Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 30 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
30
Dung lượng
1,39 MB
Nội dung
PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI MỘT SỐ BÀI TOÁN SÓNG CƠ VÀ GIAO THOA SÓNG Tác giả: Nguyễn Văn Lịch Chức vụ: Tổ trưởng chuyên môn tổ Vật lí-KTCN Đơn vị công tác : THPT Phạm Công Bình Đối tượng bồi dưỡng : Học sinh lớp 12 Số tiết dự kiến: 4 tiết Trang 1 A C B I D G H F E J Phương truyn sng λ 2λ 2 λ 2 3 λ A. LÝ THUYẾT CẦN NHỚ: I. SÓNG CƠ VÀ SỰ TRUYỀN SÓNG CƠ : 1.Sóng cơ- Định nghĩa- phân loại + Sng cơ là những dao động lan truyn trong môi trường . + Khi sng cơ truyn đi chỉ c pha dao động của các phần tử vật chất lan truyn còn các phần tử vật chất thì dao động xung quanh vị trí cân bằng cố định. + Sng ngang là sng trong đ các phần tử của môi trường dao động theo phương vuông gc với phương truyn sng. Ví dụ: sng trên mặt nước, sng trên sợi dây cao su. + Sng dọc là sng trong đ các phần tử của môi trường dao động theo phương trùng với phương truyn sng. Ví dụ: sng âm, sng trên một lò xo. 2.Các đặc trưng của một sóng hình sin + Biên độ của sng A: là biên độ dao động của một phần tử của môi trường c sng truyn qua. + Chu kỳ sng T: là chu kỳ dao động của một phần tử của môi trường sng truyn qua. + Tần số f: là đại lượng nghịch đảo của chu kỳ sng : f = T 1 + Tốc độ truyn sng v : là tốc độ lan truyn dao động trong môi trường . + Bước sng λ: là quảng đường mà sng truyn được trong một chu kỳ. λ = vT = f v . +Bước sng λ cũng là khoảng cách giữa hai điểm gần nhau nhất trên phương truyn sng dao động cùng pha. +Khoảng cách giữa hai điểm gần nhau nhất trên một phương truyn sng dao động ngược pha là λ 2 +Khoảng cách giữa hai điểm gần nhau nhất trên phương truyn sng mà dao động vuông pha là λ 4 . +Khoảng cách giữa hai điểm bất kỳ trên phương truyn sng mà dao động cùng pha là: kλ. +Khoảng cách giữa hai điểm bất kỳ trên phương truyn sng mà dao động ngược pha là: (2k+1) λ 2 . +Lưu ý: Giữa n đỉnh (ngọn) sng c (n - 1) bước sng. 3. Phương trình sóng: a.Tại nguồn O: u O =A o cos(ωt) b.Tại M trên phương truyền sóng: u M =A M cosω(t- ∆t) Nếu bỏ qua mất mát năng lượng trong quá trình truyn sng thì biên độ sng tại O và tại M bằng nhau: A o = A M = A. Thì : u M =Acosω(t - v x ) =Acos 2π( λ x T t − ) c.Tổng quát:Tại điểm O: u O = Acos(ωt + ϕ). d.Tại điểm M cách O một đoạn x trên phương truyền sóng. Trang 2 O x M x O M x sng u x d 1 0 N N d d 2 M * Sng truyn theo chiu dương của trục Ox thì: u M = A M cos(ωt + ϕ - x v ω ) = A M cos(ωt + ϕ - 2 x π λ ) * Sng truyn theo chiu âm của trục Ox thì: u M = A M cos(ωt + ϕ + x v ω ) = A M cos(ωt + ϕ + 2 x π λ ) e. Độ lệch pha giữa hai điểm cách nguồn một khoảng x 1 , x 2: 1 2 1 2 2 x x x x v ϕ ω π λ − − ∆ = = -Nếu 2 điểm đ nằm trên một phương truyn sng và cách nhau một khoảng x thì: 2 x x v ϕ ω π λ ∆ = = (Nếu 2 điểm M và N trên phương truyn sng và cách nhau một khoảng d thì : ∆ϕ = ) - Vậy 2 điểm M và N trên phương truyn sng sẽ: + dao động cùng pha khi:d = kλ + dao động ngược pha khi: d = (2k + 1) + dao động vuông pha khi: d = (2k + 1) với k = 0, ±1, ±2 Lưu ý: Đơn vị của x, x 1 , x 2 ,d, λ và v phải tương ứng với nhau. f. Trong hiện tượng truyền sóng trên sợi dây, dây được kích thích dao động bởi nam châm điện với tần số dòng điện là f thì tần số dao động của dây là 2f. II. GIAO THOA SÓNG 1. Điều kiện để có giao thoa: Hai sng là hai sng kết hợp tức là hai sng cùng tần số và c độ lệch pha không đổi theo thời gian (hoặc hai sng cùng pha). 2.Lý thuyết giao thoa: Giao thoa của hai sng phát ra từ hai nguồn sng kết hợp S 1 , S 2 cách nhau một khoảng l: +Phương trình sng tại 2 nguồn :(Điểm M cách hai nguồn lần lượt d 1 , d 2 ) 1 1 Acos(2 )u ft π ϕ = + và 2 2 Acos(2 )u ft π ϕ = + +Phương trình sng tại M do hai sng từ hai nguồn truyn tới: 1 1 1 Acos(2 2 ) M d u ft π π ϕ λ = − + và 2 2 2 Acos(2 2 ) M d u ft π π ϕ λ = − + +Phương trình giao thoa sng tại M: u M = u 1M + u 2M 1 2 1 2 1 2 2 os os 2 2 2 M d d d d u Ac c ft ϕ ϕϕ π π π λ λ − + +∆ = + − + +Biên độ dao động tại M: 1 2 2 os 2 M d d A A c ϕ π λ − ∆ = + ÷ với 1 2 ϕ ϕ ϕ ∆ = − +Chú ý:Tìm số điểm dao động cực đại, số điểm dao động cực tiểu: Cách 1 * Số cực đại: (k Z) 2 2 l l k ϕ ϕ λ π λ π ∆ ∆ − + < < + + ∈ * Số cực tiểu: 1 1 (k Z) 2 2 2 2 l l k ϕ ϕ λ π λ π ∆ ∆ − − + < < + − + ∈ Cách 2 : Ta lấy: S 1 S 2 /λ = m,p (m nguyên dương, p phần phân sau dấu phảy) Số cực đại luôn là: 2m +1( chỉ đối với hai nguồn cùng pha) Số cực tiểu là:+Trường hợp 1: Nếu p<5 thì số cực tiểu là 2m. Trang 3 M S 1 S 2 d 1 d 2 M d 1 d 2 S 1 S 2 k = 0 -1 - 2 1 Hình ảnh giao thoa sóng 2 +Trường hợp 2: Nếu p ≥ 5 thì số cức tiểu là 2m+2. Nếu hai nguồn dao động ngược pha thì làm ngược lại. a. Hai nguồn dao động cùng pha ( 1 2 0 ϕ ϕ ϕ ∆ = − = hoặc 2k π ) + Độ lệch pha của hai sóng thành phần tại M: ( ) 12 2 dd −=∆ λ π ϕ + Biên độ sóng tổng hợp: A M =2.A. ( ) 12 cos dd −⋅ λ π A max = 2.A khi:+ Hai sng thành phần tại M cùng pha ↔ ∆ϕ=2.k.π (k∈Z) + Hiệu đường đi d = d 2 – d 1 = k.λ A min = 0 khi:+ Hai sng thành phần tại M ngược pha nhau ↔ ∆ϕ=(2.k+1)π (k∈Z) + Hiệu đường đi d=d 2 – d 1 =(k + 2 1 ).λ + Để xác định điểm M dao động với A max hay A min ta xét tỉ số λ 12 dd − -Nếu = − λ 12 dd k = số nguyên thì M dao động với A max và M nằm trên cực đại giao thoa thứ k - Nếu = − λ 12 dd k + 2 1 thì tại M là cực tiểu giao thoa thứ (k+1) + Khoảng cách giữa hai đỉnh liên tiếp của hai hypecbol cùng loại (giữa hai cực đại (hai cực tiểu) giao thoa): λ/2. + Số đường dao động với A max và A min : Số đường dao động với A max (luôn là số lẻ) là số giá trị của k thỏa mãn điu kiện (không tính hai nguồn): λλ AB k AB ≤≤− và k∈Z. Vị trí của các điểm cực đại giao thoa xác định bởi: 22 . 1 AB kd += λ (thay các giá trị tìm được của k vào) Số đường dao động với A min (luôn là số chẵn) là số giá trị của k thỏa mãn điu kiện (không tính hai nguồn): 2 1 2 1 −≤≤−− λλ AB k AB và k∈Z. Vị trí của các điểm cực tiểu giao thoa xác định bởi: 422 . 1 λλ ++= AB kd (thay các giá trị của k vào). → Số cực đại giao thoa bằng số cực tiểu giao thoa + 1. b. Hai nguồn dao động ngược pha:( 1 2 ϕ ϕ ϕ π ∆ = − = ) * Điểm dao động cực đại: d 1 – d 2 = (2k+1) 2 λ (k∈Z) Số đường hoặc số điểm dao động cực đại (không tính hai nguồn): 1 1 2 2 l l k λ λ − − < < − * Điểm dao động cực tiểu (không dao động):d 1 – d 2 = kλ (k∈Z) Số đường hoặc số điểm dao động cực tiểu (không tính hai nguồn): Trang 4 A B k=1 k=2 k= -1 k= - 2 k=0 k=0 k=1 k= -1 k= - 2 l l k λ λ − < < c. Trường hợp hai nguồn dao động vuông pha nhau:( 1 2 2 π ϕ ϕ ϕ ∆ = − = ) + Phương trình hai nguồn kết hợp: tAu A .cos. ω = ; π ω = + .cos( . ) 2 B u A t . + Phương trình sng tổng hợp tại M: ( ) ( ) 2 1 1 2 2. .cos cos . 4 4 u A d d t d d π π π π ω λ λ = − − − + + + Độ lệch pha của hai sóng thành phần tại M: ( ) 2 1 2 2 d d π π φ λ ∆ = − − + Biên độ sóng tổng hợp: A M = ( ) π π λ = − − 2 1 2. . cos 4 u A d d +Tìm số điểm dao động cực đại, số điểm dao động cực tiểu: * Số cực đại: (k Z) 2 2 l l k ϕ ϕ λ π λ π ∆ ∆ − + < < + + ∈ * Số cực tiểu: 1 1 (k Z) 2 2 2 2 l l k ϕ ϕ λ π λ π ∆ ∆ − − + < < + − + ∈ B.PHÂN LOẠI BÀI TOÁN VÀ PHƯƠNG PHÁP GIẢI I. Sóng cơ và sự truyền sóng Dạng 1 : Xác định các đại lượng đặc trưng: –Kiến thức cần nhớ : -Chu kỳ (T), vận tốc (v), tần số (f), bước sng (λ) liên hệ với nhau : T 1 f = ; f v vTλ == ; t s v ∆ ∆ = với ∆s là quãng đường sng truyn trong thời gian ∆t. + Quan sát hình ảnh sng c n ngọn sóng liên tiếp thì c n-1 bước sng. Hoặc quan sát thấy từ ngọn sng thứ n đến ngọn sng thứ m (m > n) c chiu dài l thì bước sng nm l λ − = ; + Số lần nhô lên trên mặt nước là N trong khoảng thời gian t giây thì 1− = N t T -Độ lệch pha giữa 2 điểm nằm trên một phương truyn sng cách nhau khoảng d là λ π ϕ d2 =∆ - Nếu 2 dao động cùng pha thì πϕ k2=∆ - Nếu 2 dao động ngược pha thì πϕ )12( +=∆ k –Phương pháp : Áp dụng các công thức chứa các đại lượng đặc trưng: T 1 f = ; f v vTλ == ; λ π ϕ d2 =∆ - Bài tập ví dụ Câu 1: Một sng cơ truyn trên một sợi dây đàn hồi rất dài. Phương trình sng tại một điểm trên dây c dạng u = 4cos(20πt - .x 3 π )(mm). Với x: đo bằng met, t: đo bằng giây. Tốc độ truyn sng trên sợi dây c giá trị. A. 60mm/s B. 60 cm/s C. 60 m/s D. 30mm/s Trang 5 Giải: Ta c .x 3 π = 2 .xπ λ => λ = 6 m => v = λ.f = 60 m/s (chú ý: x đo bằng mét) Đáp án C Câu 2: Một sng cơ truyn dọc theo trục Ox c phương trình là 5cos(6 )u t x π π = − (cm), với t đo bằng s, x đo bằng m. Tốc độ truyn sng này là A. 3 m/s. B. 60 m/s. C. 6 m/s. D. 30 m/s. Giải : Phương trình c dạng ) 2 cos( xtau λ π ω −= .Suy ra: )(3 2 6 )/(6 Hzfsrad ==⇒= π π πω ; 2 x π λ = πx => m2 2 =⇒= λπ λ π ⇒ v = f. λ = 2.3 = 6(m/s) ⇒ Đáp án C Câu 3: Một người ngồi ở bờ biển trông thấy c 10 ngọn sng qua mặt trong 36 giây, khoảng cách giữa hai ngọn sng là 10m Tính tần số sng biển.và vận tốc truyn sng biển. A. 0,25Hz; 2,5m/s B. 4Hz; 25m/s C. 25Hz; 2,5m/s D.4Hz; 25cm/s Giải : Xét tại một điểm c 10 ngọn sng truyn qua ứng với 9 chu kì. T= 36 9 = 4s. Xác định tần số dao động. 1 1 0,25 4 f Hz T = = = Xác định vận tốc truyn sng: ( ) 10 =vT v= 2,5 m / s T 4 λ λ ⇒ = = Đáp án A Câu 4: Tại một điểm trên mặt chất lỏng c một nguồn dao động với tần số 120Hz, tạo ra sng ổn định trên mặt chất lỏng. Xét 5 gợn lồi liên tiếp trên một phương truyn sng, ở v một phía so với nguồn, gợn thứ nhất cách gợn thứ năm 0,5m. Tốc độ truyn sng là A. 30 m/s B. 15 m/s C. 12 m/s D. 25 m/s Giải : 4λ = 0,5 m ⇒ λ = 0,125m ⇒ v = 15 m/s Đáp án B. - Bài tập vận dụng Câu 1: Một sng truyn trên sợi dây đàn hồi rất dài với tần số 500Hz, người ta thấy khoảng cách giữa hai điểm gần nhau nhất dao động cùng pha là 80cm. Tốc độ truyn sng trên dây là A. v = 400cm/s. B. v = 16m/s. C. v = 6,25m/s. D. v = 400m/s Câu 2. Một người quan sát một chiếc phao trên mặt biển thấy n nhô lên cao 10 lần trong 18 s, khoảng cách giữa hai ngọn sng k nhau là 2 m. Tốc độ truyn sng trên mặt biển là : A. 2 m/s. B . 1 m/s. C. 4 m/s. D. 4.5 m/s. Câu 3. Một sng lan truyn với vận tốc 200m/s c bước sng 4m. Tần số và chu kì của sng là A .f = 50Hz ;T = 0,02s. B.f = 0,05Hz ;T= 200s. C.f = 800Hz ;T = 1,25s. D.f = 5Hz;T = 0,2s. Câu 4 : Một sng truyn theo trục Ox với phương trình u = acos(4πt – 0,02πx) (u và x tính bằng cm, t tính bằng giây). Tốc độ truyn của sng này là : A. 100 cm/s. B. 150 cm/s. C. 200 cm/s. D. 50 cm/s. Dạng 2 :Viết phương trình sóng: - Kiến thức cần nhớ : +Tổng quát: Nếu phương trình sng tại nguồn O là )cos( 0 ϕω += tAu thì + Phương trình sng tại M là 2 cos( ) M x u A t π ω φ λ = + m . Dấu (–) nếu sng truyn từ O tới M, dấu (+) nếu sng truyn ngược lại từ M tới O. Trang 6 +Lưu ý: Đơn vị của , x, x 1 , x 2 , λ và v phải tương ứng với nhau. - Bài tập ví dụ : Câu 1: Một sợi dây đàn hồi nằm ngang c điểm đầu O dao động theo phương đứng với biên độ A=5cm, T=0,5s. Vận tốc truyn sng là 40cm/s. Viết phương trình sng tại M cách O d=50 cm. A. 5cos(4 5 )( ) M u t cm π π = − B 5cos(4 2,5 )( ) M u t cm π π = − C. 5cos(4 )( ) M u t cm π π = − D 5cos(4 25 )( ) M u t cm π π = − Giải: Phương trình dao động của nguồn: cos( )( ) o u A t cm ω = Với : ( ) a 5cm 2 2 4 rad / s T 0,5 = π π ω = = = π 5cos(4 )( ) o u t cm π = .Phương trình dao động tai M: 2 cos( ) M d u A t π ω λ = − Trong đ: ( ) vT 40.0,5 20 cmλ = = = ;d= 50cm . 5cos(4 5 )( ) M u t cm π π = − . Chọn A. Câu 2: Một sng cơ học truyn theo phương Ox với biên độ coi như không đổi. Tại O, dao động c dạng u = acosωt (cm). Tại thời điểm M cách xa tâm dao động O là 1 3 bước sng ở thời điểm bằng 0,5 chu kì thì ly độ sng c giá trị là 5 cm. Phương trình dao động ở M thỏa mãn hệ thức nào sau đây: A. 2 cos( ) 3 M u a t cm λ ω = − B. cos( ) 3 M u a t cm πλ ω = − C. 2 cos( ) 3 M u a t cm π ω = − D. cos( ) 3 M u a t cm π ω = − Giải :Sng truyn từ O đến M mất một thời gian là :t= d v = 3v λ Phương trình dao động ở M c dạng: 1. cos ( ) .3 M u a t v λ ω = − .Với v =λ/T .Suy ra : Ta c: 2 2 . v T T ω π π λ λ = = Vậy 2 . cos( ) .3 M u a t π λ ω λ = − Hay : 2 cos( ) 3 M u a t cm π ω = − Chọn C - Bài tập vận dụng: Câu 1. Sng truyn tại mặt chất lỏng với bước sng 0,8cm. Phương trình dao động tại O c dạng u 0 = 5cos ω t (mm). Phương trình dao động tại điểm M cách O một đoạn 5,4cm theo hướng truyn sng là A. u M = 5cos( ω t + π/2) (mm) B. u M = 5cos( ω t+13,5π) (mm) C . u M = 5cos( ω t – 13,5π ) (mm). D. u M = 5cos( ω t+12,5π) (mm) Câu 2.(ĐH_2008) Một sng cơ lan truyn trờn một đường thẳng từ điểm O đến điểm M cách O một đoạn d. biên độ a của sng không đổi trong quá trình sng truyn. Nếu phương trình dao động của phần tử vật chất tại điểm M c dạng u M (t) = acos2πft thì phương trình dao động của phần tử vật chất tại O là: A. d u (t) a cos (ft ) π λ = − 0 2 B. d u (t) acos (ft ) π λ = + 0 2 C. d u (t) a cos (ft ) π λ = − 0 D. d u (t) acos (ft ) π λ = + 0 Câu 3: Một sng cơ học lan truyn trên một phương truyn sng với vận tốc 4m/s. Phương trình sng của một điểm 0 c dạng : cmtu ) 3 cos(10 0 π π += . Phương trình sng tại M nằm sau 0 và cách 0 một khoảng 80cm là: Trang 7 d 1 0 N N d d 2 M A. cmtu M ) 5 cos(10 π π −= B. cmtu M ) 5 cos(10 π π += C . cmtu M ) 15 2 cos(10 π π += D. cmtu M ) 15 8 cos(10 π π −= Câu 4: Một sng cơ học lan truyn trên một phương truyn sng với vận tốc 5m/s. Phương trình sng của một điểm O trên phương truyn đ là: 6cos(5 ) 2 O u t cm π π = + . Phương trình sng tại M nằm trước O và cách O một khoảng 50cm là: A. )(5cos6 cmtu M π = B. cmtu M ) 2 5cos(6 π π += C. cmtu M ) 2 5cos(6 π π −= D. 6cos(5 ) M u t cmp p= + Câu 5: Nguồn sng ở O dao động với tần số 10Hz, dao động truyn đi với vận tốc 0,4m/s theo phương Oy; trên phương này c hai điểm P và Q với PQ = 15cm. Biên độ sng bằng a = 1cm và không thay đổi khi lan truyn . Nếu tại thời điểm t nào đ P c li độ 1cm thì li độ tại Q là A. 1cm B. -1cm C. 0 D. 2cm Giải :Cách 1: v 40 f 10 λ = = = 4cm; lúc t, u P = 1cm = acosωt → cosωt =1 u Q = acos(ωt - 2 dπ λ ) = acos(ωt - 2 .15 4 π ) = acos(ωt -7,5π) = acos(ωt + 8π -0,5π) = acos(ωt - 0,5π) = asinωt = 0 Cách 2: PQ 15 3,75 4 = = λ → hai điểm P và Q vuông pha Mà tại P c độ lệch đạt cực đại thi tại Q c độ lệch bằng 0 : u Q = 0 (Hình vẽ) Chọn C Dạng 3 : Tính độ lệch pha giữa hai điểm nằm trên cùng một phương truyền sóng - Kiến thức cần nhớ : + Độ lệch pha giữa hai điểm cách nguồn một khoảng x 1 , x 2 ( có khi người ta dùng d 1 ,d 2 ) 1 2 1 2 2 x x x x v ϕ ω π λ − − ∆ = = +Nếu 2 điểm đ nằm trên một phương truyn sng và cách nhau một khoảng x thì: 2 x x v ϕ ω π λ ∆ = = (Nếu 2 điểm M và N trên phương truyn sng và cách nhau một khoảng d thì : ∆ϕ = ) - Vậy 2 điểm M và N trên phương truyn sng sẽ: + dao động cùng pha khi: Δφ = k2π => d = kλ + dao động ngược pha khi:Δφ = π + k2π => d = (2k + 1) + dao động vuông pha khi:Δφ = (2k + 1) 2 π =>d = (2k + 1) với k = 0, 1, 2 - Phương pháp : -Độ lệch pha giữa hai điểm cách nguồn một khoảng x 1 , x 2 ( hay d 1 ,d 2 ) 1 2 1 2 2 x x x x v ϕ ω π λ − − ∆ = = Hay 2 x x v ϕ ω π λ ∆ = = -Vận dụng các công thức:Δφ = 2 d π λ - Lưu ý: Đơn vị của d, x, x 1 , x 2 , λ và v phải tương ứng với nhau. Trang 8 P 1 Q - Bài tập ví dụ: Câu 1: Tại hai điểm A và B trên mặt nước c hai nguồn kết hợp cùng dao động với phương trình u = acos100πt . Tốc độ truyn sng trên mặt nước là 40 cm/s. Xét điểm M trên mặt nước c AM = 9 cm và BM = 7 cm. Hai dao động tại M do hai sng từ A và B truyn đến là hai dao động : A. cùng pha. B. ngược pha. C. lệch pha 90º. D. lệch pha 120º. Giải :Chọn B. Ta c: f =50Hz; λ = v/f = 40/50 =0,8cm. Xét: d 2 – d 1 = 9-7=(2 + 1 2 )0,8 cm =2,5λ: Hai dao động do hai sng từ A và B truyn đến M ngược pha. - Bài tập vận dụng: Câu 1: Sng cơ c tần số 80 Hz lan truyn trong một môi trường với vận tốc 4 m/s. Dao động của các phần tử vật chất tại hai điểm trên một phương truyn sng cách nguồn sng những đoạn lần lượt 31 cm và 33,5 cm, lệch pha nhau gc : A. 2π rad. B. . 2 π C. π rad. D. . 3 π Câu 2: Một sng cơ c chu kì 2 s truyn với tốc độ 1 m/s. Khoảng cách giữa hai điểm gần nhau nhất trên một phương truyn mà tại đ các phần tử môi trường dao động ngược pha nhau là : A. 0,5 m. B. 1,0 m. C. 2,0 m. D. 2,5 m. Câu 3: Một sng c tần số 500Hz, c tốc độ lan truyn 350m/s. Hai điểm gần nhau nhất trên phương truyn sng phải cách nhau gần nhất một khoảng là bao nhiêu để giữa chúng c độ lệch pha bằng 3 π rad ? A. 0,117m. B. 0,467m. C. 0,233m. D. 4,285m. Câu 4: Một sng cơ truyn trong môi trường với tốc độ 120m/s. Ở cùng một thời điểm, hai điểm gần nhau nhất trên một phương truyn sng dao động ngược pha cách nhau 1,2m. Tần số của sng là : A. 220Hz. B. 150Hz. C. 100Hz. D. 50Hz. Câu 5: Một sng cơ c chu kì 2 s truyn với tốc độ 1 m/s. Khoảng cách giữa hai điểm gần nhau nhất trên một phương truyn mà tại đ các phần tử môi trường dao động cùng pha nhau là: A. 0,5m. B. 1,0m. C. 2,0 m. D. 2,5 m. Trang 9 II. Giao thoa sóng 1.Tìm số điểm dao động cực đại và cực tiểu giữa hai nguồn Avà B ( hay S 1 và S 2 ) : - Phương pháp: a .Tìm số điểm dao động cực đại và cục tiểu giữa hai nguồn cùng pha: +Các công thức: ( = = 1 2 S S AB l ) * Số Cực đại giữa hai nguồn: l l k λ λ − < < và k∈Z. * Số Cực tiểu giữa hai nguồn: 1 1 2 2 l l k λ λ − − < < − và k∈ Z.Hay 0,5 (k Z) − < + < + ∈ l l k λ λ b.Tìm số điểm dao động cực đại và cục tiểu giữa hai nguồn ngược pha: ( 1 2 ϕ ϕ ϕ π ∆ = − = ) * Điểm dao động cực đại: d 1 – d 2 = (2k+1) 2 λ (k∈Z) Số đường hoặc số điểm dao động cực đại (không tính hai nguồn): 1 1 2 2 l l k λ λ − − < < − Hay 0,5 (k Z) − < + <+ ∈ l l k λ λ * Điểm dao động cực tiểu (không dao động):d 1 – d 2 = kλ (k∈Z) Số đường hoặc số điểm dao động cực tiểu (không tính hai nguồn): Số Cực tiểu: (k Z) − < <+ ∈ l l k λ λ c.Tìm số điểm dao động cực đại và cục tiểu giữa hai nguồn vuông pha: ∆ϕ =(2k+1) π /2 ( Số Cực đại= Số Cực tiểu) + Phương trình hai nguồn kết hợp: tAu A .cos. ω = ; π ω = + .cos( . ) 2 B u A t . + Phương trình sng tổng hợp tại M: ( ) ( ) 2 1 1 2 2. .cos cos . 4 4 u A d d t d d π π π π ω λ λ = − − − + + + Độ lệch pha của hai sóng thành phần tại M: ( ) 2 1 2 2 d d π π φ λ ∆ = − − + Biên độ sóng tổng hợp: A M = ( ) π π λ = − − 2 1 2. . cos 4 u A d d * Số Cực đại: 1 1 (k Z) 4 4 − + < < + + ∈ l l k λ λ * Số Cực tiểu: 1 1 (k Z) 4 4 − − < < + − ∈ l l k λ λ Hay 0, 25 (k Z) − < + <+ ∈ l l k λ λ Nhận xét: số điểm cực đại và cực tiểu trên đoạn AB là bằng nhau nên c thể dùng 1 công thức là đủ => Số giá trị nguyên của k thoả mãn các biểu thức trên là số đường cần tìm. - Bài tập ví dụ: Ví dụ 1:Trong một thí nghiệm v giao thoa sng trên mặt nước, hai nguồn kết hợp S 1 và S 2 cách nhau 10cm dao động cùng pha và c bước sng 2cm.Coi biên độ sng không đổi khi truyn đi. a.Tìm Số điểm dao động với biên độ cực đại, Số điểm dao động với biên độ cực tiểu quan sát được. b.Tìm vị trí các điểm dao động với biên độ cực đại trên đoạn S 1 S 2 . Giải: Vì các nguồn dao động cùng pha, a.Ta c số đường hoặc số điểm dao động cực đại: l l k λ λ − < < => 10 10 2 2 k− < < =>-5< k < 5 . Suy ra: k = 0; ± 1;±2 ;±3; ±4 . Trang 10 A B k=1 k=2 k= -1 k= - 2 k=0 k=0 k=1 k= -1 k= - 2 [...]... độ cùng tần số và ngược pha Nếu khoảng cách giữa hai nguồn là: AB = 16, 2λ thì số điểm đứng yên và số điểm dao động với biên độ cực đại trên đoạn AB lần lượt là: A 32 và 33 B 34 và 33 C 33 và 32 D 33 và 34 Giải: Do hai nguồn dao động ngược pha nên số điểm đứng yên trên đoạn AB là : -AB AB -16, 2λ 16, 2λ . PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI MỘT SỐ BÀI TOÁN SÓNG CƠ VÀ GIAO THOA SÓNG Tác giả: Nguyễn Văn Lịch Chức vụ: Tổ trưởng chuyên môn tổ. 12 Số tiết dự kiến: 4 tiết Trang 1 A C B I D G H F E J Phương truyn sng λ 2λ 2 λ 2 3 λ A. LÝ THUYẾT CẦN NHỚ: I. SÓNG CƠ VÀ SỰ TRUYỀN SÓNG CƠ : 1 .Sóng cơ- Định nghĩa- phân loại + Sng cơ là. 2,5 m. Trang 9 II. Giao thoa sóng 1.Tìm số điểm dao động cực đại và cực tiểu giữa hai nguồn Avà B ( hay S 1 và S 2 ) : - Phương pháp: a .Tìm số điểm dao động cực đại và cục tiểu giữa hai