Tài liệu tham khảo |
Loại |
Chi tiết |
[1] S. Ranu, A. Singh, Graphsig: a scalable approach to mining significant subgraphs in large graph databases, in: IEEE 25th International Conference on Data Engineering, 2009, pp. 844–855 |
Sách, tạp chí |
Tiêu đề: |
Graphsig: a scalable approach to mining significant subgraphs in large graph databases |
Tác giả: |
S. Ranu, A. Singh |
Nhà XB: |
IEEE 25th International Conference on Data Engineering |
Năm: |
2009 |
|
[2] S. Nijssen, J.N. Kok, A quickstart in frequent structure mining can make a difference, in: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’04, ACM, 2004, pp. 647–652 |
Sách, tạp chí |
Tiêu đề: |
A quickstart in frequent structure mining can make a difference |
Tác giả: |
S. Nijssen, J.N. Kok |
Nhà XB: |
ACM |
Năm: |
2004 |
|
[3] X. Yan, J. Han, gspan: graph-based substructure pattern mining, in: Proceedings of the 2002 IEEE International Conference on Data Mining, ICDM’02, 2002 |
Sách, tạp chí |
Tiêu đề: |
gspan: graph-based substructure pattern mining |
Tác giả: |
X. Yan, J. Han |
Nhà XB: |
Proceedings of the 2002 IEEE International Conference on Data Mining, ICDM’02 |
Năm: |
2002 |
|
[4] A. Gago-Alonso, J. Medina-Pagola, J. Carrasco-Ochoa, J. Martínez-Trinidad, Mining frequent connected subgraphs reducing the number of candidates, in: W.Daelemans, B. Goethals, K. Morik (Eds.), Machine Learning and Knowledge Discovery in Databases, Lecture Notes in Computer Science, vol. 5211, Springer, Berlin/Heidelberg, 2008, pp. 365–376 |
Sách, tạp chí |
Tiêu đề: |
Machine Learning and Knowledge Discovery in Databases |
Tác giả: |
A. Gago-Alonso, J. Medina-Pagola, J. Carrasco-Ochoa, J. Martínez-Trinidad |
Nhà XB: |
Springer |
Năm: |
2008 |
|
[8] M. Al-Hasan, V. Chaoji, S. Salem, J. Besson, M.J. Zaki, Origami: mining representative orthogonal graph patterns, in: ICDM, IEEE Computer Society, 2007, pp |
Sách, tạp chí |
Tiêu đề: |
Origami: mining representative orthogonal graph patterns |
Tác giả: |
M. Al-Hasan, V. Chaoji, S. Salem, J. Besson, M.J. Zaki |
Nhà XB: |
IEEE Computer Society |
Năm: |
2007 |
|
[13] A. Sanfeliu, K.S. Fu, A distance measure between attributed relational graphs for pattern recognition, IEEE Trans. Syst. Man Cybern. 13 (1983) 353–363 |
Sách, tạp chí |
Tiêu đề: |
A distance measure between attributed relational graphs for pattern recognition |
Tác giả: |
A. Sanfeliu, K.S. Fu |
Nhà XB: |
IEEE Trans. Syst. Man Cybern. |
Năm: |
1983 |
|
[15] X. Chen, C. Zhang, F. Liu, J. Guo, Algorithm research of top-down mining maximal frequent subgraph based on tree structure, in: P. Snac, M. Ott, A.Seneviratne (Eds.), Wireless Communications and Applications, Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol. 72, Springer, Berlin Heidelberg, 2012, pp. 401–411 |
Sách, tạp chí |
Tiêu đề: |
Wireless Communications and Applications |
Tác giả: |
X. Chen, C. Zhang, F. Liu, J. Guo |
Nhà XB: |
Springer |
Năm: |
2012 |
|
[18] M. Flores-Garrido, J.A. Carrasco-Ochoa, J.F. Martínez-Trinidad, Mining maximal frequent patterns in a single graph using inexact matching, Instituto Nacional de Astrofísica, Óptica y Electrónica, Tonantzintla, Puebla, Mexico |
Sách, tạp chí |
Tiêu đề: |
Mining maximal frequent patterns in a single graph using inexact matching |
Tác giả: |
M. Flores-Garrido, J.A. Carrasco-Ochoa, J.F. Martínez-Trinidad |
Nhà XB: |
Instituto Nacional de Astrofísica, Óptica y Electrónica |
|
[20] M. Kuramochi, G. Karypis, Finding frequent patterns in a large sparse graph, Data Min. Knowl. Discov. 11 (2005) 243–271 |
Sách, tạp chí |
Tiêu đề: |
Finding frequent patterns in a large sparse graph |
Tác giả: |
M. Kuramochi, G. Karypis |
Nhà XB: |
Data Min. Knowl. Discov. |
Năm: |
2005 |
|
[5] H. Cheng, X. Yan, J. Han, Mining graph patterns, in: C. Aggarwal, H. Wang (Eds.), Managing and Mining Graph Data, Advances in Database Systems, vol. 40, Springer, 2010, pp. 365–392 |
Khác |
|
[6] J. Huan, W. Wang, J. Prins, J. Yang, Spin: mining maximal frequent subgraphs from graph databases, in: Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining, KDD ’04, ACM, 2004, pp. 581–586 |
Khác |
|
[7] J. Han, H. Cheng, D. Xin, X. Yan, Frequent pattern mining: current status and future directions, Data Min. Knowl. Discov. 15 (2007) 55–86 |
Khác |
|
[9] W. Fan, K. Zhang, H. Cheng, J. Gao, X. Yan, J. Han, P. Yu, O. Verscheure, Direct mining of discriminative and essential frequent patterns via model-based search tree, in: Proceeding of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2008, pp. 230–238 |
Khác |
|
[10] F. Zhu, Q. Qu, D. Lo, X. Yan, J. Han, P.S. Yu, Mining top-k large structural patterns in a massive network, PVLDB 4 (2011) 807–818 |
Khác |
|
[11] Y. Jia, J. Zhang, J. Huan, An efficient graph-mining method for complicated and noisy data with real-world applications, Knowl. Inf. Syst. 28 (2011) 423–447 |
Khác |
|
[12] C. Chen, X. Yan, F. Zhu, J. Han, gApprox: mining frequent approximate patterns from a massive network, in: ICDM, IEEE Computer Society, 2007, pp. 445–450 |
Khác |
|
[14] L.T. Thomas, S.R. Valluri, K. Karlapalem, Margin: maximal frequent subgraph mining, ACM Trans. Knowl. Discov. Data 4 (2010) 10:1–10:42 |
Khác |
|
[16] M. Kuramochi, G. Karypis, Finding frequent patterns in a large sparse graph, Data Min. Knowl. Discov. 11 (2005) 243–271 |
Khác |
|
[17] B. Bringmann, S. Nijssen, What is frequent in a single graph?, in: T. Washio, E.Suzuki, K. Ting, A. Inokuchi (Eds.), Advances in Knowledge Discovery and Data |
Khác |
|
[19] M. Kuramochi, G. Karypis, Grew – a scalable frequent subgraph discovery algorithm, in: Proceedings of the Fourth IEEE International Conference on Data Mining, 2004, pp. 439 – 442 |
Khác |
|