THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng | |
---|---|
Số trang | 61 |
Dung lượng | 607,64 KB |
Nội dung
Ngày đăng: 08/08/2014, 12:23
Nguồn tham khảo
Tài liệu tham khảo | Loại | Chi tiết | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
[2] M. Ajtai, J. Koml´os and E. Szemer´edi, On a Conjecture of Loebl. Graph theory, combinatorics, and algorithms, Vol. 2, 1135–1146, Wiley-Intersci. Publ., Wiley, New York, 1995 | Sách, tạp chí |
|
||||||||
[4] S. A. Burr, Generalized Ramsey theory for graphs—a survey. Graphs and combina- torics (Proc. Capital Conf., George Washington Univ., Washington, D.C., 1973), pp | Sách, tạp chí |
|
||||||||
[8] P. Erd˝os, Z. F¨ uredi, M. Loebl, V. T. S´os, Discrepency of trees, Studia Sci. Math | Sách, tạp chí |
|
||||||||
[13] J. Kom´os and M. Simonovits. Szemer´edi’s Regularity Lemma and its applications in graph theory. Combinatorics, Paul Erd˝os is eighty, Vol. 2 (Keszthely, 1993), 295–352, Bolyai Soc. Math. Stud., 2, J´anos Bolyai Math. Soc., Budapest, 1996 | Sách, tạp chí |
|
||||||||
[1] M. Ajtai, J. Koml´os and E. Szemer´edi, the Erd˝os-S´os conjecture, an approximate version, the dense case, manuscript, 1991 | Khác | |||||||||
[3] C. Bazgan, H. Li, M. Wo´zniak, On the Loebl-Koml´os-S´os conjecture. J. Graph Theory 34 (2000), no. 4, 269–276 | Khác | |||||||||
[5] A. Burr, P. Erd˝os, Extremal Ramsey theory for graphs. Utilitas Math 9 (1976), 247–258 | Khác | |||||||||
[6] O. Cooley, Proof of the Loebl-Komls-S´os conjecture for large, dense graphs, Discrete Mathematics, to appear | Khác | |||||||||
[7] P. Erd˝os, Extremal problems in graph theory, Theory of Graphs and its Applications (M. Fiedler, ed.), Academic Press, New York, (1965) 29–36 | Khác | |||||||||
[9] F. Chung, R. Graham, Erd˝os on graphs. His legacy of unsolved problems. A K Peters, Ltd., Wellesley, MA, 1998 | Khác | |||||||||
[10] J. Grossman, F. Harary, M Klawe, Generalized Ramsey theory for graphs. X. Double stars. Discrete Math. 28 (1979), no. 3, 247–254 | Khác | |||||||||
[11] P. E. Haxell, T. Luczak, P. W. Tingley, Ramsey numbers for trees of small maximum degree. Special issue: Paul Erd˝os and his mathematics. Combinatorica 22 (2002), no.2, 287–320 | Khác | |||||||||
[12] J. Hladk´y, D. Piguet, Loebl-Koml´os-S´os conjecture: dense case, submitted | Khác | |||||||||
[14] J. Neˇsetˇril, Ramsey Theory, Handbook of Combinatorics, North-Holland, 1995 | Khác | |||||||||
[15] D. Piguet, M. J. Stein, An approximate version of the Loebl-Koml´os-S´os conjecture, submitted | Khác | |||||||||
[16] M. Simonovits, A method for solving extremal problems in graph theory, stability problems. 1968 Theory of Graphs (Proc. Colloq., Tihany, 1966) 279–319, Academic Press, New York | Khác | |||||||||
[17] E. Szemer´edi, Regular partitions of graphs, Probl`emes Combinatoires et Theorie des Graphes, J.-C Bermond, et al., Eds., CNRS, Paris (1978), 399–401 | Khác |
TỪ KHÓA LIÊN QUAN
TÀI LIỆU CÙNG NGƯỜI DÙNG
TÀI LIỆU LIÊN QUAN