Tài liệu tham khảo |
Loại |
Chi tiết |
[1] R.R. Akhmerov, M.I. Kamenskii, A.S. Potapov, A.E. Rodkina, B.N.Sadovskii, Measures of Noncompactness and Condensing Operators, Birkh¨ auser, Boston-Basel-Berlin, 1992 |
Sách, tạp chí |
Tiêu đề: |
Measures of Noncompactness and Condensing Operators |
Tác giả: |
R.R. Akhmerov, M.I. Kamenskii, A.S. Potapov, A.E. Rodkina, B.N. Sadovskii |
Nhà XB: |
Birkhäuser |
Năm: |
1992 |
|
[2] M.S. Alrawashdeh, J.F. Kelly, M.M. Meerschaert, Applications of in- verse tempered stable subordinators, Comput. Math. Appl. (2016), doi:10.1016/j.camwa.2016.07.026 |
Sách, tạp chí |
Tiêu đề: |
Applications of inverse tempered stable subordinators |
Tác giả: |
M.S. Alrawashdeh, J.F. Kelly, M.M. Meerschaert |
Nhà XB: |
Comput. Math. Appl. |
Năm: |
2016 |
|
[3] N.T. Anh, T.D. Ke, Decay integral solutions for neutral fractional differ- ential equations with infinite delays, Math. Methods Appl. Sci. 38 (2015), 1601-1622 |
Sách, tạp chí |
Tiêu đề: |
Decay integral solutions for neutral fractional differential equations with infinite delays |
Tác giả: |
N.T. Anh, T.D. Ke |
Nhà XB: |
Math. Methods Appl. Sci. |
Năm: |
2015 |
|
[6] P. Drábek, J. Milota, Methods of Nonlinear Analysis. Applications to Differential Equations, Birkh¨ auser Advanced Texts, Birkh¨ auser, Basel, 2007 |
Sách, tạp chí |
Tiêu đề: |
Methods of Nonlinear Analysis. Applications to Differential Equations |
Tác giả: |
P. Drábek, J. Milota |
Nhà XB: |
Birkhäuser |
Năm: |
2007 |
|
[8] L.H. Duc, S. Siegmund, Existence of finite-time hyperbolic trajectories for planar Hamiltonian flows, J. Dynam. Differential Equations 23 (2011), 475-494 |
Sách, tạp chí |
Tiêu đề: |
Existence of finite-time hyperbolic trajectories for planar Hamiltonian flows |
Tác giả: |
L.H. Duc, S. Siegmund |
Nhà XB: |
J. Dynam. Differential Equations |
Năm: |
2011 |
|
[9] L.H. Duc, J.P. Chávez, D.T. Son, S. Siegmund, Finite-time Lyapunov exponents and metabolic control coefficients for threshold detection of stimulus-response curves, J. Biol. Dyn. 10 (2016), 379-394 |
Sách, tạp chí |
Tiêu đề: |
Finite-time Lyapunov exponents and metabolic control coefficients for threshold detection of stimulus-response curves |
Tác giả: |
L.H. Duc, J.P. Chávez, D.T. Son, S. Siegmund |
Nhà XB: |
J. Biol. Dyn. |
Năm: |
2016 |
|
[14] M. Kamenskii, V. Obukhovskii, P. Zecca, Condensing multivalued maps and semilinear differential inclusions in Banach spaces, de Gruyter Series in Nonlinear Analysis and Applications, vol. 7, Walter de Gruyter, Berlin, New York, 2001 |
Sách, tạp chí |
Tiêu đề: |
Condensing multivalued maps and semilinear differential inclusions in Banach spaces |
Tác giả: |
M. Kamenskii, V. Obukhovskii, P. Zecca |
Nhà XB: |
Walter de Gruyter |
Năm: |
2001 |
|
[15] D. Karrasch, Linearization of hyperbolic finite-time processes, J. Differ- ential Equations 254 (2013), 256-282 |
Sách, tạp chí |
Tiêu đề: |
Linearization of hyperbolic finite-time processes |
Tác giả: |
D. Karrasch |
Nhà XB: |
J. Differential Equations |
Năm: |
2013 |
|
[16] C. Li, W.H. Deng, L.J. Zhao, Well-posedness and numerical algorithm for the tempered fractional ordinary differential equations, arXiv preprint arXiv:1501.00376, 2015 |
Sách, tạp chí |
Tiêu đề: |
Well-posedness and numerical algorithm for the tempered fractional ordinary differential equations |
Tác giả: |
C. Li, W.H. Deng, L.J. Zhao |
Năm: |
2015 |
|
[17] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity, Imperial College Press, 2010 |
Sách, tạp chí |
Tiêu đề: |
Fractional Calculus and Waves in Linear Viscoelasticity |
Tác giả: |
F. Mainardi |
Nhà XB: |
Imperial College Press |
Năm: |
2010 |
|
[18] M.M. Meerschaert, F. Sabzikar, M.S. Phanikumar, A. Zeleke, Tempered fractional time series model for turbulence in geophysical flows, Journal of Statistical Mechanics: Theory and Experiment 14 (2014) 1742-5468 |
Sách, tạp chí |
Tiêu đề: |
Tempered fractional time series model for turbulence in geophysical flows |
Tác giả: |
M.M. Meerschaert, F. Sabzikar, M.S. Phanikumar, A. Zeleke |
Nhà XB: |
Journal of Statistical Mechanics: Theory and Experiment |
Năm: |
2014 |
|
[19] M.M. Meerschaert, Y. Zhang, B. Baeumer, Tempered anomalous diffusion in heterogeneous systems, Geophys. Res. Lett. 35 (2008) L17403 |
Sách, tạp chí |
Tiêu đề: |
Tempered anomalous diffusion in heterogeneous systems |
Tác giả: |
M.M. Meerschaert, Y. Zhang, B. Baeumer |
Nhà XB: |
Geophys. Res. Lett. |
Năm: |
2008 |
|
[20] T. Peacock, J. Dabiri, Introduction to Focus Issue: Lagrangian Coherent Structures, Chaos 20 (2010), 017501 |
Sách, tạp chí |
Tiêu đề: |
Introduction to Focus Issue: Lagrangian Coherent Structures |
Tác giả: |
T. Peacock, J. Dabiri |
Nhà XB: |
Chaos |
Năm: |
2010 |
|
[22] K. Rateitschak, O. Wolkenhauer, Thresholds in transient dynamics of signal transduction pathways, J. Theoret. Biol. 264 (2010), 334-346 |
Sách, tạp chí |
Tiêu đề: |
Thresholds in transient dynamics of signal transduction pathways |
Tác giả: |
K. Rateitschak, O. Wolkenhauer |
Nhà XB: |
J. Theoret. Biol. |
Năm: |
2010 |
|
[26] F. Tr¨ oltzsch, Optimal Control of Partial Differential Equations, American Mathematical Society, 2010 |
Sách, tạp chí |
Tiêu đề: |
Optimal Control of Partial Differential Equations |
Tác giả: |
F. Tröltzsch |
Nhà XB: |
American Mathematical Society |
Năm: |
2010 |
|
[32] T.V. Tuan, T.D. Ke, Finite-time attractivity for semilinear tempered frac- tional differential equations, preprint |
Sách, tạp chí |
Tiêu đề: |
Finite-time attractivity for semilinear tempered fractional differential equations |
Tác giả: |
T.V. Tuan, T.D. Ke |
|
[4] A. Berger, On finite-time hyperbolicity, Commun. Pure Appl. Anal. 10 (2011), 963-981 |
Khác |
|
[5] M. Chen, W. Deng, Discretized fractional substantial calculus, ESAIM Math. Model. Numer. Anal. 49 (2015), 373-394 |
Khác |
|
[7] L.H. Duc, S. Siegmund, Hyperbolicity and invariant manifolds for planar nonautonomous systems on finite time intervals, Internat. J. Bifur. Chaos 18 (2008), 641-674 |
Khác |
|
[10] P. Giesl, M. Rasmussen, Areas of attraction for nonautonomous differen- tial equations on finite time intervals. J. Math. Anal. Appl. 390 (2012), 27-46 |
Khác |
|