Tài liệu tham khảo |
Loại |
Chi tiết |
[1] F.H. Clarke, Optimization and Nonsmooth Analysis. Willey- Interscience, New York, (1983) |
Sách, tạp chí |
Tiêu đề: |
Optimization and Nonsmooth Analysis |
Tác giả: |
F.H. Clarke |
Nhà XB: |
Willey- Interscience |
Năm: |
1983 |
|
[4] A. Hamel, An ε-Lagrange Multiplier Rule for a Mathematical Pro- gramming Problem on Banach Spaces, Optimization, 49 (2001), 137-149 |
Sách, tạp chí |
Tiêu đề: |
An ε-Lagrange Multiplier Rule for a Mathematical Programming Problem on Banach Spaces |
Tác giả: |
A. Hamel |
Nhà XB: |
Optimization |
Năm: |
2001 |
|
[5] D.S. Kim and T.Q. Son, ε-Optimality Conditions for Non- convex Semi-infinite Programs involving Support Functions, Fixed Point Theory and Applications, 2011:175327, (2011) doi:10.1155/2011/175327 |
Sách, tạp chí |
Tiêu đề: |
ε-Optimality Conditions for Non- convex Semi-infinite Programs involving Support Functions |
Tác giả: |
D.S. Kim, T.Q. Son |
Nhà XB: |
Fixed Point Theory and Applications |
Năm: |
2011 |
|
[8] P.-J. Laurent,Approximation et Optimization, Hermann, Paris, (1972) |
Sách, tạp chí |
Tiêu đề: |
Approximation et Optimization |
Tác giả: |
P.-J. Laurent |
Nhà XB: |
Hermann |
Năm: |
1972 |
|
[9] P. Loridan, Necessary conditions for ε-optimality, Math. Program |
Sách, tạp chí |
Tiêu đề: |
Necessary conditions for ε-optimality |
Tác giả: |
P. Loridan |
Nhà XB: |
Math. Program |
|
[10] J.C. Liu, ε-Duality Theorem of Nondifferentiable Nonconvex Mul- tiobjective Programming, J. Optim. Theory Appl., 69 (1991), 153- 167 |
Sách, tạp chí |
Tiêu đề: |
ε-Duality Theorem of Nondifferentiable Nonconvex Multiobjective Programming |
Tác giả: |
J.C. Liu |
Nhà XB: |
J. Optim. Theory Appl. |
Năm: |
1991 |
|
[13] T.Q. Son, J.J. Strodiot, V.H. Nguyen, ε-Optimality and ε- Lagrangian duality for a nonconvex programming problem with an infinite number of constraints, J. Optim. Theory Appl., 141 (2009), 389-409 |
Sách, tạp chí |
Tiêu đề: |
ε-Optimality and ε- Lagrangian duality for a nonconvex programming problem with an infinite number of constraints |
Tác giả: |
T.Q. Son, J.J. Strodiot, V.H. Nguyen |
Nhà XB: |
J. Optim. Theory Appl. |
Năm: |
2009 |
|
[14] T.Q. Son and D.S. Kim, ε-Mixed Type Duality for Nonconvex Multiobjective Programs with an Infinite Number of Constraints, J. Global Optim., (2012), Doi 10.1007s10898-012-9994-0 |
Sách, tạp chí |
Tiêu đề: |
ε-Mixed Type Duality for Nonconvex Multiobjective Programs with an Infinite Number of Constraints |
Tác giả: |
T.Q. Son, D.S. Kim |
Nhà XB: |
J. Global Optim. |
Năm: |
2012 |
|
[15] J.J. Strodiot, V.H. Nguyen, and N. Heukemes, ε-Optimal Solu- tions in Nondifferentiable Convex Programming and Some Re- |
Sách, tạp chí |
Tiêu đề: |
ε-Optimal Solutions in Nondifferentiable Convex Programming and Some Re- |
Tác giả: |
J.J. Strodiot, V.H. Nguyen, N. Heukemes |
|
[18] T.V. Thach and T.Q. Son, Almost ε-quasisolutions of a noncon- vex programming problem with an infinite number of constraints, Journal of Science & Technology Development (VNU), 2 (2012), 57-68 |
Sách, tạp chí |
Tiêu đề: |
Almost ε-quasisolutions of a noncon- vex programming problem with an infinite number of constraints |
Tác giả: |
T.V. Thach, T.Q. Son |
Nhà XB: |
Journal of Science & Technology Development (VNU) |
Năm: |
2012 |
|
[19] T.Q. Son, D.S. Kim and N.N. Tam, Weak stability and strong du- ality of a class of nonconvex programs via augmented Lagrangian, Journal of Global Optimization, Volume 53, Number 2 (2012), 165-184 |
Sách, tạp chí |
Tiêu đề: |
Weak stability and strong duality of a class of nonconvex programs via augmented Lagrangian |
Tác giả: |
T.Q. Son, D.S. Kim, N.N. Tam |
Nhà XB: |
Journal of Global Optimization |
Năm: |
2012 |
|
[2] J. Dutta, Necessary optimality conditions and saddle points for approximate optimization in Banach spaces, TOP, 13 (2005), 127- 143 |
Khác |
|
[3] N. Dinh and T.Q. Son, Approximate optimality condition and duality for convex infinite programming problems, J. Science and Technology Development, 10 (2007), 29-38 |
Khác |
|
[6] D. S. Kim and T.Q. Son, Characterizations of solution sets of a class of nonconvex semi-infinite programming problem, Journal of Nonlinear Analysis and Convex Analysis,12 (2011), 429-440 |
Khác |
|
[7] S.S. Kutateladze, Convex ε programming, Soviet Math Doklady, 20 (1979) 391-393 |
Khác |
|
[11] R. Mifflin, Semismooth and semiconvex functions in constrained optimization, SIAM J. Control Optim., 15 (1977), 959-972 |
Khác |
|
[16] K. Yokoyama, ε-Optimality Criteria for Convex Programming Problems Via Exact Penalty Functions, Math. Programming , 56 (1992), 233-243 |
Khác |
|
[17] I. Ekeland, On the Variational Principle, Journal of Mathematical Analysis and Applications, Vol. 47, pp. 324-353, 1974 |
Khác |
|
[20] Dinh N., Goberna M.A., and Lopez M.A. (2006), From linear to convex systems: Consistency, Farkas lemma and applications, Journal of Convex Analysis, 13, 113-133 |
Khác |
|
[21] Dinh N., Goberna M.A., Lopez M.A., and Son T.Q. (2007), New Farkas-type constraint qualifications in convex infinite program- ming, ESAIM: Control, Optimisation & Calculus of Variations, 13, 580-597 |
Khác |
|