1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

CÁC PHƯƠNG PHÁP DỰ BÁO PHỤ TẢI ĐIỆN TRONG HỆ THỐNG ĐIỆN (Electrical Load Forecasting)

420 2,5K 21

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 420
Dung lượng 11,12 MB

Nội dung

NỘI DUNG GỒM 9 CHƯƠNG:Chapter 1. Mathematical Background and State of the Art. Chapter 2. Static State Estimation. Chapter 3. Load Modeling for ShortTerm Forecasting. Chapter 4. Fuzzy Regression Systems and Fuzzy Linear Models. Chapter 5. Dynamic State Estimation. Chapter 6. Load Forecasting Results Using Static State Estimation. Chapter 7. Load Forecasting Results Using Fuzzy Systems. Chapter 8. Dynamic Electric Load Forecasting. Chapter 9. Electric Load Modeling for LongTerm Forecasting.

[...]... estimation Reviewing the literature to introduce different techniques developed for short-term load forecasting Explaining the merit of each technique used in the estimation of load forecasting and suitable places for implementation In this chapter, we also try to compare different techniques used in electric load forecasting 1.2 Matrices and Vectors A matrix is an array of elements [1] The elements of... 7 5 4 an1 an2 anm In shorthand,  à A ¼ aij nÂm i ¼ 1, , n j ¼ 1, , m Copyright © 2010 by Elsevier Inc All rights reserved DOI: 10.1016/B978-0-12-381543-9.00001-4 ð1:2Þ 2 Electrical Load Forecasting: Modeling and Model Construction Note that the determinant is also an array of elements with n rows and n columns (always square) and has a value The matrix does not have a value but has... of the two matrices is given by C ¼AþB ð1:11aÞ where the elements of the matrix C are given by cij ¼ aij þ bij for all i, j For example, if 2 A¼ 4 3 5 0 1 ! and B¼ À1 0 2 4 À2 3 ! ð1:11bÞ 4 Electrical Load Forecasting: Modeling and Model Construction then " ð 3 þ 2Þ ð0 þ 4Þ ð 4 þ 0Þ ð 5 À 2 Þ ! 1 5 4 C¼ 4 3 4 # ð1 þ 3Þ C¼ 1.3.2 ð 2 À 1Þ Matrix Subtraction (Difference) The subtraction (difference) of... commute, but if AB ¼ BA, we say that A and B commute If A and B are of the order n  n, then AB, BA will be of the order n  n For example, ! 1 3 2 A¼ 5 6 7 ð2Â3Þ 2 3 2 3 B ¼ 41 55 4 2 ð3Â2Þ 6 Electrical Load Forecasting: Modeling and Model Construction Then AB will be AB2Â2 1 ¼ 5 but BA will be 2 BA3Â3 2 ¼ 41 4 2 ! 2 3 2 4 1 6 7 4 3 3 13 55 ¼ 44 2 3 3 1 55 5 2 2 ! 17 2 ¼ 4 26 7 14 3 6 22 59 24 33 24 !... 0:125 0:91667 À0:54166 Some properties of the matrix inverse are AAÀ1 ¼ AÀ1 A ¼ I À À1 ÁÀ1 A ¼A ð1:22Þ ð1:23Þ If A and B are square matrices and are nonsingular, then ðABÞÀ1 ¼ BÀ1 AÀ1 ð1:24Þ 8 Electrical Load Forecasting: Modeling and Model Construction 1.4 Rank of a Matrix The rank of a matrix A is the maximum number of linearly independent columns of A, or it is the order of the largest nonsingular matrix... the rank of a matrix Given an nÂm matrix A, 1: Rank of A ¼ Rank of AT ð1:25Þ 2: Rank of A ¼ Rank of AAT ð1:26Þ 3: Rank of A ¼ Rank of AT A ð1:27Þ The rank of a matrix is of great importance in electric load forecasting using the static estimation algorithms 1.5 Singular Matrix If A is a square matrix, and if the determinant of A equals zero (i.e., jAj ¼ 0), then the matrix A is called a singular matrix... ViT Ui ¼ 1; j ¼ 1, , n ð1:32Þ ViT Uj ¼ 0; j ¼ 1, , n ð1:33Þ 1.7 Diagonalization Consider now the matrix product e ¼ U À1 AU A ð1:34Þ Using equation (1.30), we have e ¼ VAU A ð1:35Þ 10 Electrical Load Forecasting: Modeling and Model Construction In terms of eigenvectors, we have e ¼ V ½AU1 , AU2 , , AUn Š A ð1:36Þ Using equation (1.28), we obtain e ¼ V ½λU1 , λU2 , , λUn Š A Substituting... given by ! 1 U1 ¼ 1 Following the same steps, we obtain the second eigenvector as ! À1 U2 ¼ 1 and hence the matrix U is given by ! 1 À1 À1 T ¼ ½U1 U2 Š ¼ 1 1 Thus, ! 0:5 þ0:5 T¼ À0:5 0:5 11 12 Electrical Load Forecasting: Modeling and Model Construction Therefore, the transformed matrix A is given by ! ! 0:5 0:5 À2 1 1 e ¼ TAT À1 ¼ A À0:5 0:5 1 À2 1 ! À1 À1 ¼ 1 À2 0 À1 ! 1.8 Partitioned Matrices Partitioning... ¼ Im By solving the preceding equations, we can obtain W ¼ AÀ1 À AÀ1 BY À1 Y ¼ ÀðD À CAÀ1 BÞ CAÀ1 À1 Z ¼ ðD À CAÀ1 BÞ À1 X ¼ ÀAÀ1 BðD ÀCAÀ1 BÞ provided that the matrix A is nonsingular 14 Electrical Load Forecasting: Modeling and Model Construction Example 1.2 Consider the matrix F given by 2 2 61 F¼6 43 0 3 4 2 5 2 4 1 À2 3 À1 À2 7 7 05 3 F can be partitioned as shown Thus, we can find ! ! 2 À3 2... 1 vector, A is an n  n matrix, B is an n  1 vector, and C is 1  1 vector Example 1.3 Given the function fðx,yÞ ¼ 2x2 þ 4xy À y2 ¼ 0 we need to write this function in a quadratic form 16 Electrical Load Forecasting: Modeling and Model Construction We define the vector ! x X¼ y Then 2 2 yŠ 2 À1 fðx, yÞ ¼ ½ x ! x y ! FðxÞ ¼ X T AX where 2 A¼ 2 2 À2 ! Example 1.4 To obtain the quadratic form for the . Electric Load Forecasting. ” The main objectives of this chapter are as follows: • A one-year long-term electric power load- forecasting problem is introduced as a first step for short-term load forecasting. • A. left and right type (LR-type). Chapter 3, Load Modeling for Short-Term Forecasting. ” This chapter pro- poses different load models used in short-term load forecasting for 24 hours. • Three models. functions, for load parameters, are used—namely, triangular membership and trapezoidal membership functions. The problem of load forecasting in this book is restricted to short-term load forecasting and

Ngày đăng: 12/08/2014, 14:09

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
[3] R.G. Brown, Introduction to Random Signal Analysis and Kalman Filtering, John Wiley and Sons, New York, 1983 Sách, tạp chí
Tiêu đề: Introduction to Random Signal Analysis and Kalman Filtering
Tác giả: R.G. Brown
Nhà XB: John Wiley and Sons
Năm: 1983
[7] P.H. Henault, R.B. Eastvedt, J. Peschon, L.P. Hajdu, Power system long term planning in the presence of uncertainty, IEEE Trans. Power Apparatus Syst. PAS-89 (1970) 156–164 Sách, tạp chí
Tiêu đề: Power system long term planning in the presence of uncertainty
Tác giả: P.H. Henault, R.B. Eastvedt, J. Peschon, L.P. Hajdu
Nhà XB: IEEE Transactions on Power Apparatus and Systems
Năm: 1970
[14] H.S. Hippert, C.E. Pedreira, R.C. Souza, Neural networks for short-term load forecasting:a review and evaluation, IEEE Trans. Power Syst. 16 (1) (2001) 44 – 55.Dynamic Electric Load Forecasting 351 Sách, tạp chí
Tiêu đề: Neural networks for short-term load forecasting:a review and evaluation
Tác giả: H.S. Hippert, C.E. Pedreira, R.C. Souza
Nhà XB: IEEE Trans. Power Syst.
Năm: 2001
[1] H.M. Al-Hamadi, S.A. Soliman, Short-term electric load forecasting based on Kalman filtering algorithm with moving window weather and load models, Electric Power Syst.Res. 68 (2004) 47 – 59 Khác
[2] R.E. Kalman, A new approach to linear filtering and prediction problems, Trans. ASME-J.Basic Eng. 82 (1960) 35 – 45 Khác
[4] G.F. Franklin, J.D. Powel, M.L. Workman, Digital Control of Dynamic System, second ed., Addison Wesley, Boston, MA, 1990 Khác
[5] C. Kim, I. Yu, Y.H. Song, Kohonen neural network and wavelet transform based approach to short-term load forecasting, Electric Power Syst. Res. 63 (2002) 169–176 Khác
[6] H.L. Willis, L.A. Finley, M.J. Buri, Forecasting electric demand of distribution system in rural and sparsely populated regions, IEEE Trans. Power Syst. 10 (4) (1995) 2008–2013 Khác
[8] H.C. Wu, C. Lu, Automatic fuzzy model identification for short term load forecast, IEE Proc. Gener. Transm. Distrib.-C 146 (5) (1999) 477 – 482 Khác
[9] W. Charytoniuk, M.S. Chen, Very short-term load forecasting using artificial neural net- works, IEEE Trans. Power Syst. 15 (1) (2000) 263 – 268 Khác
[10] K.H. Kim, H.S. Youn, Y.C. Kang, Short-term forecasting for special days in anomalous load conditions using neural networks and fuzzy inference method, IEEE Trans. Power Syst. 15 (2) (2000) 559–565 Khác
[11] P.A. da Silva, L.S. Moulin, Confidence intervals for neural network based short-term load forecasting, IEEE Trans. Power Syst. 15 (4) (2000) 1191 – 1196 Khác
[12] S.A. Villalba, C.A. Bel, Hybrid demand model for load estimation and short-term load fore- casting in distribution electric systems, IEEE Trans. Power Syst. 15 (2) (2000) 764 – 769 Khác
[13] R.H. Liang, C.C. Cheng, Combined regression-fuzzy approach for short-term load fore- casting, IEE Proc. Gener. Transm. Distrib. 147 (4) (2000) 261 – 266 Khác

TỪ KHÓA LIÊN QUAN

TRÍCH ĐOẠN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w