Tài liệu tham khảo |
Loại |
Chi tiết |
[1] Alber Ya. I. (1975), On solving nonlinear equation involving mono- tone operators in Banach spaces, Sibiriaan Mathematics Journal, 26, pp. 3-11 |
Sách, tạp chí |
Tiêu đề: |
On solving nonlinear equation involving mono- tone operators in Banach spaces |
Tác giả: |
Alber Ya. I |
Nhà XB: |
Sibiriaan Mathematics Journal |
Năm: |
1975 |
|
[3] Buong Ng., Duong L. T. (2011), An explicit iterative algorithm for a class of variational inequalities in Hilbert spaces, Journal of Opti- mization Theory and Applications,3, 151, 513-524 |
Sách, tạp chí |
Tiêu đề: |
An explicit iterative algorithm for a class of variational inequalities in Hilbert spaces |
Tác giả: |
Buong Ng., Duong L. T |
Nhà XB: |
Journal of Optimization Theory and Applications |
Năm: |
2011 |
|
[7] Ceng L. C., Yao J. C., Ansari Q. H. (2010), Hybrid pseudoviscos- ity approximation schemes for equilibrium problems and fixed point problems of infinitely many nonexpansive mappings,Nonlinear Anal- ysis: Theory, Methods and Applications, 4, pp. 743-754 |
Sách, tạp chí |
Tiêu đề: |
Hybrid pseudoviscosity approximation schemes for equilibrium problems and fixed point problems of infinitely many nonexpansive mappings |
Tác giả: |
Ceng L. C., Yao J. C., Ansari Q. H |
Nhà XB: |
Nonlinear Analysis: Theory, Methods and Applications |
Năm: |
2010 |
|
[10] Goebel K., Kirk W. A. (1990),Topics in Metric Fixed Point Theory, Cambridge University Press, Cambridge |
Sách, tạp chí |
Tiêu đề: |
Topics in Metric Fixed Point Theory |
Tác giả: |
Goebel K., Kirk W. A |
Nhà XB: |
Cambridge University Press |
Năm: |
1990 |
|
[13] Lions J. L., Stampacchia G. (1967), Variational inequalities, Commu- nications on Pure and Applied Mathematics, 20, pp. 493-512 |
Sách, tạp chí |
Tiêu đề: |
Variational inequalities |
Tác giả: |
Lions J. L., Stampacchia G |
Nhà XB: |
Communications on Pure and Applied Mathematics |
Năm: |
1967 |
|
[15] Mann W. R. (1953), Mean value methods in iteration, Proceedings of the American Mathematical Society, 4, pp. 506-510 |
Sách, tạp chí |
Tiêu đề: |
Mean value methods in iteration |
Tác giả: |
Mann W. R |
Nhà XB: |
Proceedings of the American Mathematical Society |
Năm: |
1953 |
|
[16] Marino G., Xu H. K. (2006), A general iterative method for nonex- pansive mappings in Hilbert spaces, Journal of Mathematical Analysis and Applications, 318, pp. 43-52 |
Sách, tạp chí |
Tiêu đề: |
A general iterative method for nonexpansive mappings in Hilbert spaces |
Tác giả: |
Marino G., Xu H. K |
Nhà XB: |
Journal of Mathematical Analysis and Applications |
Năm: |
2006 |
|
[17] Marino G., Xu H. K. (2007), Weak and strong convergence theorems for strict pseudo-contractions mappings in Hilbert spaces, Journal of Mathematical Analysis and Applications, 329, pp. 336-346 |
Sách, tạp chí |
Tiêu đề: |
Weak and strong convergence theorems for strict pseudo-contractions mappings in Hilbert spaces |
Tác giả: |
Marino G., Xu H. K |
Nhà XB: |
Journal of Mathematical Analysis and Applications |
Năm: |
2007 |
|
[21] Rhoades B. E. (1974), Comments on two fixed point iteration meth- ods, Journal of Mathematical Analysis and Applications, 196, pp. 161- 176 |
Sách, tạp chí |
Tiêu đề: |
Comments on two fixed point iteration methods |
Tác giả: |
Rhoades B. E |
Nhà XB: |
Journal of Mathematical Analysis and Applications |
Năm: |
1974 |
|
[26] Xu H.K., Kim T.H. (2003), Convergence of hybrid steepest-descent methods for variational inequalities,J. Optim. Theory Appl,119, 185- 201 |
Sách, tạp chí |
Tiêu đề: |
Convergence of hybrid steepest-descent methods for variational inequalities |
Tác giả: |
Xu H.K., Kim T.H |
Nhà XB: |
J. Optim. Theory Appl |
Năm: |
2003 |
|
[28] Zeng L.C., Ansari Q.H., Wu S.Y. (2006), Strong convergence theo- rems of relaxed hybrid steepest-descent methods for variational in- equalities, Taiwan. J. Math, 10(1), 13-29 |
Sách, tạp chí |
Tiêu đề: |
Strong convergence theorems of relaxed hybrid steepest-descent methods for variational inequalities |
Tác giả: |
Zeng L.C., Ansari Q.H., Wu S.Y |
Nhà XB: |
Taiwan. J. Math |
Năm: |
2006 |
|
[4] Buong Ng., Anh N. T. Q. (2011), An implicit iteration method for variational inequalities over the set of common fixed point for a fi- nite family of nonexpansive mappings in Hilbert spaces, Fixed Point Theory and Applications, 3, pp. 535-547 |
Khác |
|
[5] Browder F. E., Petryshyn W. V. (1967), Construction of fixed points of nonlinear mappings in Hilbert spaces,Journal of Mathematical Analysis and Applications,20, pp. 197-228 |
Khác |
|
[6] Ceng L. C., Yao J. C. (2008), Hybrid viscosity approximation schemes for equilibrium problems and fixed point problems of infinitely many nonexpansive mappings,Applied Mathematics and Computation, 198, pp. 729-741 |
Khác |
|
[8] Cohen G. (1980), Auxiliary problem principle and decomposition of optimization problems, Journal of Optimization Theory and Applica- tions, 32, pp. 277-305 |
Khác |
|
[9] Cohen G. (1988), Auxiliary problem principle extended to variational inequalities, Journal of Optimization Theory and Applications, 59 , pp. 305-325 |
Khác |
|
[11] Kinderlehrer D., Stampacchia G. (1980), An Introduction to Vari- ational Inequalities and Their Applications, Academic Press, New York |
Khác |
|
[12] Korpelevich G. M. (1976), The extragradient method for finding sad- dle points and other problems, Ekonomika i Matematcheskie Metody, 12, pp. 747-756 |
Khác |
|
[14] Martinet B. (1970), Regularization d’inequations variationnelles par approximations successives, Revue d’Automatique Informatique et Recherche Operationnelle, Serie Rouge, 3, 154-159 |
Khác |
|
[18] Nadezhkina N., Takahashi W. (2006), Weak convergence theorem by an extragradient method for nonexpansive mappings and monotone mappings, Journal of Optimization Theory and Applications, 128, pp.191-201 |
Khác |
|