1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Calculation beam formwork

11 443 2

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 11
Dung lượng 548,22 KB
File đính kèm 151015-SMC-Tinh coffa - dan giao SMC.rar (717 KB)

Nội dung

MS Slab/Appendix- 03 Architect Construction & Service Corporation Project : SMC factory - Phase Factory No.1 APPENDIX No.03 FORMWORK CALCULATION FOR BEAM 1/ Material characteristics No Formula Components 2x50x50x2 2x40x80x2 40x80x2 80x40x2 W 18 mm b(cm) h(cm) d(cm) 0.2 77.94773333 0.2 38.97386667 0.2 13.1178667 100 Jx(cm ) 5 0.2 29.5424 d b 1.8 48.6 bh3/12-(b-2d).(h-2d)3/12 Wx (cm3) 11.81696 19.48693333 9.743466667 6.55893333 54 Jx/(h/2) Selfweigh Concrete = Reinforcement = 2400 100 Wooden ( Film)= 550 7850 Steel = h kg/m3 kg/m3 kg/m3 kg/m3 Calculation for biggest size 400x1100 mm A Vertical load: Standard loading : H(m) - Selfweigh of beam (2.4 T/m3) : 2.4 x 1.1 = 2.64 T/m2 (Dead load) - Selfweigh of steel rebar (0.1 T/m3) : 0.1 x 1.1 = 0.11 T/m2 (Dead load) Σqtc = = - Selfweigh of formwork (0.12 T/m2) : F1- Beam formwork Calculation 0.12 T/m (Dead load) 2.870 T/m Page of 11 MS Slab/Appendix- 03 Design loading (multiplise with overload factor ) : k - Selfweigh of beam (2.4 T/m3) : 2.64 x 1.2 = 3.168 T/m2 (Dead load) - Selfweigh of steel rebar (0.1 T/m3) : 0.11 x 1.2 = 0.132 T/m2 (Dead load) - Selfweigh of formwork (0.12 T/m2) : 0.12 x 1.1 = 0.132 T/m2 (Dead load) - Live load of worker (0.25 T/m2): 0.25 x 1.3 = 0.325 T/m2 (Live load) - Live load of vibration method (0.20T/m2): 0.2 x 1.3 Σqtt = = 0.26 T/m (Live load) 4.017 T/m Checking plywood form : - Plywood form width : - Distance between horizontal purlin (span of plywood) L : 0.18 - Elastic modulus of plywood E : 45887.4 - Section modulus Wx : m m kg/cm2 54 cm3 48.6 4.017 2.87 cm4 T/m T/m - Moment of inertia Jx : - Distribution loading : - Distribution loading (qct): q = (Σqtt) x1 qtc = (Σqtt) x1 = = - Maximum bending moment : M = qL2/8 = - Maximum of stress force σ = M/Wx = 30.1275 kg/cm2 - Maximum deflection : f = (5/384)x(qtc)xL4/(EJx) = 0.0176 cm F1- Beam formwork Calculation 0.01626885 Tm Page of 11 MS Slab/Appendix- 03 - Stress force allowable : - Deflection allowable : - Conclusion : σmax fmax= L/400 + Stress force + Deflection Checking premier purlin : - Using steel box : - Elastic modulus of steel box E : - Section modulus Wx : - Moment of inertia Jx : - Distance between purlins a : - Span of purlin L1: - Distribution loading : - Distribution loading (tc) : F1- Beam formwork Calculation = = 407.888 0.045 kg/cm2 cm OK OK WxH: 40x80 2100000 9.74346667 38.9738667 0.18 q1 = (Σqtt) x a = 0.72306 q1tc = (Σqtc) x a = 0.5166 (mm) kg/cm2 cm3 cm4 m m T/m T/m Page of 11 MS Slab/Appendix- 03 - Maximum bending moment : M = q1xL12/10 = - Maximum of stress force : σ = M/Wx = - Maximum deflection : f = (5/384)x(q1tc).L14/(EJx) = - Stress force allowable : - Deflection allowable : - Conclusion : + Stress force: + Deflection : σmax fmax= L1/400 Checking secondary purlin : - Using steel box : - Elastic modulus of steel box E : 0.0723 Tm 742.097 kg/cm 0.0822 cm 2100 kg/cm 0.25 cm OK OK WxH: 2(40x80) (mm) 2100000 kg/cm - Section modulus Wx : 19.48693333 cm - Moment of inertia Jx : - Distance of purlins (a) : 77.94773333 cm 1m F1- Beam formwork Calculation Page of 11 MS Slab/Appendix- 03 - Width of beam (b) : - Span of purlin L3 : - Point loading : - Convert into distribution load P =qtt.a.b q3=P/L3 - Maximum bending momen: (Point load) M= q3.L32/8 - Maximum of stress force : σ = M/Wx - Standard Point load - Convert into standard Distribution load Ptc =qtc.a.b q3tc=Σ P1/L3 - Maximum deflection : - Stress force allowable : - Deflection allowable : - Conclusion : + Stress force : + Deflection : F1- Beam formwork Calculation f = (5/384)x(q3tc)xL34/(EJx) σmax= fmax= L3/400 0.4 1.6068 1.6068 m m T T/m 0.20085 Tm 1030.691 kg/cm 1.148 T 1.148 T/m 0.0913 cm 2100 kg/cm 0.25 cm OK OK Page of 11 MS Slab/Appendix- 03 Checking support : Loading area to support a Standard loading: (Loading area WxL= 1.6 x 2.0 (m) - Selfweigh of RC beam without slab (0.96m high) : - Selfweigh of RC slab (0.14 m thk.) : - Selfweigh of beam formwork (90 kg/m): - Selfweigh of slab formwork (40 kg/m2): b Design loading (multiplise with overload factor ) : - Selfweigh of RC beam without slab (0.96m high) : - Selfweigh of RC slab (0.14 m thk.) : - Selfweigh of beam formwork (90 kg/m): - Selfweigh of slab formwork (40 kg/m2): - Live load of worker (0.25 T/m2) : - Live load of vibration method (0.20 T/m2) : k 1.2 1.2 1.1 1.1 1.3 1.3 x x x x x x W 0.4 1.6 x x 1.6 x W 0.4 1.6 x x 1.6 x H 0.96 0.14 H 0.96 0.14 x x x x x x x L 2 2 Σqtc L 2 2 2 Σqtt x x x x x x x x x x = Density 2.6 2.6 0.09 0.04 Density 2.6 2.6 0.09 0.04 0.25 0.2 = = = = = = = = = = = Load 1.9968 1.1648 0.180 0.128 3.4696 T T T T T Load 2.396 1.398 0.198 0.141 0.650 0.520 5.30 T T T T T T T Load of support < scafolding loading capacity 8T : OK B Formwork for beam side : Lateral loading for beam side : F1- Beam formwork Calculation Page of 11 MS Slab/Appendix- 03 - Lateral pressure of concrete (T/m2) : where: g.H.n1 n1: 1.3 g: 2.4 T/m H: Height of concrete (m) 0.15 T/m - Live load of penetrating vibrator 0.4 T/m - Live load of pumping concrete Formula - Lateral pressure of concrete (T/m2) : - Live load of penetrating vibrator (T/m2): - Live load of pumping concrete (T/m2): ΣP (T/m2) ΣPtc (T/m2) No g x H x n1 0.15 x n1 0.4 x n1 0.16 0.4992 0.195 0.52 1.2142 0.934 Height of concrete (m) 0.85 1.1 2.652 3.432 0.195 0.195 0.52 0.52 3.367 4.147 2.59 3.19 0.55 1.716 0.195 0.52 2.431 1.87 Checking plywood form : Check with the maximum lateral pressure at the bottom (H=1.1m) - Calculation width : 1m - Distance between horizontal purlin L : 0.3 m - Elastic modulus of plywood form E : 54 cm - Section modulus Wx : - Momen of inertia Jx : - Distribution loading : F1- Beam formwork Calculation 45887.4 kg/cm q = (ΣP) x a 48.6 cm 4.147 T/m Page of 11 MS Slab/Appendix- 03 - Maximum bending moment : M = q x L2/8 0.04665 Tm - Maximum of stress force : σ = M/Wx 86.39583 kg/cm2 - Maximum deflection : fmax=q.L /(128EJx)= - Stress force allowable : - Deflection allowable : - Conclusion : + Stress force : + Deflection : σmax fmax = L/400 0.011767 cm 407.888 kg/cm 0.075 cm OK OK Checking premier purlin : Check the 3rd purlin, 850mm from the top of concrete (maximum pressure) Case No.2 - Using steel box : WxH: 80x40 (mm) - Elastic modulus of steel box E : 2100000 kg/cm2 - Section modulus Wx : 6.5589 cm3 - Moment of inertia Jx : - Width of loading a : - Span of purlin L1 : 13.1179 0.305 cm4 m m F1- Beam formwork Calculation Page of 11 MS Slab/Appendix- 03 - Distribution loading : - Standard Distribution loading : q1 = (ΣP) x a= q1tc = (ΣPtc) x a= 1.026935 T/m 0.78995 T/m - Maximum bending momen : Mmax = q1L12/10 0.1026935 Tm - Maximum of stress force : σ = M/Wx = - Maximum deflection : f = (5/384)x(q1tc).L14/(EJx) = - Stress force allowable : - Deflection allowable : - Conclusion : + Stress force: + Deflection : σmax fmax =L1/250 1565.704 kg/cm 0.037338415 cm 2100 kg/cm 0.4 cm OK OK Loading diagram & stress Span of yoke = 1m Look up the table above F1- Beam formwork Calculation H=160mm-> y1=ΣP(1) = 1.2142 T/m2 H=1100mm-> y3=ΣP(3) = 4.147 T/m2 Page of 11 MS Slab/Appendix- 03 Using SAP software to calculate the stress The results as below: Moment Mmax = 0.06 Tm Deflection f = 0.000105 cm Force R1 = 0.73 T Force R2 = 1.55 T Force R3 = 0.27 T Checking second purlin (yoke): - Using steel box : Ly= 1.2 m WxH: 2x50x50 (mm) 2100000 kg/cm - Elastic modulus of steel box E : - Section modulus Wx : 11.81696 cm - Moment of inertia Jx : 29.5424 cm - Maximum of stress force : σ = M/Wx = - Stress force allowable : - Deflection allowable : σmax fmax = Ly/250 = = F1- Beam formwork Calculation 507.745 kg/cm 2100 kg/cm 0.48 cm Page 10 of 11 MS Slab/Appendix- 03 - Conclusion : + Stress force : + Deflection : OK OK Check Tie rods Using D10 tie rod Section area Loads applied on tie rods Force applied on tie rod (kg) -Tensile strength of tie rod steel [σ] - Stress force allowable : σmax - Conclusion : + Stress force : OK R1 730.00 929.4648677 0.78540 R2 1550.00 1973.52129 cm2 R3 270.00 343.7746771 2300 kg/cm2 Checking base jacking : - Using steel pipe D42 - Checking stabilization of beam side - Design span (a): m - Length of lever arm L : 0.7 m - Point loading by horizontal pressure (case in above table) :F1 = (ΣP) x a - Momen (by horizontal pressure) : M = F1.L - For antidumping, base jacking must support : F2 = M/0.75 - Axial force in base jacking : Fdoc = F2xcos45 = = = = 4.862 3.4034 4.53787 2.38384 1851.67 kg/cm 2100 kg/cm - Maximum of stress force : σ = Fdoc/S = - Stress force allowable : - Checking : + Stress force : OK σmax = F1- Beam formwork Calculation T Tm T T Page 11 of 11 [...]... Fdoc = F2xcos45 = = = = 4.862 3.4034 4.53787 2.38384 2 1851.67 kg/cm 2 2100 kg/cm - Maximum of stress force : σ = Fdoc/S = - Stress force allowable : - Checking : + Stress force : OK σmax = F1- Beam formwork Calculation T Tm T T Page 11 of 11 ... Conclusion : + Stress force : OK R1 730.00 929.4648677 0.78540 R2 1550.00 1973.52129 cm2 R3 270.00 343.7746771 2300 kg/cm2 7 Checking base jacking : - Using steel pipe D42 - Checking stabilization of beam side - Design span (a): 2 m - Length of lever arm L : 0.7 m - Point loading by horizontal pressure (case 4 in above table) :F1 = (ΣP) x a - Momen (by horizontal pressure) : M = F1.L - For antidumping,

Ngày đăng: 20/10/2016, 15:11

TỪ KHÓA LIÊN QUAN

w