120 Kết luận Luận văn thu kết sau đây: Đã hệ thống hóa quanđiểm nhiều nhà khoa họccáchpháthuy TTTCN họcsinhdạyhọc nói chung, dạyhọc đặc thù môn Toán nói riêng ; Luận văn làm sáng tỏ nhận định quanđiểmgiảitích từ hệ thống hóa, phân tích, diễn giảicáchtiếpcậnchủđềkháiniệmgiớihạn ; Đã đề xuất xu hướng dạyhọc phù hợp với việc tập luyện cho họcsinhpháthuyTTCNT cụ thể xây dựng năm phương thức sư phạm thông qua dạyhọcchủđềkháiniệmgiớihạngiảitíchbậc THPT; Đã phần làm sáng tỏ thực trạng dạyhọcchủđềkháiniệmgiớihạnviệc mô tả khó khăn, sai lầm họcsinhgiải Toán chủđề mà nguyên nhân chủ yếu khó khăn, sai lầm chướng ngại nhận thức họckháiniệmgiớihạn Đặc biệt việc mở rộng kháiniệmgiớihạndãy 121 hàm số kéo theo số vấn đềcầnquan tâm dạyhọckháiniệm ; Thiết kế cách thức, ví dụ minh hoạ dạyhọc theo hướng nhằm pháthuyTTCNThọcsinh thông qua dạyhọckháiniệmdạyhọc tập chủđềgiới hạn; Đã tổ chức thực nghiệm sư phạm để minh họa tính khả thi hiệu giải pháp phương thức đề xuất xây dựng; Như vậy, khẳng định rằng: Mục đích nghiên cứu thực hiện, Nhiệm vụ nghiên cứu hoàn thành Giả thuyết khoa học chấp nhận Tài Liệu Tham Khảo [1] Lê Quang Anh, (1995) Giớihạndãy số, Nxb Đồng Nai [2] Nguyễn Ngọc Bảo, (1995) Phát triển tính tích cực, tính tự lực họcsinh trình dạy học, Nxb Giáo dục [3] Nguyễn Vĩnh Cận, Lê Thống Nhất, Phan Thành Quang, (1996) Sai lầm phổ biến giải toán, Nxb Giáo dục [4] Phan Đức Chính, Ngô Hữu Dũng, (1996) Bộ sách Đại số Giảitích 11, Nxb Giáo dục 122 [5] Phan Đức Chính, Ngô Hữu Dũng, Hàn Liên Hải, Trần Văn Hạo, (1995) Bộ sách Đại số Giảitích 11 Ban TN, Nxb Giáo dục [6] Phan Đức Chính, Trần Văn Hạo, Ngô Xuân Sơn, (1996) Bộ sách Đại số Giảitích 11 Ban KHTN, Nxb Giáo dục [7] Vũ Cao Đàm, (2005) Phương pháp luận nghiên cứu khoa học, Nxb- KHKT [8] Võ Giang Giai, Nguyễn Ngọc Thu, (2006) Một số toán dãy số đề thi OLYMPIC 30-4, Nxb ĐHQG HN [9] Trần Văn Hạo (Chủ biên phần I), Cam Duy Lễ Ngô Thúc Lanh (Chủ biên phần II) Ngô Xuân Sơn, Vũ Tuấn, (2000) Bộ sách Đại số Giải tích11 (Sách chỉnh lý hợp 2000), Nxb Giáo dục [10] Trần Văn Hạo, cộng sự, (2004) Bộ 2, sách Đại số Giảitích 11, Nxb Giáo dục [11] Phạm Văn Hoàn, Nguyễn Gia Cốc, Trần Thúc Trình, (1981) Giáo dục học môn toán , Nxb Giáo dục, Hà Nội [12] Trần Bá Hoành cùng, cộng sự, (2002) áp dụng dạyhọctích cực môn toán, Nxb ĐHSP [13] Nguyễn Thái Hòe, (1989) Tìm tòi lời giải toán ứng dụng vào việcdạy toán, học toán, Nxb Giáo dục [14] Nguyễn Phụ Hy, (2003) ứng dụng giớihạnđểgiải toán THPT, Nxb Giáo dục 123 [15] Phan Huy Khải, (1998) Toán nâng cao Đại số Giảitích lớp 11, Nxb ĐH QG Hà Nội [16] Phan Huy Khải, (2001) Giới thiệu dạng toán luyện thi đại học (tập III), Nxb Hà Nội [17] Phan Huy Khải, (2000) Toán bồi dưỡng họcsinh THPT, Nxb Hà nội [18] Kharlamop I F, (1987) Pháthuy tính tích cực họcsinh nào? (tập I), Nxb Giáo dục [19] Kharlamop I F, (1987) Pháthuy tính tích cực họcsinh nào? (tập II), Nxb Giáo dục [20] Nguyễn Bá Kim, (1999) Học tập hoạt động hoạt động, Nxb Giáo dục [21] Nguyễn Bá Kim, (2006) Phương pháp dạyhọc môn Toán, Nxb Giáo dục [22] Nguyễn Bá Kim, Vũ Dương Thụy, (1997) Phương pháp dạyhọc Môn Toán, Nxb Giáo dục [23] Nguyễn Bá Kim,Vũ Dương Thụy, Phạm Văn Kiều, (1997) Phát triển lý luận dạyhọc môn Toán ( tập 1)-NCKHGD, Nxb Giáo dục [24] Ngô Thúc Lanh, cộng sự, (1992) Bộ sách Đại số Giảitích 11 , Nxb Giáo dục [25] Ngô Thúc Lanh, (1997) Tìm hiểu giảitích phổ thông, Nxb Giáo dục 124 [26] Lê Quang Long, (1999) Thử tìm PPDH hiệu quả, Nxb Giáo dục [27] Nguyễn Văn Mậu, (2001) Giớihạndãy số hàm số, Nxb Giáo dục [28] Trần Thành Minh, (2000) Giải toán Đại số Giảitích lớp 11, Nxb Giáo dục [29] Bùi Văn Nghị, cộng sự, (2005) Tài liệu BD TX cho giáo viên THPTchu kỳ III, Viện nghiên cứu SP [30] Lê Viết Ngư, Phan Văn Danh, Nguyễn Định, Lê Văn Hạp, Nguyễn Hoàng, (1998) Toán cao cấp Giải tích-hàm biến(tập hai), Nxb Giáo dục, Hà Nội [31] Phạm Quốc Phong, (2004) Chuyên đề nâng cao toán THPT Đại số Giải tích, Nxb ĐH QG [32] Nguyễn Lan Phương, (2000) Cải tiến phương pháp dạyhọc toán với yêu cầu tích cực hóa hoạt động học tập theo hướng giúp họcsinhphátgiải vấn đề qua phần giảng dạy''quan hệ vuông góc không gian'' lớp 11 THPT Luận án tiến sĩ [33] Trần Phương, Nguyễn Đức Tấn, (2004) Sai lầm thường gặp sáng tạo giải toán, Nxb Hà Nội [34] Polia.G, (1997) Giải toán nào?, Nxb Giáo dục [35] Polia.G, (1995) 125 Sáng tạo toán học, Nxb Giáo dục [36] Polia.G, (1995) Toán học suy luận có lý, Nxb Giáo dục [37] Đoàn Quỳnh, cộng sự, (2004) Bộ 1, sách Đại số Giảitích 11, Nxb Giáo dục [38] Đoàn Quỳnh, cộng sự, (2006) Tài liệu bồi dưỡng –giáo viên- môn Toán, Nxb Giáo dục [39] Trần Quyết Thắng, cộng sự, (1995) Kỷ yếu hội nghị chuyên đề đổi phương pháp DH môn toán PT,Vinh [40] Trần Văn Thương, Phạm Đình, Lê Văn Đỗ, (1995) Phương pháp giải toán Đại số Giảitích lớp 11, Nxb Giáo dục [41] Đặng Thị Dạ Thủy, (1999) Pháthuy tính tích cực họcsinh làm việc với SGK - NC GD [42] Lê Văn Tiến, (2000) Một số quanđiểm khác giảng dạygiảitích trường phổ thông, Tạp chí Nghiên cứu Giáo dục, số 338 số 339 [43] Nguyễn Cảnh Toàn, (2006) Nên học toán cho tốt? , Nxb Giáo dục [44] Trần Thúc Trình, (1998) Cơ sở lý luận dạyhọc nâng cao, Nxb Hà Nội [45] Thái Duy Tuyên, ( 2001) Giáo dục học đại, Nxb ĐH QG 126 127 ... cách tiếp cận kháI niệm GIớI HạN Và VIệC PHáT HUY TíNH tíCH cực NHậN THức HọC SINH TRONG DạY HọC chủ đề GiớI HạN bậc THPT 2.1 Các cách tiếp cận khái niệm Giới hạn THPT 2.1.1 Các cách tiếp cận định... sẵn có để phát huy cao TTCNT Vì lý đây, chọn đề tài nghiên cứu luận văn: Quan điểm Giải tích cách tiếp cận khái niệm Giới hạn việc phát huy TTCNT học sinh dạy học chủ đề Giới hạn bậc THPT' ' Mục... 1.2.3 Quan điểm thứ hai: Giải tích xấp xỉ THPT 1.2.4 Quan điểm thứ ba: Giải tích hỗn hợp THPT 1.3 Thực tiễn dạy học chủ đề khái niệm Giới hạn Giải tích THPT 1.4 Kết luận chương Chương 2: cách tiếp