Tài liệu tham khảo |
Loại |
Chi tiết |
[1] G. David and S. Semmes, “Singular integrals and rectifiable sets in R n : Beyond Lipschitz graphs,”Ast´erisque, no. 193, p. 152, 1991 |
Sách, tạp chí |
Tiêu đề: |
Singular integrals and rectifiable sets inR"n": Beyond Lipschitz graphs,”"Ast´erisque |
|
[2] G. David and S. Semmes, Analysis of and on Uniformly Rectifiable Sets, vol. 38 of Mathematical Surveys and Monographs, American Mathematical Society, Rhode Island, 1993 |
Sách, tạp chí |
Tiêu đề: |
Analysis of and on Uniformly Rectifiable Sets", vol. 38 of "Mathematical"Surveys and Monographs |
|
[3] J. Serrin, “A symmetry problem in potential theory,” Archive for Rational Mechanics and Analysis, vol. 43, no. 4, pp. 304–318, 1971 |
Sách, tạp chí |
Tiêu đề: |
A symmetry problem in potential theory,” "Archive for Rational Mechanics and Analysis |
|
[4] J. L. Lewis and A. L. Vogel, “On some almost everywhere symmetry theorems,” in Nonlinear Diffusion Equations and Their Equilibrium States, 3 (Gregynog, 1989), vol. 7 of Progr. Nonlinear Differential Equations Appl., pp. 347–374, Birkh¨auser Boston, Massachusetts, 1992 |
Sách, tạp chí |
Tiêu đề: |
On some almost everywhere symmetry theorems,” in "Nonlinear"Diffusion Equations and Their Equilibrium States, 3 (Gregynog, 1989)", vol. 7 of "Progr. Nonlinear"Differential Equations Appl |
|
[5] J. L. Lewis and A. L. Vogel, “A symmetry theorem revisited,” Proceedings of the American Mathe- matical Society, vol. 130, no. 2, pp. 443–451, 2002 |
Sách, tạp chí |
Tiêu đề: |
A symmetry theorem revisited,” "Proceedings of the American Mathe-"matical Society |
|
[6] J. L. Lewis and A. L. Vogel, “Uniqueness in a free boundary problem,” Communications in Partial Differential Equations, vol. 31, pp. 1591–1614, 2006 |
Sách, tạp chí |
Tiêu đề: |
Uniqueness in a free boundary problem,” "Communications in Partial"Differential Equations |
|
[7] A. L. Vogel, “Symmetry and regularity for general regions having a solution to certain overde- termined boundary value problems,” Atti del Seminario Matematico e Fisico dell’Universit`a di Modena, vol. 40, no. 2, pp. 443–484, 1992 |
Sách, tạp chí |
Tiêu đề: |
Symmetry and regularity for general regions having a solution to certain overde-termined boundary value problems,” "Atti del Seminario Matematico e Fisico dell’Universit`a di"Modena |
|
[8] J. L. Lewis and A. L. Vogel, “On pseudospheres that are quasispheres,” Revista Matem´atica Iberoamericana, vol. 17, no. 2, pp. 221–255, 2001 |
Sách, tạp chí |
Tiêu đề: |
On pseudospheres that are quasispheres,” "Revista Matem´atica"Iberoamericana |
|
[9] B. Bennewitz, Nonuniqueness in a free boundary problem, Ph.D. thesis, University of Kentucky, Lexington KY, 2006 |
Sách, tạp chí |
Tiêu đề: |
Nonuniqueness in a free boundary problem |
|
[10] A. Henrot and H. Shahgholian, “Existence of classical solutions to a free boundary problem for the p-Laplace operator. I. The exterior convex case,” Journal f¨ur die reine und angewandte Mathematik, vol. 521, pp. 85–97, 2000 |
Sách, tạp chí |
Tiêu đề: |
Existence of classical solutions to a free boundary problemfor the"p"-Laplace operator. I. The exterior convex case,” "Journal f¨ur die reine und angewandte"Mathematik |
|
[11] A. Henrot and H. Shahgholian, “Existence of classical solutions to a free boundary problem for the p-Laplace operator. II. The interior convex case,” Indiana University Mathematics Journal, vol. 49, no. 1, pp. 311–323, 2000 |
Sách, tạp chí |
Tiêu đề: |
Existence of classical solutions to a free boundary problem forthe"p"-Laplace operator. II. The interior convex case,” "Indiana University Mathematics Journal |
|
[12] A. Henrot and H. Shahgholian, “The one phase free boundary problem for the p-Laplacian with non-constant Bernoulli boundary condition,” Transactions of the American Mathematical Society, vol. 354, no. 6, pp. 2399–2416, 2002 |
Sách, tạp chí |
Tiêu đề: |
The one phase free boundary problem for the "p"-Laplacianwith non-constant Bernoulli boundary condition,” "Transactions of the American Mathematical"Society |
|
[13] C. J. Bishop and P. W. Jones, “Harmonic measure and arclength,” Annals of Mathematics. Second Series, vol. 132, no. 3, pp. 511–547, 1990 |
Sách, tạp chí |
Tiêu đề: |
Harmonic measure and arclength,” "Annals of Mathematics. Second"Series |
|
[14] G. David and D. Jerison, “Lipschitz approximation to hypersurfaces, harmonic measure, and singular integrals,” Indiana University Mathematics Journal, vol. 39, no. 3, pp. 831–845, 1990 |
Sách, tạp chí |
Tiêu đề: |
Lipschitz approximation to hypersurfaces, harmonic measure, andsingular integrals,” "Indiana University Mathematics Journal |
|
[15] C. E. Kenig and J. Pipher, “The Dirichlet problem for elliptic equations with drift terms,” Publi- cacions Matem`atiques, vol. 45, no. 1, pp. 199–217, 2001 |
Sách, tạp chí |
Tiêu đề: |
The Dirichlet problem for elliptic equations with drift terms,” "Publi-"cacions Matem`atiques |
|
[16] H. W. Alt, L. A. Caffarelli, and A. Friedman, “A free boundary problem for quasilinear elliptic equations,” Annali della Scuola Normale Superiore di Pisa. Classe di Scienze. Serie IV, vol. 11, no. 1, pp. 1–44, 1984 |
Sách, tạp chí |
Tiêu đề: |
A free boundary problem for quasilinear ellipticequations,” "Annali della Scuola Normale Superiore di Pisa. Classe di Scienze. Serie IV |
|
[17] J. Serrin, “Local behavior of solutions of quasi-linear equations,” Acta Mathematica, vol. 111, no. 1, pp. 247–302, 1964 |
Sách, tạp chí |
Tiêu đề: |
Local behavior of solutions of quasi-linear equations,” "Acta Mathematica |
|
[18] N. Garofalo and J. L. Lewis, “A symmetry result related to some overdetermined boundary value problems,” American Journal of Mathematics, vol. 111, no. 1, pp. 9–33, 1989 |
Sách, tạp chí |
Tiêu đề: |
A symmetry result related to some overdetermined boundary valueproblems,” "American Journal of Mathematics |
|
[19] H. J. Choe, “Regularity for minimizers of certain degenerate functionals with nonstandard growth conditions,” Communications in Partial Differential Equations, vol. 16, no. 2-3, pp. 363–372, 1991 |
Sách, tạp chí |
Tiêu đề: |
Regularity for minimizers of certain degenerate functionals with nonstandardgrowth conditions,” "Communications in Partial Differential Equations |
|
[20] J. J. Manfredi, “Regularity for minima of functionals with p-growth,” Journal of Differential Equations, vol. 76, no. 2, pp. 203–212, 1988 |
Sách, tạp chí |
Tiêu đề: |
Regularity for minima of functionals with "p"-growth,” "Journal of Differential"Equations |
|