1. Trang chủ
  2. » Luận Văn - Báo Cáo

Sử dụng hàm cực đại vào bài toán phân biệt và phân chùm

91 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 91
Dung lượng 507 KB

Nội dung

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC: SỬ DỤNG HÀM CỰC ĐẠI VÀO BÀI TOÁN PHÂN BIỆT VÀ PHÂN CHÙM LUẬN VĂN THẠC SĨ Năm: BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC Chuyên ngành: : Mã số: : LUẬN VĂN THẠC SĨ Người hướng dẫn TS 1 PHẦN MỞ ĐẦU Các nguyên lý tập có thứ tự (như bổ đề Zorn dạng tương đương nó, ) có nhiều ứng dụng lý thuyết tập hợp, Đại số, Giải tích Ngay vấn đề nghiên cứu không liên quan đến thứ tự việc đưa vào thứ tự thích hợp làm cho trình bày vấn đề trở nên rõ ràng ngắn gọn (ví dụ chứng minh định lí Caristi trình bày luận văn) Trong giải tích ta thường gặp phương trình với tốn tử khơng liên tục khơng compăc việc chứng minh tồn nghiệm chúng nhờ phương pháp tôpô (như phương pháp điểm bất động , phương pháp biến phân, ) gặp khó khăn Để khắc phục ta buộc phải khai thác tính chất khác tốn tính chất đại số tính chất liên quan đến thứ tự, 316 2 ĐẠI SỐ VÀ SIGMA ĐẠI SỐ Định nghĩa Cho tập X tùy ý khác rỗng Ta gọi P (X) tập hợp tất tập X Gọi A∗ họ tập X A∗ gọi đại số tập X A∗ thỏa ba tiên đề sau: X ∈ A∗ ∀A ∈ A∗ ⇒ Ac ∈ A∗ (Đóng kín với phép tốn lấy phần bù) ∀A, B ∈ A∗ , A ∪ B ∈ A∗ (Đóng kín với phép tốn hợp) Định nghĩa Cho tập X tùy ý khác rỗng Ta gọi P (X) tập hợp tất tập X Gọi A∗ họ tập X A∗ gọi σ - đại số tập X A∗ thỏa mãn ba tiên đề sau: X ∈ A∗ ∀A ∈ A∗ ⇒ Ac ∈ A∗ (Đóng[kín với phép toán lấy phần bù) ∀A1 , A2 , , An , ∈ A∗ ⇒ Ai ∈ A∗ i≥1 Dựa vào hai định nghĩa ta có nhận xét Nhận xét Khái niệm "đại số tập tập X " khái niệm "σ - đại số tập X " gần với Điều thể qua giống hai tiên đề Sự khác biệt hai khái niệm tiên đề số Đối với "đại số tập X hợp "HỮU HẠN" phần tử thuộc A∗ phần tử thuộc A∗ Còn "σ - đại số tập X " hợp "VÔ HẠN" phần tử A∗ phần tử thuộc A∗ Mệnh đề Cho X tập tùy ý khác rỗng Gọi A∗ "đại số tập X " Khi đó: ∅ ∈ A∗ Hợp hữu hạn phần tử thuộc A∗ phần tử thuộc A∗ n [ ∗ Hay A1 , A2, , An ∈ A ⇒ Ai ∈ A∗ i=1 Giao hữu hạn phần tử thuộc A∗ phần tử thuộc A∗ (Đóng kín với phép toán giao) n \ ∗ Hay A1 , A2, , An ∈ A ⇒ Ai ∈ A∗ i=1 Đóng kín với phép tốn hiệu nghĩa là: ∀A, B ∈ A∗ ⇒ A\B ∈ A∗ Đóng kín với phép toán lấy hiệu đối xứng nghĩa là: ∀A, B ∈ A∗ ⇒ A△B ∈ A∗ Định lý Cho tập X khác rỗng Giả sử X có phép tốn α Phép tốn α gọi đóng kín với tập X ta lấy hai phần tử thuộc X , thao tác qua phép toán ta phần tử phần tử thuộc X Để dễ hiểu ta lấy ví dụ đơn giản Trên tập N có phép tốn cộng thơng thường Ta lấy hai phần tử thuộc N (lấy hai số tự nhiên) Dễ thấy cộng hai số tự nhiên số tự nhiên số tự nhiên thuộc N Như ta nói N đóng kín với phép cộng Trong trường hợp tổng qt tập X Tiếp theo ta chứng minh ý mệnh đề Chứng minh: Vì X ∈ A∗ (Tiên đề 1) nên X c = ∅ ∈ A∗ (Tiên đề 2) Ta quy nạp dựa theo tiên đề có điều phải chứng minh ∀A, B ∈ A∗ ta có Ac , B c ∈ A∗ Khi (Ac ∪ B c ) ∈ A∗ ⇒ [(Ac ∪ B c )]c ∈ A∗ hay A ∩ B ∈ A∗ Từ ta quy nạp lên giao hữu hạn phần tử có điều phải chứng minh Chưa chứng minh Chưa chứng minh Cấu trúc nhóm số nhóm hữu hạn Cho nhóm nhị diện Dn = ⟨r, s | rn = s2 = 1, s−1 rs = r−1 ⟩ với n ⩾ Ký hiệu Rk , Tl , Ui,j nhóm Dn có dạng sau Rk = ⟨rk ⟩, Tl = ⟨rl s⟩, Ui,j = ⟨ri , rj s⟩ với ⩽ k ⩽ n, ⩽ l ⩽ n − 1, ⩽ i ⩽ n − 1, ⩽ j ⩽ n − Sau số tính chất nhóm nhị diện, xem [?] Mệnh đề Cho nhóm nhị diện Dn = ⟨r, s | rn = s2 = 1, s−1 rs = r−1 ⟩ với n ⩾ Khi (i) Rk nhóm xiclíc cấp n , d = (n, k), với ⩽ k ⩽ n; d (ii) Tl nhóm xiclíc cấp với ⩽ l ⩽ n − 1; (iii) Ui,j nhóm nhị diện cấp 2n , d = (n, i), với i|n, ⩽ i ⩽ n− d ⩽ j ⩽ n − Mệnh đề Cho nhóm nhị diện Dn = ⟨r, s | rn = s2 = 1, s−1 rs = r−1 ⟩ với n ⩾ Khi (i) Nếu n lẻ CDn (ri ) = R1 , CDn (1) = Dn , CDn (rj s) = Tj với ⩽ i ⩽ n − 1, ⩽ j ⩽ n − 1; (ii) Nếu n chẵn CDn (1) = Dn , CDn (rm ) = Dn , CDn (ri ) = R1 , CDn (rj s) = Um,j n với m = , ⩽ i ⩽ n − 1, i ̸= m, ⩽ j ⩽ n − Mệnh đề Cho nhóm nhị diện Dn = ⟨r, s | rn = s2 = 1, s−1 rs = r−1 ⟩ với n ⩾ 3, H nhóm nhóm Dn Khi H nhóm sau Rk = ⟨rk ⟩, Tl = ⟨rl s⟩, Ui,j = ⟨ri , rj s⟩ với k|n, ⩽ k ⩽ n, ⩽ l ⩽ n − 1, i|n, ⩽ i ⩽ n − 1, ⩽ j ⩽ i − Cho nhóm quaternion suy rộng Q4n = ⟨r, s | r2n = 1, s2 = rn , s−1 rs = r−1 ⟩ với n ⩾ Ký hiệu Rk , Ui,j nhóm Q4n có dạng sau Rk = ⟨rk ⟩, Ui,j = ⟨ri , rj s⟩ với ⩽ k ⩽ 2n, ⩽ i ⩽ 2n, ⩽ j ⩽ 2n − Sau số tính chất nhóm quaternion suy rộng, xem [?] Mệnh đề Cho nhóm quaternion suy rộng Q4n với n ⩾ Khi 2n , d = (2n, k), với ⩽ k ⩽ 2n; d 4n , d = (n, i), (ii) Ui,j nhóm quaternion suy rộng cấp d với ⩽ i ⩽ 2n, ⩽ j ⩽ 2n − (i) Rk nhóm xiclíc cấp Mệnh đề Cho nhóm Quaternion suy rộng Q4n với n ⩾ Khi CQ4n (1) = CQ4n (rn ) = Q4n , CQ4n (ri ) = R1 , CQ4n (rj s) = Un,j với ⩽ i ⩽ 2n − 1, i ̸= n, ⩽ j ⩽ 2n − Mệnh đề Cho nhóm quaternion suy rộng Q4n với n ⩾ 2, H nhóm Q4n Khi H nhóm sau Rk = ⟨rk ⟩, Ui,j = ⟨ri , rj s⟩ với k|2n, ⩽ k ⩽ 2n, ⩽ i ⩽ n, i|n, ⩽ j ⩽ i − Cho nhóm giả nhị diện n n−1 SD2n = ⟨r, s | r2 = s2 = 1, s−1 rs = r2 −1 ⟩ với n ⩾ Ký hiệu Rk , Tl , Ui,j nhóm nhóm giả nhị diện SD2n có dạng sau Rk = ⟨rk ⟩, Tl = ⟨rl s⟩, Ui,j = ⟨ri , rj s⟩ với ⩽ k ⩽ 2n , ⩽ l ⩽ 2n − 1, ⩽ i ⩽ 2n − 1, ⩽ j ⩽ 2n − Sau số tính chất nhóm giả nhị diện, xem [?] Mệnh đề Cho nhóm giả nhị diện SD2n với n ⩾ Khi (i) Rk nhóm xiclíc cấp 2n d = (2n , k), với ⩽ k ⩽ 2n ; d (ii) Tl nhóm xiclíc cấp l chẵn, cấp l lẻ với ⩽ l ⩽ 2n − 1; (iii) Ui,j nhóm giả nhị diện i lẻ với ⩽ i ⩽ 2n − 1, ⩽ j ⩽ 2n − 1; Ui,j nhóm nhị diện i chẵn j chẵn, nhóm quaternion tổng quát i chẵn j lẻ với ⩽ i ⩽ 2n − 1, i ̸= 2n−1 , ⩽ j ⩽ 2n − 1; Với i = 2n−1 , Ui,j nhóm xiclíc cấp j lẻ, Ui,j ∼ = C2 × C2 j chẵn 2n+1 Trong tất trường hợp nhóm Ui,j có cấp d n d = (2 , i) Mệnh đề Cho nhóm giả nhị diện SD2n với n ⩾ Khi CSD2n (1) = CSD2n (r2 n−1 ) = SD2n , CSD2n (ri ) = R1 , CSD2n (rj s) = U2n−1 ,j với ⩽ i ⩽ 2n − 1, i ̸= 2n−1 , ⩽ j ⩽ 2n − Mệnh đề 10 Cho nhóm giả nhị diện SD2n với n ⩾ 3, H nhóm SD2n Khi nhóm H SD2n nhóm sau (i) Rk = ⟨rk ⟩ với ⩽ k ⩽ 2n ; (ii) Tl = ⟨rl s⟩ với ⩽ l ⩽ 2n − l chẵn, ⩽ l ⩽ 2n−1 − l lẻ; (iii) Ui,j với ⩽ i ⩽ 2n−2 , i|2n , ⩽ j ⩽ i−1, U2n−1 ,j với ⩽ j ⩽ 2n−1 − 1, j chẵn Các cận cho độ giao hoán tương đối nhóm Mệnh đề sau cho ta cận cận cho độ giao hoán tương đối nhóm nhóm Mệnh đề 11 Cho H nhóm G, p ước nguyên tố nhỏ |G| Khi |Z(G) ∩ H| p(|H| − |Z(G) ∩ H|) |Z(G) ∩ H| + |H| + ⩽ Pr(H, G) ⩽ |H| |H||G| 2|H| Chứng minh Đặt K = Z(G) ∩ H Khi theo Mệnh đề ?? ta có X X X |H||G| Pr(H, G) = |CG (x)| = x∈H |CG (x)| + x∈K = |K||G| + X |CG (x)| x∈H\K |CG (x)| x∈H\K Rõ ràng x ∈ H \ K {1} ⊊ CG (x) ⊊ G p ⩽ |CG (x)| ⩽ Do p(|H| − |K|) ⩽ X x∈H\K |CG (x)| ⩽ (|H| − |K|) |G| |G| Cho nên |K||G| + p(|H| − |K|) ⩽ |H||G| X |CG (x)| ⩽ |K||G| + (|H| − |K|) x∈H\K |G| Từ suy |K| p(|H| − |K|) |K| |H| − |K| + ⩽ Pr(H, G) ⩽ + , |H| |H||G| |H| 2|H| ta có cơng thức cần chứng minh Rõ ràng độ giao hốn tương đối nhóm nhóm giao hốn Kết sau cho ta cận cho độ giao hốn tương đối nhóm một nhóm khơng giao hốn Mệnh đề 12 Cho G nhóm khơng giao hốn H nhóm G Khi (i) Nếu H ⊆ Z(G) Pr(H, G) = Hơn nữa, H nhóm khơng giao hốn Pr(H, G) ⩽ (ii) Nếu H ⊈ Z(G) Pr(H, G) ⩽ Chứng minh X (i) Vì H ⊆ Z(G) nên |CG (x)| = |H||G| Do x∈H Pr(H, G) = 1 X |CG (x)| = |H||G| = |H||G| |H||G| x∈H (ii) Giả sử H ⊈ Z(G) Khi dó Z(G) ∩ H ⊊ H , Cho nên |Z(G) ∩ H| ⩽ |H| Áp dụng Định lý 10 ta |H| + |H| |Z(G) ∩ H| + |H| ⩽ = Pr(H, G) ⩽ |H| |H| Giả sử H không nhóm giao hốn Khi theo Mệnh đề ?? ta có Pr(H) ⩽ Do đó, theo Định lý ?? ta có Pr(H, G) ⩽ Pr(H) ⩽ 8 Vậy ta có điều phải chứng minh Kết sau mơ tả cấu trúc nhóm trường hợp đạt đươc cận Mệnh đề 11 Mệnh đề 13 Cho H nhóm nhóm G Khi đó: H/(Z(G) ∩ H) ∼ = Z2 ; (ii) Nếu Pr(H, G) = H khơng giao hốn H/(Z(G)∩H) ∼ = Z2 × Z2 (i) Nếu Pr(H, G) = Chứng minh (i) Giả sử Pr(H, G) = Khi đó, theo Định Lý 10 ta có |Z(G) ∩ H| + |H| |Z(G) ∩ H| = Pr(H, G) ⩽ = + 2|H| 2|H| Từ suy |H| ⩽ |Z(G) ∩ H| |H| = |H| = |Z(G) ∩ H|, từ suy H ⊆ Z(G) Khi |Z(G) ∩ H| theo Mệnh đề 11 (i) ta có Pr(H, G) = Điều mâu thuẫn với giả |H| = 2, H/(Z(G) ∩ H) ∼ thiết Do = Z2 , ta có điều |Z(G) ∩ H| Nếu phải chứng minh (ii) Giả sử Pr(H, G) = Bằng cách lập luận tượng tự ta suy |H| ⩽ |Z(G) ∩ H| Vì Z(G) ∩ H ⩽ Z(H) nên H/Z(H) ⩽ H/(Z(G) ∩ H) Vì H khơng giao hốn nên H/Z(H) khơng nhóm xiclíc Do H/(Z(G) ∩ H) khơng nhóm xiclíc Từ suy |H| ⩾ |Z(G) ∩ H| Điều chứng tỏ |H| = 4, |Z(G) ∩ H| N |CN (y)| S∈G/N y∈S |CN (y)| S∈G/N y∈S 63 Áp dụng Bổ đề ?? từ suy X X X X |H||G| Pr(H, G) ⩽ |CH/N (yN )||CN (y)| = |CH/N (S)| |CN (y)| S∈G/N y∈S = X S∈G/N |CH/N (S)| X x∈N S∈G/N X |CS (x)| = |CH/N (S)| S∈G/N y∈S X |S ∩ CG (x)| x∈N Nếu S ∩ CG (x) ̸= ∅ tồn x0 ∈ S ∩ CG (x) S = N x0 Khi ta có S ∩ CG (x) = N x0 ∩ CG (x)x0 = (N ∩ CG (x))x0 = CN (x)x0 Từ suy |S ∩ CG (x)| = |CN (x)x0 | = |CN (x)| Nếu S ∩ CG (x) = ∅ rõ ràng = |S ∩ CG (x)| < |CN (x)| Do trường hợp ta có |S ∩ CG (x)| ⩽ |CN (x)| Từ suy X X X X |CH/N (S)| |S ∩ CG (x)| ⩽ |CH/N (S)| |CN (x)| |H||G| Pr(H, G) ⩽ x∈N S∈G/N S∈G/N x∈N = |H/N ||G/N | Pr(H/N, G/N )|N | Pr(N ) = |H||G| Pr(H/N, G/N ) Pr(N ) Do Pr(H, G) ⩽ Pr(H/N, G/N ) Pr(N ) Cuối cùng, giả sử N ∩ [H, G] = Ta chứng minh xảy dấu đẳng thức Khi đó, theo Bổ đề ?? ta có CH (y)N = CH/N (yN ) với y ∈ G N Theo lập luận ta có |H||G| Pr(H, G) = X S∈G/N |CH/N (S)| X |S ∩ CG (x)| x∈N Vì N ◁ G [N, G] ⩽ N Do từ giả thiết suy [N, G] = N ∩ [N, G] ⩽ N ∩ [H, G] = 1, hay N ⩽ Z(G) Từ suy CG (x) ∩ S = G ∩ S ̸= ∅ với x ∈ N với S ∈ G/N 64 Do |S ∩ CG (x)| = |CN (x)| với x ∈ N Từ suy xảy dấu đẳng thức Trong trường hợp đặc biệt, tích trực tiếp ta có kết sau Mệnh đề 63 Cho N H hai nhóm, N1 H1 tương ứng nhóm N H Khi Pr(N1 × H1 , N × H) = Pr(N1 , N ) Pr(H1 , H) Chứng minh Giả sử x = (x1 , x2 ) ∈ N1 × H1 Khi CN ×H (x) = {(a1 , a2 ) ∈ N × H | (x1 , x2 )(a1 , a2 ) = (a1 , a2 )(x1 , x2 )} = {(a1 , a2 ) ∈ N × H | (x1 a1 , x2 a2 ) = (a1 x1 , a2 x2 )} Do |CN ×H (x)| = |CN (x1 )||CH (x2 )| Từ suy X X |CN ×H (x)| = x∈N1 ×H1 X |CN (x1 )| x1 ∈N1 |CH (x2 )| x2 ∈H1 Áp dụng Mệnh đề ?? ta có Pr(N1 × H1 , N × H) = |N1 × H1 ||N × H| X |CN ×H (x)| x∈N1 ×H1 = X X |CN (x1 )| |CH (x2 )| |N1 ||H1 ||N ||H| = |N1 ||N | x1 ∈N1 X |CN (x1 )| x1 ∈N1 x2 ∈H1 X |CH (x2 )| |H1 ||H| = Pr(N1 , N ) Pr(H1 , H) Vây ta có điều phải chứng minh Đặc biệt, ta có kết sau Hệ 22 Cho H N hai nhóm Khi Pr(H, N × H) = Pr(H) x2 ∈H1 65 Đối với tích nửa trực tiếp vấn đề tính độ giao hốn tương đối trở nên phức tạp nhiều Trong phần lại mục ta trường hợp đặc biệt Mệnh đề sau cho ta cơng thức tính độ giao hốn tương đối nhóm abel với tích nửa trực tiếp nhóm xiclíc cấp Mệnh đề 64 Cho A nhóm giao hốn, α tự đẳng cấu A cho α2 = idA C2 = ⟨u⟩ nhóm xiclíc cấp với u phần tử sinh Ký hiệu G = θ C2 tích nửa trực tiếp A nhóm xiclíc C2 = ⟨u⟩ với tác động θ : C2 → Aut(A) cho công thức θ(u) = α Khi Pr(A, G) = |Aα | + 2|A| Aα = {a ∈ A | α(a) = a} Chứng minh Giả sử x = (x1 , 1) ∈ A Khi ta có CG (x) = CA (x) ∪ CG\A (x) Vì A nhóm giao hốn nên CA (x) = A Ta có CG\A (x) = {(a, u) ∈ G \ A | (x1 , 1)(a, u) = (a, u)(x1 , 1)} = {(a, u) ∈ G \ A | (x1 a, u) = (aθ(u)(x1 ), u)} = {(a, u) ∈ G \ A | (ax1 , u) = (aα(x1 ), u)} Ta xét hai trường hợp x1 sau Trường hợp 1: x1 ∈ Aα Khi aα(x1 ) = ax1 với a ∈ A Do |CG\A | = |A| Trường hợp 2: x1 ∈ A \ Aα Khi aα(x1 ) ̸= ax1 với a ∈ A Do CG\A = ∅, |CG\A | = Từ suy X X X X |CG (x)| = x∈A (|CA (x)| + |CG\A (x)|) = x∈A = |A|2 + |CA (x)| + x∈A X x∈Aα |CG\A (x)| + X |CG\A (x)| x∈A\Aα = |A|2 + |A||Aα | + = |A|(|A| + |Aα |) |CG\A (x)| x∈A 66 Theo Mệnh đề ?? ta có Pr(A, G) = X |CG (x)| |A||G| x∈A = |A| |C2 | |A|(|A| + |Aα |) = |Aα | |A| + |Aα | = + 2|A| 2|A| Vậy ta có điều phải chứng minh 22 Một số kết liên quan Trong toàn luận văn, ký hiệu J(R) Jacobson vành R U (R) tập hợp tất phần tử khả nghịch vành R có đơn vị Trong [?], tác giả định nghĩa vành R gọi U J -vành + J(R) = U (R) Cho S vành, khơng thiết phải có đơn vị, vị nhóm S◦ = (S, ◦) S tập hợp S với phép tốn ◦:S×S →S (x, y) 7→ x ◦ y = x + y − xy Mặt khác, S vành có đơn vị, S◦ đẳng cấu với vị nhóm (S, ) R với đẳng cấu ◦ : (S, ◦) → (S, ) x 7→ − x Cụ thể, y ∈ S khả nghịch vị nhóm S◦ (được gọi phần tử tựa khả nghịch hay phần tử tựa quy) − y phần tử khả nghịch vành S nhóm phần tử khả nghịch U (S) S đẳng cấu với nhóm U◦ (S) phần tử tựa khả nghịch S Phần tử nghịch đảo y S◦ gọi tựa nghịch đảo y Ta biết I = J(S) iđêan lớn S thỏa mãn U◦ (I) = I Bổ đề 14 ([?], Bổ đề 1.1) Các điều kiện sau tương đương vành R cho: 67 (1) U (R) = + J(R), hay R U J -vành; (2) U (R/J(R)) = {1}; (3) C(R) iđêan R (khi C(R) = J(R)), với C(R) tập phần tử tựa quy R; (4) rb − cr ∈ J(R), r ∈ R b, c ∈ C(R); (5) ru − vr ∈ J(R), u, v ∈ U (R) r ∈ R; (6) U (R) + U (R) ⊆ J(R) (khi U (R) + U (R) = J(R)) Một vành gọi hữu hạn Dedekind ab = ba = với a, b hai phần tử vành Mệnh đề 65 ([?], Mệnh đề 1.3) Cho R U J -vành Khi (1) ∈ J(R); (2) Nếu R thể, R ∼ = F2 ; (3) R rút gọn (khơng có phần tử lũy linh khác khơng) R giao hốn; (4) Nếu x, y ∈ R thỏa mãn xy ∈ J(R) yx ∈ J(R) xRy, yRx ⊆ J(R); (5) Giả sử I ⊆ J(R) iđêan R Khi R U J -vành R/I U J -vành; (6) R hữu hạn Dedekind; Y (7) Vành Ri U J -vành vành Ri U J -vành với i∈I i ∈ I Một vành R gọi nửa địa phương vành thương R/J(R) tổng trực tiếp iđêan phải cực tiểu Mệnh đề 66 ([?], Mệnh đề 1.4) Vành nửa địa phương R U J -vành R/J(R) ≃ F2 × × F2 68 Cho R vành có đơn vị Ta ký hiệu Mn (R) vành ma trận cấp n × n R Định lý 29 ([?], Định lý 3) Cho R vành tùy ý, có đơn vị n > Khi đó, phần tử Mn (R) tổng ba phần tử khả nghịch Mn (R) Cho R vành có đơn vị, phần tử a ∈ R gọi clean a có biểu diễn a = e + u e phần tử lũy đẳng R, u phần tử khả nghịch R Ta ký hiệu Cl(R) tập tất phần tử clean vành R Một vành R gọi clean R = Cl(R) Hệ 23 ([?], Hệ 1.7) Cho R vành Khi đó, điều kiện sau tương đương (i) R vành rút gọn; (ii) U (R[x]) = U (R); (iii) Cl(R[x]) = Cl(R) Cho R vành M song môđun vành R Một mở rộng tầm thường R M T (R, M ) = {(r, m) : r ∈ R m ∈ M }, với phép cộng theo thành phần phép nhân định nghĩa (r, m)(s, n) = (rs, rn + ms) Mệnh đề 67 ([?], Mệnh đề 4.9 (2)) Cho R vành M song môđun R Gọi T (R, M ) mở rộng tầm thường Khi tập phần tử khả nghịch T (R, M ) U (T (R, M )) = T (U (R), M ) Một vành R gọi I -vành iđêan phải lũy linh khác khơng chứa phần tử lũy đẳng khác không Một hệ n2 phần tử {eij } vành R gọi hệ ma trận khả nghịch ( j ̸= j ′ eij ej ′ k = ejk j = j ′ 69 Định lý 30 ([?], Định lý 2.1) Cho R I -vành Nếu a phần tử lũy linh cấp n (nghĩa an = 0, an−1 ̸= 0) an−1 ∈ / J(R) iđêan (a) sinh a chứa hệ n ma trận khả nghịch 23 Nhóm nhị diện Mệnh đề 68 Cho nhóm nhị diện Dn = ⟨r, s | rn = s2 = 1, s−1 rs = r−1 ⟩ với n ⩾ 3, H nhóm Dn Khi (i) Nếu H = Rk với k|n, ⩽ k ⩽ n Pr(H, Dn ) =  n+k   n n lẻ, n chẵn k ∤ , 2n   n + 2k n chẵn k | n 2n (ii) Nếu H = Tl với ⩽ l ⩽ n − Pr(H, Dn ) =  n+1   n lẻ, 2n   n + n chẵn 2n (iii) Nếu H = Ui,j với i|n, ⩽ i ⩽ n − 1, ⩽ j ⩽ i − Pr(H, Dn ) =  n+i+2     4n         n lẻ, n+i+4 n n chẵn i ∤ , 4n n + 2i + n n chẵn i | 4n Chứng minh (i) Giả sử H = Rk với k|n, ⩽ k ⩽ n Theo Mệnh đề ?? ta có |Rk | = Do k Rk = ⟨r ⟩ =  n n = (n, k) k  n r ⩽ l ⩽ − k kl

Ngày đăng: 05/07/2023, 15:52

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w