Tài liệu tham khảo |
Loại |
Chi tiết |
[7] X. Cai and L. Lei (2010), L 2 decay of the incompressible Navier-Stokes equations with damping, Acta Math. Sci., Ser. B, Engl. Ed. 30, 1235-1248 |
Sách, tạp chí |
Tiêu đề: |
L 2 decay of the incompressible Navier-Stokes equations with damping |
Tác giả: |
X. Cai, L. Lei |
Nhà XB: |
Acta Math. Sci., Ser. B, Engl. Ed. |
Năm: |
2010 |
|
[14] P. Constantin and C. Foias (1988), Navier-Stokes Equations, Chicago Lec- tures in Mathematics, University of Chicago Press, Chicago |
Sách, tạp chí |
Tiêu đề: |
Navier-Stokes Equations |
Tác giả: |
P. Constantin, C. Foias |
Nhà XB: |
University of Chicago Press |
Năm: |
1988 |
|
[15] Y. Dou, X. Yang and Y. Qin (2011), Remarks on uniform attractors for the 3D non-autonomous Navier-Stokes-Voight equations, Bound. Value Probl. 2011, 2011:49, 11 pp |
Sách, tạp chí |
Tiêu đề: |
Remarks on uniform attractors for the 3D non-autonomous Navier-Stokes-Voight equations |
Tác giả: |
Y. Dou, X. Yang, Y. Qin |
Nhà XB: |
Bound. Value Probl. |
Năm: |
2011 |
|
[22] O. Goubet and R. Rosa (2002), Asymptotic smoothing and the global attractor of a weakly damped KdV equation on the real line, J. Differential Equations 185, 25-53 |
Sách, tạp chí |
Tiêu đề: |
Asymptotic smoothing and the global attractor of a weakly damped KdV equation on the real line |
Tác giả: |
O. Goubet, R. Rosa |
Nhà XB: |
J. Differential Equations |
Năm: |
2002 |
|
[29] V.K. Kalantarov (1988), Global Behavior of Solutions of Nonlinear Equa- tions of Mathematical Physics of Classical and Non-classical Type, Dr. Sc.thesis, St. Peterburg |
Sách, tạp chí |
Tiêu đề: |
Global Behavior of Solutions of Nonlinear Equa- tions of Mathematical Physics of Classical and Non-classical Type |
Tác giả: |
V.K. Kalantarov |
Nhà XB: |
St. Peterburg |
Năm: |
1988 |
|
[30] V.K. Kalantarov (2010), Global behavior of solutions to Brinkman- Forchheimer equations, Workshop on Dissipative PDE’s on Bounded and Unbounded Domains, Edinburgh, 24p |
Sách, tạp chí |
Tiêu đề: |
Global behavior of solutions to Brinkman-Forchheimer equations |
Tác giả: |
V.K. Kalantarov |
Nhà XB: |
Workshop on Dissipative PDE’s on Bounded and Unbounded Domains |
Năm: |
2010 |
|
[33] V.K. Kalantarov and S. Zelik (2012), Smooth attractors for the Brinkman- Forchheimer equations with fast growing nonlinearities, Comm. Pure Appl. Anal. 11, 2037-2054 |
Sách, tạp chí |
Tiêu đề: |
Smooth attractors for the Brinkman- Forchheimer equations with fast growing nonlinearities |
Tác giả: |
V.K. Kalantarov, S. Zelik |
Nhà XB: |
Comm. Pure Appl. Anal. |
Năm: |
2012 |
|
[35] J.A. Langa, G. Lukaszewicz and J. Real (2007), Finite fractal dimension of pullback attractors for non-autonomous 2D Navier-Stokes equations in some unbounded domains, Nonlinear Anal. 66, 735-749 |
Sách, tạp chí |
Tiêu đề: |
Finite fractal dimension of pullback attractors for non-autonomous 2D Navier-Stokes equations in some unbounded domains |
Tác giả: |
J.A. Langa, G. Lukaszewicz, J. Real |
Nhà XB: |
Nonlinear Analysis |
Năm: |
2007 |
|
[37] A. Miranville and S. Zelik (2008), Attractors for disspative partial differ- ential equations in bounded and unbounded domains, Handbook of differ- ential equations: Evolutionary equations. Vol. IV. Amsterdam: Elsevier/North-Holland. Handbook of Differential Equations, 103-200 |
Sách, tạp chí |
Tiêu đề: |
Handbook of differential equations: Evolutionary equations |
Tác giả: |
A. Miranville, S. Zelik |
Nhà XB: |
Elsevier/North-Holland |
Năm: |
2008 |
|
[43] J. Roh (2005), Dynamics of the g-Navier-Stokes equations, J. Differential Equations 211, 452-484 |
Sách, tạp chí |
Tiêu đề: |
Dynamics of the g-Navier-Stokes equations |
Tác giả: |
J. Roh |
Nhà XB: |
J. Differential Equations |
Năm: |
2005 |
|
[45] X. Song and Y. Hou (2011), Attractors for the three-dimensional incom- pressible Navier-Stokes equations with damping, Dist. Cont. Dyna. Syst.31, 239-252 |
Sách, tạp chí |
Tiêu đề: |
Attractors for the three-dimensional incom- pressible Navier-Stokes equations with damping |
Tác giả: |
X. Song, Y. Hou |
Nhà XB: |
Dist. Cont. Dyna. Syst. |
Năm: |
2011 |
|
[2] A.V. Babin and M.I. Vishik (1992), Attractors of Evolution Equations, Amsterdam, North-Holland, 532 p |
Khác |
|
[3] J.M. Ball (2004), Global attractor for damped semilinear wave equations, Discrete Contin. Dyn. Syst. 10, 31-52 |
Khác |
|
[4] C. Bardos and B. Nicolaenko (2002), Navier-Stokes equations and dy- namical systems, Handbook of dynamical systems, Vol. 2, 503-597, North- Holland, Amsterdam |
Khác |
|
[5] M. Bulicek and J. Malek (2005), On the dimension on the attractor for a class of fluids with pressure dependent viscossity, Comm. Pure Appl.Anal. 4, 805-822 |
Khác |
|
[6] X. Cai and Q. Jiu (2008), Weak and strong solutions for the incompressible Navier-Stokes equations with damping, J. Math. Anal. Appl. 343, 799-809 |
Khác |
|
[8] Y. Cao, E.M. Lunasin and E.S. Titi (2006), Global well-posedness of the three-dimensional viscous and inviscid simplified Bardina turbulence mod- els, Commun. Math. Sci. 4, 823-848 |
Khác |
|
[9] T. Caraballo, G. Lukaszewicz and J. Real (2006), Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Anal. 64, 484-498 |
Khác |
|
[10] A. Carvalho, J.A. Langa and J.C. Robinson (2013), Attractors for Infinite- Dimensional Non-Autonomous Dynamical Systems, Appl. Math. Sci. 182.Berlin: Springer, 409 p |
Khác |
|
[11] A.O. Celebi, V.K. Kalantarov and M. Polat (2009), Global attractors for 2D Navier-Stokes-Voight equations in an unbounded domain, Appl. Anal.88, 381-392 |
Khác |
|