Socialpresence
Argyle and Dean (1965) define social presence through the concept of "immediacy behavior," which is essential for fostering intimacy in communication Researchers have noted that the social presence of a medium is determined by its ability to convey information such as facial expressions, posture, and non-verbal cues (Short et al., 1976) This definition has evolved to describe the extent to which users can perceive others as psychologically present (Fulketat, 1987) Social presence is linked to mediated communication, reflecting the properties of a medium and the participants' perceptions during interactions (Gunawardena, 1995) Ultimately, social presence represents the degree to which users feel the presence of others through interpersonal interactions, highlighting the awareness of another being's co-presence (Biocca and Nowak, 2011).
Many researchers explain socialpresenceonitsclose relationshiptoinformationrichness( R i c e etal.,1989;Straub,1994;StraubandKarahama,1998),whi chcentersontheinteractivityo f themedia(Sproulland Kiesler, 1986).G e f e n andStraub( 20 0
3 ), however,emphasize thepsychologicalconnection,wheresocialpresenceisconcerneda bout“humanwarmth”.Thus, thedeterminanto f s o c i a l p r e s e n c e r e l i e s o n amediumconveys o c i a b l e , warm,s e n s i t i v e , p e r s o n a l orintimateis(ShenandKhalifa ,2009)
A 2011 research summary consolidates thousands of previous studies on website design dimensions, highlighting the importance of "social cues" in enhancing user experience Specifically, humanlike cues, such as facial images of shop representatives and products displayed in emotional contexts, significantly influence social presence and evoke positive emotions Additionally, assistive interface features, including avatars and recommendation agents, play a crucial role in conveying social presence, although they are often overlooked in research Furthermore, social media cues, derived from non-experimental data such as customer ratings and interactions on platforms like Facebook and YouTube, contribute to the overall effectiveness of website design.
Online platforms such as blogs and forums significantly enhance social presence Research indicates that an increased sense of social presence can be fostered by stimulating users' imagination regarding interactions with others Studies reveal that technologies like personalization, recommendations, and consumer reviews create an environment where people feel they can engage, thereby boosting the social presence of websites This can be achieved through socially rich text and image content, personalized greetings, human audio and video, intelligent agents, or facilitating actual interactions with other users.
Socialpresencehassignificanceinconnectingusertoonlinestore.AccordingtoShena n d K h a l i f a ( 2 0 0 9 ) , i t i s a majord e s i g n p r i n c i p l e a n d i m p o r t a n t c o n c e p t i n e x p l a i n i n g ther elat io nship b e t w e e n o n l i n e communitya r t i f a c t a n d o n l i n e behaviori n m ultidimensionalo f psychologyi n c l u d i n g a w a r e n e s s , affectivea n d cognitives o c i a l p r e s e n c e T h e s e d i m e n s i o n s f o r m t h e overalls e n s e o f s o c i a l p r e s e n c e Rajasekhar a n d V i j a y a s r e e ( 2 0 1 2 ) c o n f i r m t h e emotionsa n d s o c i a b i l i t y p l a y s vitalr o l e i n psychologicalp e r s p e c t i v e s , t h e y a r e a p o t e n t i a l f a c t o r t o i n f l u e n c e t h e makingd e c is i o n processw h i l e i n m a k i n g a n d c o r r e c t i n g t h e p r o c e s s e f f e ct i vely.
Perceivedusefulness
The Technology Acceptance Model (TAM) has been extensively utilized to analyze online shopping environments, focusing on two key factors: perceived usefulness (PU) and perceived ease of use (PEOU) Perceived usefulness refers to the belief that using new technology enhances user performance, thereby improving the online shopping experience (Davis, 1989) TAM effectively predicts individual adoption and willingness to engage with technology (Rauniar et al., 2014) In the context of online platforms, high levels of PU and PEOU encourage users to interact with websites For instance, social media platforms like Facebook and Twitter attract millions of users due to their perceived usefulness as communication tools and their user-friendly interfaces that simplify navigation.
(2007)b u i l d i n g modelofOSAM(OnlineShoppingAcceptanceModel)whichpredictsande xplainsc o n s u m e r a c c e p t a n c e o f o n l i n e s h o p p i n g b y e x t e n d i n g t h e b e l i e f - a t t i t u d e i n t e n t i o n behaviorr e l a t i o n s h i p inTAMfromtheperspectivesthatarespecificto onlineshopping.Theresearchc a p t u r e s t h e c h a r a c t e r i s t i c s o f t h e p e r c e i v e d u s e f u l n e s s , n o t j u s t o n l y perceiveda genericinformationsystemsbutalsodeepintotheulti mategoalofanonlineshoppingwhichshowofft h e potentialbenefitssuchastermofconvenience,s earchability,andrichproductinformationenvironmenta s c o n c e p t o f “perceivedgain”(Bhatna garandG h o s e , 2004a,p 7 6 5 ) , w h i c h u n d e r l i e s theimportanceofreducingonlineshoppi nguncertaintyandrisks.
GrowthofInternetshoppingprimarilyis attributedtotheadvantagestheInternetprovidesovero t h e r t r a d i t i o n a l formso f retailing.Itsp o w e r f u l u t i l i t i e s empowerc o n s u m e r s w i t h thea b i l i t y t o a c c e s s a n d p e r f o r m t h e e n t i r e s h o p p i n g p r o c e s s anytime,a n y w h e r e T h u s , e a c h commercew e b s i t e , a n y w a y , c o n t r i b u t e s t o improveu s e r p e r f o r m a n c e i n s h o p p i n g o r informations e e k i n g bysavemoneya n d savetime.F u r t h e r m o r e , a t t e n d i n g o n l i n e shopping allowu s e r t o gett h e b e s t dealo r f i n d o u t a d e q u a t e informationeffectivelyr e l a t e d t o t hep r o d u c t s , suchthatenhancetheusefulnessofinternetshopping(David,1989).
Trustinanonlineenvironment
Trust is a complex and multifaceted concept that is challenging to define due to its dynamic nature (Ambrose and Johnson, 1998; Lewicki and Bunker, 1996) According to Rousseau et al (1998), the most widely accepted definition of trust is the "willingness of a party to be vulnerable to the actions of another based on the expectation that the other will perform a particular action important to the trustor" (p 394), as proposed by Mayer et al (1995) Furthermore, "the more trusting we are, the more willing we may be to take the risk of engagement/interaction" (Hassanein and Head, 2007, p 692) For example, consumers are more inclined to purchase products from a vendor they trust, believing that the vendor's promises can be relied upon and that their vulnerabilities will not be exploited (Geyskens et al., 1996).
Followingt o t h e a b o v e perceivedo f t r u s t d e f i n i t i o n , a p p l i c a t i o n t o t h e o n l i n e environment,manyresearchersdefineconceptsoftrustorconsumertrustinonlineshoppi ng.F o r i n s t a n c e , Leea n d T u r b a n ( 2 0 0 1 ) identifyconsumert r u s t i n Internets h o p p i n g a s “thew i l l i n g n e s s ofaconsumertobevulnerabletotheactionsofanInternetmerchantinanInter nett r a n s a c t i o n , basedontheexpectationthatthe
Internetmerchantwillbehaveincertainagreeablew a y s , irrespectiveoftheabilityoftheconsumersto monitororcontrolthatInternetmerchant”( p 7 9 ) Trustcanbeseenasreliabilityandtrustworthine ssofthee- vendorssupplyingproductso r services( H a s s a n e i n a n d H e a d , 2 0 0 7 ) M o r e s p e c i f i c a l l y , i t i s a s e r i e s o f s p e c i f i c b e l i e f s includingbelief of ability,beliefof benevolenceand belief ofcompetenceoftheonlinevendor( G e f e n , 2000).
Trusti s generallyimportanti n t h e a d o p t i o n o f n e w t e c h n o l o g i e s ( F u k u y a m a , 1995),i n c l u d i n g web(Gefen,1997)ande- commerce(Gefen,2000).Trustisanimportantaspectincommerce,ingeneral,becauseofth einherentuncertainlycreatedbytheneedtodependupon
10 othersinmanytypesofcommerceinteractions(Fukuyama,1995;Luhmann,1979;Williamson,1 9 8 5 ) andtheresulting possibilityof encountering opportunisticbehavior, suchas vendoris n o t candidlyrevealingalltheappropriate risks(Williamson, 1 98 5) orbehavinginanu n p r e d i c t a b l e manner(Luhmann,1 9 7 9 ) T h e samea p p l i e s t o e- commercew h e r e c o n s u m e r s n e e d todependuponoftentheunknowne- vendorswhomayresorttoopportunisticbehavior(Frederick,2000;Gefen,2000).
Inanonlineshoppingcontext,consumersmaybevulnerablethemselvesasdealingwithe - v e n d o r s whoarenottoengageinpotential,butclearlyundesirable, opportunistic be haviors u c h astheretailerstosellinformationaboutyoutounknownothers,
(MiyazakiandF e r n a n d e z , 2006),aproductorservicemaynotperformasexpectedandsuffe ringthelossofthedesiredbenefits(StoneandGronhaug,1993),purchasingunfairprice,una uthorizedtrackingoftransactionsandunauthorizeduseofcreditcardandpurchaseinform ation(Gefena n d Straub,2003).Similarly,Bhatnagaretal.
(2000)suggestthatthelikelihoodofpurchasingo n theInternetdecreases withincreasesinp roductrisk.Atonceperceivedoftheserisks,e - c o n s u m e r becomesu neas yt o acceptthe transaction, which mainlyca uses t h e failso f onlineshopping.Therefore,buildingtrustisespeciallyimportantintheonlineenvironmenttopos itivelyimpactconsumers’attitudesand purchasing intentions(Bartetal.,2005;Gefen&Straub,2 0 0 3 ; R o y e t a l , 2 0 0 1 ; vand e r H e i j d e n e t a l , 2 0 0 1 ; W a n g a n d Emuri an,2 0 0 5 ; H a s s a n e i n andHead,2007).
Enjoyment
Originatingfromthedefinition of “flowstate” (Csíkszentmihályi,1 99 0) , w h i c h m e n t a l s t a t e whenoneiscompletelyfocused,absorbed,andengagedinanactivity,othersresearche re x t e n d e d byplusenjoyment.ClarkeandHaworth(1994)statetheenjoymentoftheactivityiso n e ofveryimportantelementofflow.Theseauthorsdescribe“flow”asanexperiencethatistot all y satisfyingbeyondasenseofhavingfunandspecificbyaheightenedsenseofplayfulness.Therefore,enjoymentisresultsfromthefunandplayfulnessoftheonline shoppingexperience,reflectsconsumers’perceptionsregardingthepotentialentertainmento fInternetshopping.
Participanto n l i n e shopping,e- consumere x p e c t s t o r e c e i v e a s a t i s f a c t i o n t h e h u m a n demandw i t h t h e a p p l i c a t i o n o f t h e advantageo f hightechnology.“Onlines h o p p i n g i s a voluntaryandhedon icactivity,anduserparticipatebecausetheyareintrinsicallymotivated”(Shen,2 0 1 2, p 2 0
1 ) B e s i d e the eco no mic outcome,c o n s u m e r voluntarilyp a r t i c i p a t e s ina r e l a t i o n s h i p d u e t o l e i s u r e a c t i v i t y , w h i c h i s f u n a n d e n j o y a b l e ( M a t h w i c h , 2 0 0 2 ) T h i s i s a p ositivepsychologya c c o r d i n g t o t h e t h e o r y f l o w w h i c h a n e x p e r i e n c e thati s s o e n j o y a b l e s h o u l d leadtopositiveeffect andhappinessinthelongrun(Csíkszentmihályi,1990).Leeetal.
( 2 0 0 3 ) foundthatshoppinge n j o y m e n t andpurchasingc o n v e n i e n c e arethefactorssoc iopsychologicalvaluew h i c h c o n t r i b u t e s significantlyt o a t t a i n m e n t o n l i n e customers a t i s f a c t i o n Relationtothetechnologyadoption,theconceptofperceivedenjoymenthasbeend e f i n e d andmeasuredastheextenttowhichactivityofusingaspecificsystemisperceivedtob e enjo yableinitsownright,asidefromanyperformanceconsequencesresulting fromsystemu s e (Davisetal.,1992;Shen,2012).Usingsystemwithfunisalsolinktoperceivede ntertainmentvaluewhichreflectsthewebsiteabilitytoenhancetheexperienceofvisitortoaw e b s i t e
Synthesizingt h e previousr e s e a r c h , t h r e e l a t e n t dimensionso f enjoymentc o n c e p t areescapism,p l e a s u r e , a n d a r o u s a l ( M a t h w i c k e t a l , 2 0 0 1 ; M o n s u w e e t a l , 2 0 0 4 ) a n d e a c h o f constructspecifically impacttoconsumerattitudebyoffering anescapefro mthedemandof thedaytodayworld,feelingofhappiness,satisfactionandstimulationofaction. Monsuweeta l (2004)statesthat:
“IfconsumersareexposedinitiallytopleasingandarousingstimuliduringtheirInternets h o p p i n g ex pe ri ence, t h e y a r e t h e n morel i k e l y t o engagei n s u b s e q u e n t s h o p p i n g be h a v i o r : t h e y willbrowsemore,engageinmoreunplannedpurchasing,andseekoutmorestimulatingp r o d u c t s andcategories”(p.109)
Attitudeanditsdeterminants
ProminentpsychologistAllport(1935)hasbeen statedthatattitudesis"themostdistin ctiveandindispensableconceptincontemporarysocialpsychology"(p.798).Itexpressest h e f avorableordisfavorabletowardaparticularobject.Thus,itischangeableandaffect tothehumanemotionandbehavior.
This study focuses on attitude as an endogenous construct rather than behavioral intention for three main reasons First, it employs a controlled experimental design with manipulated fictitious websites, highlighting that participants were aware of the simulated nature of the experiment Measuring participants' behavioral intentions regarding purchasing from an artificial website may not be realistic; instead, it should capture their attitudes as predispositions that influence behavior (Hassanein and Head, 2007) Second, attitude is closely linked to consumer decision-making (Venkatesh and Brown, 2001), with research indicating that positive consumer attitudes significantly impact online shopping intentions (Hsu and Bentler, 2012) Additionally, a favorable attitude facilitates online transactions and reduces barriers to shopping (Jarvenpaa et al., 1999; Pavlou and Chai, 2002) Finally, attitude significantly influences behavioral intention when acceptance is voluntary (Davis et al., 1989; Hassanein and Head, 2007), particularly among experienced users (Karahanna and Straub, 1999; Yu et al., 2005) Thus, the participants in this study are experienced users engaged in online purchasing in a voluntary context.
TheoryofReasoned Actions(TRA)mentionsth at therea r e relationship be tw een indiv idual’sperformanceandbehavioralintention,whichisactuallydeterminedbytheindividual
’sattitude.Meanwhile,theTechnologyAcceptanceModel(TAM)focusesone x p l a i n i n g acceptanceofinformationsystems.DevelopingTAMtheories,theempiricalstudieshavep r o v e n t h a t u s e r ’ s a t t i t u d e t o w a r d h i g h t e c h n o l o g y i s i n f l u e n c e d b y t h e perceivedo f u s ef u l n es s andperceivedeaseofuse.
In 1994, it was suggested that the motivation for online shopping encompasses both utilitarian and hedonic dimensions Customers focus on purchasing products efficiently and in a timely manner to achieve their goals, while also seeking enjoyment, fun, and satisfaction from the online shopping experience These two aspects significantly influence consumers' perceptions and attitudes towards internet shopping (Monsuwe et al., 2004).
Meanwhile,manypreviousstudieshavesummarizedothersignificantfactorsthatcouldi n f l u e n c e consumers’a t t i t u d e t o w a r d o n l i n e s h o p p i n g s u c h a s s e c u r i t y , privacy,afte r- s a l e s service,marketingmix,a n d r e p u t a t i o n Inthisinvestigation,however,w e f o c u s o n t h r e e familiarlydimensionofattitudewithinthewebcontext:TAMconstructs(perceivedusefulnessa n d perceivedease of use); Trust;and Enjoyment.Thesefactorsaresignificantlyinfluenced bysocialpresenceaswell(HassaneinandHead,2007).
Purchaseintention
Online purchase intention is closely linked to the willingness to pay and user behavior during the decision-making process According to Pavlou (2003), it refers to a consumer's readiness to make online transactions without objections George (2004) elaborates that this intention encompasses the willingness to search, select, and purchase products online Khalifa and Limayem (2003) view internet purchase behavior as a process involving the acquisition of products, services, and information, grounded in earlier customer behavior theories However, George (2004) notes that many customers hesitate to embrace online shopping due to concerns about personal information and privacy This highlights the importance of understanding how customers make decisions regarding online purchases, which can be categorized into three stages: pre-purchase, purchase, and post-purchase (Sheth and Mittal, 2004) Understanding these stages is crucial for enhancing online purchase intentions.
H8 Enjoyment shoppingenvironmentparticularlydecidethepowerofaconsumer’sintentiontodoap u r c h a s i n g behaviorviatheInternet(Salisburyetal.,2001).
Int h e s c o p e o f e - c o m m e r c e , T h e o r y o f R e a s o n e d Action(TRA),T h e o r y o f P l a n n e d Behavior(TPB),an dTechnologyAcceptanceModel(TAM)arefundamentalofknowledgeine x p l a i n i n g andpre dictingconsumers’intentiontowardsadoptinganonlineshoppingbehaviori n laterresearch(Dela froozetal.,2011).WhileTAMfocusesonuserwithconceptofperceivedu s e f u l n e s s a s a d e t e r m i n a n t o f a t t i t u d e , t h e r e s e a r c h e s b a s e d o n TRAa n d TPBdevelopinextendtopres entcognitiveprocessingandlevelofbehaviorchange.
HeritagefrommodelresearchofHassenienandHead(2007),hereauthordevelopsthemo delbycloserapproachmentalofinternetuserviapurchaseintentionwhichisanimportants t e p in makingbuyingdecision.Theproposedresearchframeworkandhypothesesarep r e s e n t e d i nfigure2.3
SocialpresenceandPerceivedofusefulness
Thereisapsychologicalconnectionbetween perceivingthatamediumiswarmanditsu s e f u l n e s s acrossarangeofcommunicationtasks(RiceandCase,1983;Steinfield,1986).In c o n c e r n e d abouttherelationshipbetweenperceivedsocialpresenceandperceivedusefulne ss,manyresearchershaveinvestigated.WhileGefenandStraub(2003)arenotableto showalinkb e t w e e n perceivedsocial presence andperceivedusefulness inane-
Servicescontext.Straub( 1 9 9 4 ) ; KarahannaandStraub(1999)haveconfirmedthatusers'socia lpresencehasapositivee f f e c t onperceivedusefulnessintheonline shoppingenvironment.Hassaneinand
Head(2007)an d Shen(2012)statesthat“socialpresenceconveysthroughthewebsiteeffectPU andPE”.T h u s , thereisenoughevidencetosuggestthefollowinghypothesis:
Socialpresenceandtrustinanonlineshopping
Trust is established within a social context, as noted by Fukuyama (1995) Simon (2001) emphasizes that "information richness and social presence are closely related concepts," suggesting that consumer-oriented websites rich in information can reduce ambiguity, enhance trust, lower perceived risk, and encourage purchases while minimizing consumer dissonance Gefen and Straub (2003) highlight that social presence significantly impacts online consumer trust and is essential for its development Designing websites with a higher social presence can lead to increased trust, as supported by research from Wang and Emurian (2005) and Hassanein and Head (2007) Consequently, enhancing social presence in e-commerce can foster greater trust, as customers are more influenced by direct relationships with online merchants than by indirect interactions.
Themostprominentpsychologicalimpactofsocialpresenceisenjoyment(LombardandD i t t o n , 1997).Heeter(1995)findsthatusersexperimentingwithavirtualrealityentertainment systemenjoyedthesystemmorewhentheyfeltastrongersenseofsocialpresence.Paststudieshavebeen proventhepositiverelationshipbetweensocialpresenceandperceivedenjoymento n apro ductwebsitesellingapparel(HassaneinandHead,2007),orinavirtualworldwebsite(Y e h etal.,20 11,Shen,2012).Therefore,authorhypothesizesthat:
Perceivedofusefulnessandattitude’scustomer
AccordingtotheTAM,perceivedusefulnessis thedegreeto whichapersonbelievesthatu s i n g a p a r t i c u l a r s y s t e m w o u l d e n h a n c e h i s o r h e r j o b performance.B a s e o n t h i s model,r e s e a r c h e r s h a s b e e n s h o w n t h e impacto f perceive du s e f u l n e s s o n a t t i t u d e ’ s customerinvariousf i e l d u s i n g o n l i n e t r a n s a c t i o n s u c h aso n l i n e ticketa i r l i n e ( R e n n y e t a l , 2 0 1 3 ) , e - banking(JarhangirandBegum,2007).InthewordsofDavis,Bagozzi,andWarshaw(1992),perc eivedusefulnessrefertoconsumers’perceptionsregardingtheoutcomeofanexperiencet h a t p r o c e s s torecognizeandconcludebenefitofuser.Asysteminhighperceivedusefulness,a s aresu lt,enhancestheexistenceofapositiveuse-performancerelationship.
Trustinanonlineshoppingandattitude’scustomer
Trust is a crucial factor in online shopping, significantly influencing consumers' intentions to adopt e-commerce (Gefen and Straub, 2000) It plays a vital role in reducing risk perceptions, making customers more comfortable sharing personal information (McKnight and Choudhury, 2006) Higher levels of trust in a company's website lead to more favorable attitudes towards the company and increased willingness to make purchases (Lian and Yang, 2002; Gefen and Straub, 2003; McKnight and Choudhury, 2006) Research highlights the direct relationship between trust and customer attitudes, emphasizing the importance of perceived risk in online retail environments.
(1999)findthatincreasingtrustreducetheperceivedrisk,andpositiveimpactt h e attitudetowardint ernetshopping.Thus,authorhypothesizesthat:
Enjoymentandattitude’scustomer
( 2 0 0 1 ) d e c l a r e “enjoyment”t o be a c o n s i s t e n t a n d s t r o n g predictorofa t t i t u d e t o w a r d o n l i n e shopping.Ifc o n s u m e r s e n j o y t h e i r o n l i n e s h o p p i n g e x p e r i e n c e , theyhaveam orepositiveattitudetowardonlineshopping,andaremorelikelytoadopttheInterneta s ashoppingme dium.Subsequently,thepriorresearches(GefenandStraub,2003;HassaneinandHead,2007;Sh en,2012)ha v e indicatedt h a t perceivedenjoymentcanpositively impactc o n s u m e r atti tudesofonlinevendorsandtheirwebsites.Supportingforthisview,researchofK i m and( 2 0 0
7 ) , showthatperceivedentertainmentandenjoymentvalueisastrongdeterminantofattitudeto wardproductvirtualizationtechnologies.Agreewithintheresultoft h e s e researches,authorhy pothesizesthat:
PerceivedusefulnessandPurchaseintention
Numerous studies have explored the factors influencing online purchasing intentions A key determinant is the perceived usefulness of the product or service, which significantly impacts a customer's intention to buy online (Atchariyachavanich et al., 2006) Humans tend to maximize the utility of information technology until they find it credible enough to influence their next actions Perceived usefulness plays a crucial role in motivating individuals to accept or reject objectives Furthermore, research has shown that perceived usefulness positively affects individuals' behavioral intentions toward computer usage (Davis et al., 1989) Therefore, it can be hypothesized that perceived usefulness is a vital factor in shaping online purchasing intentions.
Enjoymentandpurchaseintention
Inframeo f r e s e a r c h enjoymenta s a c o m p o n e n t c r e a t e s thef l o w e x p e r i e n c e , s e r i e s ofr e s e a r c h mentioneda b o u t theobviousi m p a c t o f e - s a t i s f a c t i o n o n u s e r i n t e n t i o n t o r e v i s i t a w e b s i t e Childers etal. (2001)confirmthatenjoyment,entertainment,andhumorare importantf a c t o r s t o e n h a n c e c o n s u m e r s ' revisitingi n t e n t i o n s t o W e b sites.T h e y a g r e e s w i t h i d e a t o c r e a t e moreenjoyableonlineshoppingcontextsthroughimages,color,h umor,animation,ando t h e r interactivefeatureswouldhelpoutstandingonlineshopping.More over,enjoymentimpliedbyperceivedp l a y f u l n e s s ( K o u f a r i s a n d H a m p t o n -
S o s a , 2 0 0 2 ) a n d t h e c o n s u m e r ’ s h e d o n i c orientation(Delafrooz1etal.,2011)hasbee nprovensignificantlyimpactonpurchasei n t e n t i o n Hence,authorhypothesizesthat:
Attitudeandpurchaseintention
According to Yuan and Wu (2007), a positive attitude significantly increases the intention to shop online, while a negative attitude leads to lower behavioral intention Donthu and Garcia (1999) found that consumer innovativeness positively influences online shopping behaviors and intentions, with attitude serving as a mediator Researchers such as Vijayasarathy (2003), Chang and Chen (2008), and Delafrooz et al (2011) have extensively utilized the Theory of Planned Behavior and the Technology Acceptance Model (Davis, 1989; Vijayasarathy, 2003) to explain and predict online shopping attitudes and intentions Collectively, these studies affirm that attitude has a significant positive impact on online shopping intentions and behaviors Therefore, the authors hypothesize that:
Conclusion
Samplemethod
Anempiricalstudywasconductedtovalidatetheproposedresearchmodelandtestou rp r o po sed hypotheses.Thereweretotal22items,whichmeasuredsixconceptual.Thesa mpleestimatedaround300participantsinthesurvey.Subjectgavethetaskofpurchasingaprese ntf o r friendonjewelryonlinestores.
Surveyquestions weresentbyemailortheothersocial networksuchasfacebook,skype,y a h o o etctopeoplewhohadknownorexperiencebuyingprodu ctsinonlinestoresinHoChiMi n hCity.Threewebsiteswereintentionallydesignedpresentthre elevelsofsocialpresence.T h e firstonewassimpleinterfacewithproductandbasicinformationo fproduct(price,code,materialetc).The secondoneadded t he socialrichtextand picture.The lastonedisplay allcontendofthesecondbutpluswithcustomerratingandrecommendation.Accordingly,p a r t i c i p a n t s w e r e dividedi n t h r e e g r o u p s w h i c h 1 0 0 membersi n e a c h g roupt o a n s w e r thesurveyattachmentofthewebsitesinterfacepresentthreelevelsofsocialpresentasap pendixC.
Questionnaireadministration
Therewere292people takepartinanswering thissurvey.However,authoronlychose
35asaspecificsegmentcustomerinthisonlinestore.Becausetheseusershaveadvantageinusinginte rnetapplicationa n d havehighdemandinbuyingonline.Theotherswereexcludedinthisinvestigat ion.Alloft h e s e validdatawereinputinSPSS20andAMOSS22 inordertoprocessanalysisstatistics.3.6 Dataanalysismethod
Contruct reliability(Cronbach’sAlpha)
Accordingt o C o n n e l y ( 2 0 1 1 ) , Cronbach’salphawasu s e d a s o n l y o n e c r i t e r i o n f o r judginginstrumentsor scales.Itwascommonly used asan estimateoftheconstructreliability.InbookofSPSSforintermediatestatistics,Nancy,KarenandGoer ge(2005) indicatedthatthismethodwaswidelyappliedbecause itsuppliedameasureofreliabilitythatcouldbevalidfromonetestingsessionoroneadministrationofaque stionnaire.
Contructvalidity-Exploratoryfactoranalysis(EFA)
Norrisa n d Lecavalier( 2 0 1 0 ) s u p p o s e d t h a t “EFAi s b a s e d u p o n a t e s t a b l e modelan dc o u l d beevaluatedintermsofitsfittothehypothesizedpopulationmodel;fitindicescouldbegenera tedtohelpwithmodelinterpretation”(p.9).Moreover,analysisdataaccessingbyEFAh e l p ed t oidentifylatentconstructsunderlyinga setofmanifestvariables.Inthismethod,we paidatte ntiontotesttheconvergentanddiscriminantvalidityof
ANOVA
Duetoobjectiveofresearchtoidentifytheimpactof socialpresencethroughthreelevelso f websiteinterface,dataanalysisexhibitedthedifferen cesinmeansfromeachothergroupscor r espo nd ence t o eachlevelf o r s t a t i s t i c a l significan ce.AnAnova,s t a n d f o r “analysisofvariance”,wasconductedinordertocomparesimultaneouslythr eelevelsofsocialpresence.
Thestructuralequationmodel(SEM)
SEMw a s useda s t h e mainmethodf o r a n a l y z i n g t h e r e s e a r c h modelb y t e s t i n g theassumedcausationamongasetofdependentandindependentvariables.Throughthismethod, w e couldfindout therelationship betweenconceptualandlevelofeachconceptual totheotheri n researchmodel.Specially,authornotedtheindicesofmodelfitsuchasChi-
Square,RMSEA,TLI,CFI,SRMR.
Thisc h a p t e r s h o w e d t h e methodsr e s e a r c h u s e d i n t h i s t h e s i s Accordingt o t h i s , thesurveyquestionwasbuiltupfromthepriorresearchandconfirmviaqualitativeresearch.Then,q uantitativeresearchwasconductedbysendingsurveytoparticipantviainternet.Numberofd a t a c o l l e c t i o n w a s t o t a l l y mett h e requiremento f a n a l y s i s methodinSPSSa n d AMOSs o f t w a r e Allm e t h o d a n a l y s i s i n c l u d i n g c r o n b a c h ’ s a l p h a , EFA,Anovaa n dSEMw e r e theb a s i c testingtoexplaintheoutcomeofresearchinnextchapter.
Thischapterfocusedont he analysis andinterpretationofdatathatwas collected. Firstpart,r e s p o n d e n t s d e m o g r a p h i c demonstratedthec h a r a c t e r s ofdatabyu s i n g t h e SPSS–
The statistical analysis involved testing the reliability of the scale of contrast using Cronbach's alpha and assessing validity primarily through Exploratory Factor Analysis (EFA) Additionally, an ANOVA test was performed to establish a precedent for manipulating social presence across three levels The model's fit was evaluated by testing mediators, Structural Equation Modeling (SEM), and bootstrapping techniques Finally, hypothesis testing was conducted to explore the relationships among the model's variables.
The purpose of this research was to focus on a specific customer segment, with participants aged between 23 and 35 years Descriptive statistics revealed that the gender distribution was relatively balanced, with females representing 58% and males 42% The educational attainment of respondents was notably high, with 81% holding a college or bachelor's degree, while 13% had post-graduate education and only 6% completed high school Income levels were primarily concentrated between 5 million and 10 million VND, with over half of the interviewees, or 55%, falling within this range, while the remaining participants had varied income levels, each at 15%.
V N D 5million,over10milliontoVND15million,andoverVND15million.Asexpectation, mostofrespondenthadexperiencewithinternetservice.Atlongesttimeexperiencepoint,thep e o p l e hadover6yearsusinginternet gotahighpercentat6 1 percent, following with4- 6i n t e r n e t e x p e r i e n c e got2 6 p e r c e n t a n d t h e l a s t w i t h 1 -
3 i n t e r n e t e x p e r i e n c e t o o k o n l y 1 3 percent.Over90percentrespondershadexperi encedinbuyingproductthroughonlines h o p p i n g channel,only7percenthadknownaboutt heonlineshoppingbuttheystillhadnotboughtanyproductfromonlineshoppingyet.
Construct reliability
Cronbach's alpha is widely recognized as the standard measure of internal consistency reliability for multi-item scales, as established by Crobach (2005) This metric evaluates whether the grouped items effectively sum to create the observed variables According to Rivard and Huff (1988), the reliability of this measure should exceed 0.5, with an ideal threshold of 0.7 In line with this, Nancy, Karen, and George (2005) also recommend that Cronbach's alpha should be above 0.7 for items to be considered collectively as a construct As indicated in Table 4.3.1, the alpha values ranged from 0.853 for social presence to 0.891 for perceived usefulness, demonstrating that the items formed scales with reasonable internal consistency reliability Thus, the research constructs successfully met the criteria for construct reliability.
ScaleMeanif ScaleVariance CorrectedItem- Cronbach'sAlpha ItemDeleted ifItemDeleted TotalCorrelation ifItemDeleted
Constructvalidity
The construct validity approach assesses how items are grouped and how well they reflect the underlying construct To identify which items cluster together or are answered similarly by participants, it is essential that these items exhibit high correlations among themselves (convergent validity) while showing low correlations with items from different constructs (discriminant validity) (Campbell, 1959; Straub and Karahanna, 1998).
Exploratoryf a c t o r a n a l y s i s (EFA)wasc o n d u c t e d t o t e s t a l l itemsi n measu rements c al e s Thefactoranalysisprogramgeneratedtheresult ofEFAforallitemsinresearchmodeli n appendixD.
The KMO (Kaiser-Meyer-Olkin) value for this analysis was 0.929, which is greater than the recommended threshold of 0.7, indicating that there are sufficient items for factor analysis Additionally, Bartlett's test yielded a significant value close to zero (less than 0.05), suggesting that the variables are highly correlated and suitable for factor analysis The Total Variance Explained indicated that the variance was distributed among 22 potential factors, with five factors having an Eigenvalue greater than 1, justifying their significance The first factor accounted for 50.8% of the variance, the second for 8.3%, the third for 6%, and the fourth for 5.2%.
To determine which constructs met convergent and discriminant validity, the author examined item loadings Items that exhibited high loadings on their respective factors and low loadings on unrelated factors were retained in the study According to Hair et al (as cited in Nguyen, 2009), observed variables should have factor loadings greater than 0.5 to ensure convergent validity, while those with lower loadings should be eliminated Additionally, for discriminant validity, cross-loadings must differ by more than 0.3; items failing to meet this criterion should also be removed The results are summarized in the Rotated Component Matrix (Appendix D), which compares the research model after item reduction.
The Principal Component Analysis method with varimax rotation revealed that items TR2, TR3, TR4, AT3, PU1, and EN1 had loadings exceeding 0.5, but also exhibited high loadings on other factors with gaps less than 0.3 Consequently, these items were excluded from the research model to enhance clarity The initial survey design indicated that most items demonstrated high loading in the constructs of social presence, enjoyment, perceived usefulness, and purchase intention, while items related to trust and attitude were omitted Additionally, AT1, AT2, and TR1 clustered together with strong loadings, supporting their conceptualization as belonging to the same factor As a result, these items were combined into a new factor termed "trust attitude" for subsequent analysis.
Theresultofanalysisshowedallloadingsachievedlevelofverygood(morethan0.63)a n d ex cellent(morethan0.7),accordingtoguidelinesofComreyandLee(1992).Hence,fivec o n s t r u c t s includedsocialpresence, perceivedusefulness, enjoyment,t r u s t attitude a n d p u r c h a s e intention- haddiscriminantvalidityandconvergentvalidity.Itconfirmedagaintheitemsa c c e p t e d i n t h i s s t e p w e r e e s s e n t i a l andr e t a i n s alli m p o r t a n t i n f o r m a t i o n fromtheoriginald ata.
PrincipalComponentAnalysis.RotationMethod:Varimaxwit hKaiserNormalization. a Rotationconvergedin6iterations.
Manipulatingvalidity
Inthisresearch, threegroupparticipantsrespondedthesurveywiththreewebsiteswhichw e r e purposefullydesignedt odisplaythreelevelsofsocialpresenceatlow,mediumandhighlevel.Becausecontrollingthepsyc hologicalcustomerbyincreasingsocialpresencewasc o n s i d e r e d atoolformarketingoronlineo wnerattracttheuserinteractwiththeirwebs.Suchth at, thevalidityofmanipulationofexperime ntaltreatmentwasidentifiedbysocialpresence
SPMedium 50852 * 17129 009 1042 9129 scale.Theresearchquestionwasthattherewasadifferenceinthreegroupsintermofsocialp r e se n c e AonewayAnovatestwasconductedwithoutputasappendixE.
The study analyzed social presence across three groups, revealing a mean score of 2.5 for low social presence, 4.17 for medium, and 4.68 for high social presence, indicating a clear distinction among the groups A homogeneity of variances test confirmed that the variances were consistent across the groups, with a Levene's statistic significance value of 0.61, which did not violate the assumption An ANOVA test showed a significance value close to 0, less than 0.05, and a post hoc Tukey test also indicated significant mean differences among the three levels of social presence The findings suggest that the differences observed across the three experimental websites are likely due to the manipulation of social presence rather than random variation.
AfterexaminingmeasurementscalebyusingmethodsofEFA,therearethreeobservedvariabl esoftrustscalewereremoved, exceptTR1waskeptinagroupwithtwoitemsAT1,AT2ofatt itudescale.Hence,thevariableoftrustwasremovedoutofresearchmodeldueto
H2 Enjoyment H6 unfittedmeasurementscale.Withthismodification,TR1,AT1andAT2togetherbecametoameas uremento f t h e newc o n s t r u c t , t r u s t a t t i t u d e T h i s f a c t o r d e p e n d e d o n t w o c o n s t r u c t s : perceivedusefulnessandenjoyment.Researchmodelwasadjustedwithfollowhypotheses: H1:SocialpresenceshavepositiveimpacttoperceivedusefulnessinonlineshoppingwebsiteH 2 : Social presenceshavepositiveimpacttoenjoymentinonlineshoppingwebsite
ThissectionpresentsresultofstructuralequationmodelbyusingAMOS22softwar epackage.W h i l e EFAonlyfocusedonthemeasurementscales,SE M showedwhathadbeent e r m ameasurementsmodel.“Expressedeitherdiagrammaticallyormathematicallyviasetofe q u a t i o n s ” (Barbara,2009,p.7),statisticmodelwasanefficientandconvenientovertraditionalmetho dsuchasmultipleregression.BesidethefitmodelindicesinSEM,modelvalidityalso assessedbyevaluatingthestructurepa th a n d R 2value andb o o t s t r a p at well(Oredein e t al.,2 0
Testofmediatingeffects
Inmodelproposed,perceivedusefulnessandenjoymentwereconsideredthemediatort h e impactofsocialpresencetoattitudeandpurchaseintention.Hereauthorfurtherexaminedth emediationviath e methodwh ich conductedi n r esea rc ho f Afthanorhane ta l
( 2 0 1 4 ) Ana n a l y s i s usingAmosswasusedforthesinglemodel,withdirectpathfromsocialpr esencetotr ust attitudeandpurchaseintention,andthemodeladdingthemediatingvariablesofperceive du s e f u l n e s s andenjoymentinturn,theresultwasreleasedastable4.5.1.Estimatevaluep r e s e n t e d t h e p a t h c o e f f i c i e n t o f e a c h p a i r c o n s t r u c t s F i r s t , c o m p a r i n g t h e r e s u l t b e t w e e n beforeandafterenteringthemediatorvariable,theeffectofsocialpresencetotrustattitud eandpurchase intentiondecreasefrom0.557to0.136fortrustattitudeandfrom0.604to0.111f orp u r c h as e intentionandbecameinsignificant(p- value=0.118,and0.244morethan0.05).M o r e o v e r , thepredictorsofattitudeandpurchaseintenti onalsoincreasedfrom0.289; 0.331to
0.537;0.487.This resultrevealedthatthem ed iat or effectwassup po rt ed tobe occurreda ndperceivedusefulnessandenjoymentwasindeedfullmediatorsinmodelresearch.
SEM
Structural Equation Modeling (SEM) is a powerful second-generation multivariate technique that enables the testing of psychometric properties of scales used to measure unobservable variables (constructs) and estimates parameters of a structural model, including the magnitude and direction of relationships among model variables (Gefen et al., 2000) When employing SEM, five key criteria must be met: (1) the normalized Chi-square value (χ2/df) should be less than 3; (2) Goodness-of-fit Index (GFI) values greater than 0.9 are typically considered acceptable, although values above 0.8 may be permissible in certain cases; (3) the Tucker-Lewis Index (TLI) should exceed 0.9.
(4)Comparativefiti n d e x (CFI)valuesabove0.9areusuallyrelatedtomodelthatfitswell;and(5)The Rootmeans q u a r e ofapproximately(RMSEA)valueshouldbebetween0.03and0.08.Standardi zerootmeans q u a r e r e s i d u a l (SRMR)w a s valueo f 0 1 o r l e s s i n d i c a t i n g o f a n a c c e p t a b l e model,ad ap t ed fromHuandBentler(1999).
Figure4 5 2 s h o w e d ther e s u l t s o f t h e s t r u c t u r a l model,i n c l u d i n g t h e p a t h a n d t h e i r s t a n d a r d i z e d regressionestimates.T h e observedn o r m a l i z e d C h i s q u a r e d f o r m e a s u r e m e n t modelwas1.849(chisquaresq7.570,df88,p- value=0.000)whichwassmallerthan3recommended.Otherfitindicesalsoshowedgoodfitforthe measurementmodel.Theg o o d n e s s - o f - f i t indexwas0.836, whichexceededtherecommendedcut- offlevelof0.8.TheTucker& Lewisindexwas0.901andthecomparativefitindexwas0.9 20,greater than0.9.T h e r o o t means q u a r e e r r o r was0 0 4 5 , e x c e e d i n g therecommendedcut- offlevelo f 0.1recommended.Thecombinationoftheseresultssuggeststhatthedemonstrated measurementmodelfitsthedatatoareasonabledegree.
Table4.5.2:Relationshipbetweenconstructsinrese a rch model(standardized)
ML Estimate Bootstrap Estimate Path
Intable4.5.2,standardizeregressionweightsdisplayedhowinfluencebetweendependentc o n s t r u c t s a n d i n d e p e n d e n t c o n s t r u c t s E a c h p a i r o f r e l a t i o n s h i p s h a d s i g n i f i c a n t l y d i f f e r e n t f r o m 0atthe0.001level(twotailed).
Bootstrap
Analyzingwiths t r u c t u r a l e q u a t i o n m o d e l i n g u s u a l l y request a lar ge sampleb u t i t alsoc o s t muchtimea n d m o n e y ( A n d e r s o n & G e r b i n g , a s c i t e d i n N g u y e n & N g u y e n , 2 0 0 8 ) B o o t s t r a p i s a s u i t a b l e methodt o r e p l a c e ( S c h u m a c k e r & Lom ax,a s citedi n N g u y e n &Nguyen,2008).ThisstudyusedbootstrapestimatewithsampleN=1 000.Resultswerep r e s e n t e d i n table4.5.3.Biasoftheseresultswereverysmall,thus,estimatesinthismodelhadr el i a b i l i t y validi ty.
Estimate S.E SE SE-SE Mean Bias SE-Bias
Testingtheh y p o t h e s i z e d modelfitt o t h e sampled a t a wast h e primaryt e s t i n modelt e s t i n g procedure(Barbara,2009).Accordingtheoriginalresearchmodel,therewere9p r o p o s e d hypotheses.However,theanalyticalresultsshowedsome measurementscalesdidnotf i t withdata,so,inmodifiedresearch,only7hypothesesweremeasu red.Theresultsofthesehypothesestestingpresentedthatallofthemweresupported (table4.6).
Hypothesis Path Result SE P Result
Hypothesis1and2assumedthatsocialpresencehadbothadirecteffectonperceivedu s e f u l n e s s andenjoyment,aswellasindirecteffectsontrustattitude.Thehypothesizedpaths b e t w e e n thesevariableswereallpositiveandsignificant Thepath betweensocialpresenceandperceivedusefulnessisstatisticallysignificantwithstandardizedregres sioncoefficientof0.58w i t h s e = 0 0 8 8 a n d p - v a l u e neart o z e r o A l s o , t h e r e s u l t s h o w e d t h e regressionestimatebetweensocialpresenceandenjoymentwas0.5 66withse0.085andp- valueneartozero.Theimplicationo f t h i s r e s u l t i s t h a t s o c i a l presenceh a d a f f e c t e d t o perceivedu s e f u l n e s s andenjoymentofcustomerwithonlinestore,howevertheinfluencewei ghtedalittlestrongerwithperceivedusefulnessthanenjoyment.
Hypothesis3and4proposed thatperceivedu s e f u l n e s s andenjoymentwaspositively a s s o c i a t e d withtrustattitude.Regressionestimateoftherelationshipbetweenperceivedu s e f u l n e s s a n d t r u s t a t t i t u d e w a s 0 3 8 w i t h s e = 0 0 5 9 , p- value= 0 0 0 0 , w h i l e r e g r e s s i o n estimateofrelationshipbetweenenjoymentandtrustattitude was 0.49withse=0.069,p-value
=0.000.Theseresultssuggestedthattrustattitudewasimpactedbybothfactorsofperceived u s e f u l n e s s andenjoyment,inthiscaseenjoymenteffecttotrustattitudemorethanperc eivedu s e f u l n e s s did.
Thesameintention,analysisthepathbetweenperceivedusefulnessandenjoymenthadt h e influencetopurchaseintention.Theybothsignificantlyhadpositiveimpactedonpurchase intentionwithregressionweightof 0.27and0 2 55 (p- valuenearto0 ) However theireffect w a s weakerthantheyweretotrustattitude.
Finally,i n t h e path bet wee nt ru sta tt it ud e andp ur chas ei nte nt io n, t h e sta tis ti cal r esu lt a l s o s h o w e d a positiver e l a t i o n s h i p T r u s t a t t i t u d e h a d e f f e c t stronglyo n p u r c h a s e i n t e n t i o n w i t h β = 0 353.Inc o n c l u s i o n , a l l h y p o t h e s e s i n t h e r e s e a r c h model w e r e s u p p o r t e d a s thep r o p o s a l model.
Conclusion
Thischapterpresenteddataanalysisresultsofmeasurementscales,researchmodelandh ypotheses.T h e r e s u l t s o f t h i s s t u d y indicatedt h a t almostmeasurements c a l e s n e e d e d t o modifytofitwithmarketdata,researchmodelalsoneededtomodifywithfewercons tructs.Aftera n a l y z i n g s c a l e s a n d model,n e w r e s e a r c h modelw a s examinedb y u s i n g s t r u c t u r a l e q u a t i o n modela n d a l l modelf i t i n d e x mett h e r e q u i r e d s t a n d a r d s A l l h y p o t h e s e s o f newresearchmodelweresupported.
Inthissection, thecontents andfindingsofthestudywill besummarized,answers to r e s e a r c h q u e s t i o n s Ina d d i t i o n , t h e a u t h o r makesc o n c l u s i o n s a n d s u g g e s t i o n s f o r f u r t h e r r e s e a r c h onthisissue.
AccordingtothelinerresearchesofHassaneinandHead (2007),theauthorsshowth eperceptiono f s o c i a l p r e s e n c e h a s r o l e asa positivee x p l a n a t i o n forp e r c e i v e d u s e f u l n e s s , enjoymenta n d t r u s t w h i c h a r e t h e p r e c e d i n g o f a t t i t u d e E x p a n d i n g t h e w e b s i t e w h i c h o n l y en ri ch ed s o c i a l p r e s e n c e viaimaginesa n d c o n t e x t , t h e r e s e a r c h w e b s i t e s a r e e x e c u t e d b y ad di ng othersocialcuedesignsuchasthemassmedi a(linkedtofacebook,google,twisteretca n d reviewandcustomerrating.Aninterestingresultrev ealswhentrustandattitudecombinei n t o aconstructandquietlymodifytheproposemodel.H owever,therelationshipamong thec o n c e p t s ofmodelstillremainstheimpacttension.
Associatedt r u s t a n d a t t i t u d e a s a u n i q u e c o n c e p t i s i n t e r p r e t e d i n somer e s e a r c h e s A c c o r d i n g J o n e s ( 1 9 9 6 ) , “trusti s ana f f e c t i v e o f a t t i t u d e ” ( t i t l e ) , o n e t r u s t e d i s d i r e c t l y a n d favorablymovedb y t h e thougha n d s t a t e by“attitudeo p t i m i s m
Trust is an essential attitude that reflects positive expectations toward an object, influencing how individuals display goodwill towards others or things they care about In psychology, trust is viewed as an emotional excitement that encompasses both the concept of trust and the attitude associated with it Aghdaie et al (2011) describe trust attitude as an independent concept, focusing on confidence, belief, and reliance This research identifies trust attitude as comprising three components: AT1, AT2, and TR1 AT1 and AT2 reflect positive feelings and the perception of a website as an attractive object, while TR1 assesses customer belief in the accuracy of information provided by suppliers, serving as a cue for positive attitudes Consequently, trust attitude is recognized as a favorable behavior among online users.
Int h i s r e s e a r c h , t r u s t c o n c e p t i s eliminatedf r o m r e s e a r c h model.H e n c e t h e r e l a t e d co n n ecti o n betweenthisfactorandotherisdeducted,andnotexistasanalysisissue anymore.
Insteado f t h i s , t r u s t a t t i t u d e p r o s p e r s twon a t u r e i n c l u d i n g b e l i e f a n d c o n f i d e n c e a t t i t u d e Author,i n t u r n , s t u d i e s theint h e impacto f s o c i a l p r e s e n c e t o p e r c e i v e d u s e f u l n e s s a n d enjoyment,thenconsidertheseoutputsaffecttotrustattitudeandp urchaseintention.
ResultfromSEMmodelshowsthesocialpresencelevelofcommercialwebsitehaveapositi vesignificanteffectonperceivedusefulness(b=0.58)enjoyment(b=0.57).Althoughther e s e a r c h o f G e f e n a n d Straub( 2 0 0 3 ) , i s u n a c c e p t a b l e t h e e f f e c t o n p e r c e i v e d u s e f u l n e s s , i t sup po rts ea r l i e r workofHassa nei n a n d H e a d ( 2 0 0 7 ) , Shen( 2 0 1 2 ) i ne - s e r v i c e c o n t e x t Theconflicta m o n g t h e s e r e s e a r c h e s i s e x p l a i n e d b y t h e d i f f e r e n t n a t u r e o f t h e p r o d u c t beings t u d i e d suchasairticketvsclothingandjewelry.S ocialpresencealmosthasequallyc o n t r i b u t i o n t o a f f e c t toperceivedu s e f u l n e s s a n d enjoyment,a s t h e p a t h c o e f f i c i e n t s areq u i e t l y indifferenttoomuch.However,theest imateofperceivedusefulnessandsocialp r e s e n c e forattitudeandpurchaseintentionwastotallydi stinction.
Then e x t c o n n e c t e d p a t h , t h e r e s u l t a n a l y s i s c o n f i r m s t h e p o s i t i v e i m p a c t o n a t t i t u d e w h e n perceivedusefulnessandenjoymenttakepartroleasantecedentoftrustattitud eandtheo u t p u t o f s o c i a l p r e s e n c e a s w e l l ( b = 0 3 8 , b=0.49).T h i s r e s u l t s u p p o r t s t h e p r i o r researchr el at ed tousingtheinternetasshoppingchannelsuchasJarhangiretal.
(2007)inthecontextofE - b a n k i n g and Rennyetal.(2013),in buyingairticketwhentheybothfoundout theperceivedusefulnessh e l p t o improvet h e a t t i t u d e o f customers.Ita l s o c o n f i r m s t h e previousinvestigationsabouttherelationshipbetweenenjoymentandattitudeofonlineuserfo rperiodlongtimeheritagefromChildersetal.
(2001);GefenandStraub(2003);HassaneinandHead( 2 0 0 7 ) toShen(2012).Moreover,thef indingshowsthatinonlineshoppingperceivedu s e f u l n e s s a n d e n j o y m e n t havedirecta n d i n d i r e c t e f f e c t s o n p u r c h a s e i n t e n t i o n , througha t t i t u d e asthepartialmed iatorvariable.ThisdetectprovestothesuitabilityofearlierresearchofDelafrooz1etal.
(2011),Davis(1989),relatedtoperceivedusefulness.T h e findingmatchedth er e s u l t fromK o u f a r i s ( 2 0 0 2 ) , M o o n a n d K i m ( 2 0 0 1 ) , C h i l d e r s e t a l
( 2 0 0 1 ) s u p p o r t thatenjoymentd e f i n e d a s consumers’h e d o n i c o r i e n t a t i o n o r p l a y f u l n e s s e n h a n c e t h e p u r c h a s e i n t e n t i o n i n internet Attitudehavet h e str on ges ti m pac t toi nt en ti on ( b = 0 3 5 ) e x p l a i n e d the closelyr e l a t i o n s h i p i n t w o p s y c h o l o g y p r o c e s s o f m a k i n g decision.AlthoughD o n t h u andG a r c i a ( 1 9 9 9 ) o n l i n e f i n d t h e a t t i t u d e o n l y haveimpactt o p u r c h a s e i n t e n t i o n o n l i n e a s a mediatorthroughbehavior,thedirectrelationshipinthisthesiscontinuest oassistthestudiesofDavis(1989);Changetal.(2005);VijayasarathyandJones(2000).
Besidediscoverythedirectimpactofthefactorsinresearchmodel,understandinghows o c i a l p r e s e n c e manipulatesperceivedusefulnessa n d enjoymenttoa t t i t u d e andp u r c h a s e i n t e n t i o n onlinecustomerisoneofpurposeofthe thesis.Theyopenedended questio nallowa ut h o r easilytoassessthecustomerminded.
Fort h e l o w s o c i a l p r e s e n c e w e b s i t e , i t f o c u s e s o n d i s p l a y t h e p r o d u c t i s c o u l d beaccep t ab l e someway.Itsavestimetopersonwhoknownclearlyandprofessionala boutp u r c h a s e p r o d u c t , e s p e c i a l l y t h e designw e b i s e a s y t o viewonmobilew i t h smalls creens.However,otherusingnotebookanddesktopisunsatisfactorywiththewebsitetoosimple andn o n e extrainformationtomeetthesurfwebutilitarian.Surfacewebistooboringandunattractiv e,hencethestimulateelementstostaywebsitelongertoconsiderandevaluatethevalueproductd ecreaseaccordingly.
The website effectively showcases products worn by individuals, enhancing user engagement through social-rich text Many users appreciate seeing people wearing the jewelry, as it provides a sense of human connection that makes the product more appealing and easier to visualize While some find it challenging to see the design details, most agree that this approach helps them stay updated on the latest fashion trends, particularly for those less experienced in online jewelry shopping One user noted the value of seeing how the jewelry looks on real people, as it combines imagery with styling tips on how to dress in harmony with the pieces.
To enhance social presence on websites, integrating elements like customer ratings and reviews is essential However, there are differing opinions on the amount of content displayed Some users find excessive information overwhelming and prefer to scan for key points rather than read everything, often overlooking customer reviews due to skepticism about their authenticity The principle of "Keep it simple, stupid" is frequently emphasized in web design to avoid complicating the user experience Conversely, many respondents advocate for more ratings and review text, as experienced online shoppers view previous user feedback as a valuable resource that aids in making informed decisions and avoiding mistakes.
Thisresearchshowsthatsocialpresencecanbeinfusedintowebsitesthroughsociall yr i ch descriptionsandpictures.Thisinturncanpositivelyimpacttheperceivedusefulnessande njoymentofacommercialwebsite,whichcanresultinmorefavourableattitudesande n c o u r a g e purchaseintentiontowardsthatonlinestore.Fromatheoreticalpointofview,thisstudye x t e n d s s o c i a l p r e s e n c e r e s e a r c h i n thee -
C o m m e r c e domain.Previouss t u d i e s haveex p l o r ed t h e i m p a c t o f s o c i a l p r e s e n c e f o r o n l i n e digitalp r o d u c t s ( i e airlinea n d c o n c e r t tickets)(GefenandStraub,2003;
Cyr etal.,2007),email(Karahanna andStraub,1999;Straub,1 9 9 4 ) andclothes(HassaneinandHead,2007).Thefindingsofthis studysuggestthatsocialpresencei s a l s o importantinf o r m i n g p o s i t i v e consumera t t i t u d e s andp u r c h a s e i n t e n t i o n t o w a r d s websitessellingjewelry.Thisanalysisshows thatenjoyment,inadditiontoperceivedu s e f u l n e s s , i s a n i m p o r t a n t c o n s e q u e n c e o f p e r c e i v e d s o c i a l p r e s e n c e T h i s d e t e c t i o n alsoconfirmsearlierworklinking TAMconstructs,trustandenjoymenttoonlineconsumera t t i t u d e s (forexample:GefenandStra ub,2003;McKnightetal.,2002;MoonandKim,2001;Pavlou,2 0 0 3 ; vand e r H e i j d e n e t a l , 2
Research highlights the importance of understanding online purchase intentions, revealing that individuals with a positive attitude towards online shopping are more likely to intend to make purchases Previous studies indicate that a stronger positive attitude correlates with higher behavioral intention, while a negative attitude results in lower intention (Yu and Wu, 2007) This underscores the significance of attitude-related factors in the adoption of online shopping Attributes like fun, entertainment, and usefulness are areas where online retailers can enhance customer attitudes, thereby increasing their intention to shop online Consequently, it is crucial for online sellers to focus on improving their designs by incorporating social elements, such as showcasing products worn by people, to evoke positive emotions A high perceived social presence can significantly elevate purchase intentions and decision-making processes.
Mostnotably,thisworkexaminesspecificinterfacefeaturesthatimpacttheperception ofsocialpresence.Previousworkssuggestthatperceivedsocialpresencecouldplayanimportantrolei ntheonlineenvironment.Manysocialdesigncueshavebeenmeasuredtofindo u t h o w t h e y i n s p i r e t h e i r impactt o u s e r Whilet h e empiricall i t e r a t u r e i n v e s t i g a t i n g thepositiveimp actonattitudeandbehaviorintentionbysociallyrichtextandpicture(Hasseneina n d Head,20 07),orembeddingavideoclipofshop(Aljukhadaretal.,2008)andapplications u c h a s Facebook,Twitter,Googleetc,socialnetworkalsoenhancesocialpresenceinthewebi n t e r f a c e Thereislittleevidenceperformancetheeffectivenessofcustomerratingandcustomer review.Theexaminationshowsthatthereisno distinction betweenmediumandhighs o c i a l p r e s e n c e i n p r o c e s s t r a n s f e r e n j o y m e n t a n d pe rceivedu s e f u l n e s s t o c u s t o m e r T h i s a r o u s e s onlinemarketertoreducetheunnecessa rysocialelementsinwebinterface.
From a practitioner's perspective, the findings of this study have significant implications for online shopping website designers By incorporating elements that evoke positive emotions, such as descriptive text and images featuring products in dynamic, social settings, designers can enhance the perception of social presence These standard elements do not require advanced technologies, making it an achievable goal for e-vendors to foster a sense of social interaction on their commercial websites Despite the differences between offline and online shopping environments, shoppers in both settings share a common desire for social interaction The shopping experience, particularly in traditional retail, has evolved into an entertainment-centric community experience Research indicates that consumers prioritize enjoyable experiences over mere product acquisition, highlighting the importance of hedonic shopping value, which is heavily influenced by social interactions Recent studies further confirm that online shoppers also seek socially enriching experiences, yet few vendors currently integrate these social elements into their websites.
,moste-vendoro f f e r i n g s arefunctionalwithlittle orno socialappeal(GefenandStraub,2003).Whileitseemsc l e a r thate- vendorsmaybenefitfromaddingsocialelementstotheironlinestores,d i f f e r e n t p ro du ct t y p e s a n d c o n s u m e r s e g m e n t s maydeterminet h e e x t e n t o f t h i s b e n e f i t H e n c e , e- vendorss h o u l d a s s e s s t h e impacto f i n c o r p o r a t i n g s u c h elementsthroughc o n t r o l l e d experimentswithrepresentativecustomergroups.
Similartotheotherentirestudies,thereareafewlimitationstothisresearchthatshouldb e noted: Firstly,thisstudycannotcoverthenatureoftheproblempurchasinggoodsthroughtheo n l i n e store.Inaddition,the researcherspreviouslyemphasizethe needforlongitudinalstudiest o lea rn moreabo ut buyingandse ll in g g o o d s o n l i n e, b e c a u s e t he l o n g i t u d i n a l s t u d i e s a ll ow r e s e a r c h e r s tomeasurebothissuesintimatelyinrelationsh ipaspurchaseintentionandbuying behavior.T h i s s t u d y d i d n o t d e m o n s t r a t e theimpacto f t h e s e f a c t o r s o n actualp u r c h a s e behavior.Therefore,itislookingforwardtothenextresearchersexplainthisprob lem.
Secondly,research has notgivendiscussion aboutthedifferencein thepurchaseintentionb e t w e e n customerexperiencedandinexperiencedinonlinebuyingyet.Repre sentativesamplesi n c l u d e d i n t h e s t u d y a r e s u b j e c t i v e Iti s s t i l l n o t p o s s i b l e t o i d e n t i f y s p e c i f i c d i f f e r e n c e s b e t w e e n groupssuchasgender,educationorincome. Thirdly,t h e r e s e a r c h j u s t a p p r o a c h t h e psychologyo f i n t e r n e t u s e r viad i s p l a y i n g theimages,content,andiconswhichsymbolizesocialpresenceinwebsiteinterfacewithoutsettingu p arealwebsiteinorderuserstointeractwith.Hence,thestudiessomewhatisundiscoveredal lg adgetsthatuserscanachieveinaproactiveway.
Ingeneral,theresearchcannotreflectallrespectsofe- commerce,sothatfutureresearchs h o u l d beincluded:
Future research should investigate whether the impact of social presence varies between products with symbolic value, such as clothing and jewelry, and functional goods that require detailed technical specifications (Karimov et al., 2011) Existing studies have primarily focused on manipulating social presence through social-rich text, images, and social media Therefore, empirical literature should also explore additional social cues, including human interactions facilitated by website features like after-sales support, virtual communities, chats, message boards, and human web assistants Additionally, it should consider imaginary interactions through personalized greetings, human audio and video, intelligent agents, and mass media strategies such as second-hand reputation advertising and vendor reputation creation.
TheresearchlimitsinB2Ce - c o m m e r ce a p p l i c a t i o n T hu s potentialtopiccanbedevelopedinordertoinvestigatetheappr opriatenessandeffectivenessofwebsitesocialp r e s e n c e withinthebusiness-to- businessandconsumer-to-consumermarkets.
(2014).Testingthemediationeffectusingcovariancebasedstructuralequationmodelingwi thAmos.A m e r i c a n InternationalJ o u r n a l ofResearchHumanities,ArtsandSocialScien ces.6(2),1 8 6 - 1 9 0
(2011).AnAnalysisofFactorsAffectingtheConsumer'sAttitudeofTrust andtheirImpact onInternetPurchasingBehavior.InternationalJournalo f BusinessandSociety,2(23),147- 158.
Allport,G.(1935).Attitudes.Murchinson,C.A.(Ed.),AHandbookofSocialPsychology.(P.
(1998).ATrustBasedModelofBuyingBehaviourinE l e c t r o n i c Retailing.Proceedingso ftheFourthConferenceoftheAssociationforI n f o r m a t i o n Systems,263–265.
(2009).StructureEquationModelingwithAmos.Basicconcepts,Application,a n d Pro graming(2 nded ) BarbaraByrnePublisher:PsychologyPress.
Babin,B.J.,Darden,W.R.,&Griffin,M.(1994).Workand/ orfun:Measuringhedonicandutilitarian shoppingvalue.JournalofConsumerResearch,2
(2005).Literaturederivedreferencemodelsforthea d o p t i o n ofonlineshopping.Infor mation&Management,42(4),543-559.
(2002).Enticingonlineconsumers:anextendedtechnologyacceptanceperspective.Informa tion&Management,39(8),705-719.
Clarke,S.G , & H a w o r t h , J T ( 1 9 9 4 ) “Flow”e x p e r i e n c e i n t h e d a i l y liveso f sixth- formcollegestudents.BritishJournalofPsychology,85,511-523.
(1992).A firstcourseinfactoranalysis.Hillsdale,NJ:Lea.Do’s,D o n ’ t s , andHow’sToof FactorAnalysis26.
Csíkszentmihályi,M.,Happer&Row.(1990).Flow:ThePsychologyofOptimalExperience.NewYork.
(2007).Ther o l e ofs o c i a l presenceinestablishingloyaltyine- serviceenvironments.InteractingwithComputers,19(1),43-56.
(1989).Perceivedusefulness,perceivedeaseofuse,anduseracceptanceofinformationtechnolo gy.MISQuarterly(13),319–339.
(1992).ExtrinsicandIntrinsicMotivationtoU s e ComputersintheWorkplace.Jo ur na l o fApplied SocialPsychology,22(14),1111-1 1 3 2
Donthu,N.,&Garcia,A.(1999).TheInternetshopper.JournalofAdvertisingResearch.39(3),52-58. Frederich,F.R.(2000).E-Loyalty:YourSecretWeaponon theWeb.HavardBusiness
(1995).Trust:TheSocialVirtuesandtheCreationofProsperity.NewYork,N Y : TheF reePress.
Ghani,J.A.,&Deshpande,S.P.(1994).Taskcharacteristicsandtheexperienceofoptimalflowi n human– computerinteraction.TheJournalofPsychology,128(4),381–391.
Gefen,D , & Straub,D W ( 2 0 0 0 ) T h e relativeimportanceo f p e r c e i v e d e a s e of- usei n ISa d o p t i o n : a s t u d y o f e - c o m m e r c e a d o p t i o n J o u r n a l o f t h e A s s o c i a t i o n f o r I n f o r m a t i o n S y s t e m s ( JAIS),1(8),1–30.
Gefen,D.,&Straub,D.W.(2003).ManagingusertrustinB2Ce-Services.E-
( 1 9 9 6 ) T h e e f f e c t s o f t r u s t andi n t e r d e p e n d e n c e onrelationshipcommitme nt:atransatlanticstudy.InternationalJournalofResearchinMarketing,(13),303–317.
Hassanein,K.,Head,M.,&Ju,.C.(2009).Across- culturalcomparisonoftheimpactofSocialP r e s e n c e o n w e b s i t e t r u s t , u s e f u l n e s s a n d enjoyment,I n t J E l e c t r o n i c B u s i n e s s , 7(6),625-641.
( 1 9 9 5 ) Cmmunicationr es e a r c h onconsumerVR InF B i o c c a & MarkRL e v y ( Eds.),
Com mu ni ca ti on intheage ofvirtualreality ( p p 191-
( 2 0 1 2 ).Factorsi n f l u e n c i n g o n O n l i n e shoppinga t t i t u d e andi n t e n t i o n ofM ongolianConsumers.JournalofInternationalManagementStudies , 7 (2),1 6 7 - 1 7 6
(2007).EffectofPerceivedUsefulness,EaseofUse,SecurityandPrivacyonCus to mer At titudean dAdaptationi nthe C on tex to f E-
(1999).Entertainingshoppingexperiences:anexploratoryinvestigation.Journalo f Retai lingandConsumerServices,(6),129–139.
(1999).Thepsychologicaloriginsofperceivedusefulnessandperceivedease-of- use.Information&Management,(35),237–250.
Kim,Y.K.,2002.Consumervalue:anapplicationtomallandInternetshopping.InternationalJ o u r n a l ofRetail&DistributionManagement, 30(12),595–602.
Kim,D , & Be n b as a t , I.( 2 0 0 3 ) Trust- relatedargumentsi n i nt er ne t s t o r e s : a fr am ew or k f o r evaluation.JournalofElectronicCo mmerceResearch,4(2),49–64.
Kumar,N.,& Benbasat,I.(2002).Para- socialpresenceandcommunication capabilities ofa Websi t e: atheoreticalperspectiv e.E-ServiceJournal,1(3).
(2002).Customertrustonline:examiningtheroleoft h e e x p e r i e n c e w i t h t h e W e b - s i t e C I S W o r k i n g PaperS e r i e s , Z i c k l i n S c h o o l o f B u s i n e s s , B a ru ch College ,NewYork.
(2003).ThecontributionofcommitmentvalueinInternetcommerce:Anempiricalinvestiga tion.JournaloftheAssociationforI n f o r m a t i o n Systems,4,39-64.
(2001).ATrustModelforConsumerInternetShopping.I nt ern at io na l J o u r n a l ofEle ctronicCommerce,6(1),75-91.
R T y l e r ( E d s ) ,T r u s t i n o r g a n i z a t i o n s : Frontiersoft h e o r y andresearch,114- 139.ThousandOaks,CA:Sage.
(2002).ConsumeronlineshoppingAttitudesandbehavior.AnAssessemnto f Research.Eight hAmericasConferenceonInformationSystems,508-517.
(1997).Attheheartofitall:theconceptofpresence.J o u r n a l ofc o m p u t e r Mediated Communication,3(2).Retrievedfromh t tp : // o n li n el i b rar y w il ey co m/ d o i/ 1 0 1 1 1 1 / j 1 0 8 3 - 6 1 01 1 9 9 7.t b 0 007 2 x /f u ll # ss2
(2000).Trust:themoralimportanceofanemotionalattitude.Journal ofthesocietyf o r thephilosophyinpractice,45-54.
Monsuwe,T.P.,DellaertB.G.C.,&Ruyter,D.(2004).Whatdrivesconsumersto shop online?
Moon,J W , Kim,Y G , 2 0 0 1 E x t e n d i n g t h e T A M f o r a World-Wide-Webc o n t e x t
( 2 0 0 5 ) SPSSf o r I n t e r m e d i a t e S t a s t i s t i c sU s e andInterpretation.NewJersy,NJ:L
Pavlou,P A , & Chai,L.(2002).W h a t d ri ves e l e c t r o n i c commerceacrosscultures?
A cross-c u l t u r a l empiricalinvestigationofthetheoryofplannedbehaviour.Journal ofElectronicc o m m e r c e Research,3(4),240–253.
(2003).Consumeracceptanceofelectroniccommerce:Integratingtrustandriskw i t h t hetechnologyacceptancemodel.Int.J.Elect.Commerce,7(3),101-34.
(2014).Technologyacceptancemodel(TAM)a n d s o c i a l mediausage:a n e m p i r i c a l s t u d y o n F a c e b o o k J o u r n a lo f E n t e r p r i s e I n f o r m a t i o n Management,27 (1),6-30.
(2013).PerceivedUsefulness,EaseofUse,andAttitudeT o w a r d s O n l i n e ShoppingU s e f u l n e s s T o w a r d s O n l i n e AirlinesTicketP u r c h a s e Procedia-
(1983).Electronicmessagesystemsintheuniversity:adescriptionofu se andutility.Jour nalofCommunications,33(1),131–152.
(1989).UsageandoutcomesofelectronicmessagingatanRa n d Dorganization:Situationalcons traints,joblevel,andmediaawareness.Office,T e c h n o l o g y andPeople,5(2),141–161. Rousseau,D M , Sitkin,S.B.,B u r t , R.S.,& Camerer.C.
(2001).PerceivedSecurityandW o r l d WideWebpurchaseintention.IndustrialManageme nt&DataSystems,101,165-17 6.
Shen,J.(2012).SocialComparison,Socialpresence,andenjoymentinthe acceptanceofsocials h o p p i n g websites.JournalofElectronicCommerceResearch,13(3),198- 212.
( 2 0 0 9 ) Designf o r SocialP r e s e n c e i n O n l i n e Communities:A MultidimensionalAppr oach.A I S T r a n s a c t i o n s o n H u m a n - C o m p u t e r I n t e r a c t i o n , 1 ( 2 ),3 3 -
Sherry,J.F.,1990.AsocioculturalanalysisofaMidwesternAmericanfleamarket.JournalofC on su mer Research,(17),13–30.
Short,J.,Williams,E.,&Christie,B.(1976).TheSocialPsychologyofTelecommunications. Wiley,London.
( 2 0 0 1 ) T h e impacto f cu l t u r e a n d gendero n w e b sites:an empiricalstu dy.T h e Data B aseforAdvancesinInformationSystems,32(1),18–37.
( 1 9 8 6 ) R e d u c i n g s o c ia l co nt ex tcu es: th e caseof ele ct ro ni c m a i l
Steinfield,C W ( 1 9 8 6 ) C o m p u t e r - m e d i a t e d communicationsi n a n o r g a n i z a t i o n a l s e t t i n g : E x p l a i n i n g task-relatedandsocio-emotionaluses.NewburyPark,CA,777–804.
( 2 0 0 7 ) O n l i n e buying innovativeness: effectsof perceivedv a l u e perceivedriska n d perceivedenjoyment.InternationalJournalofBusinessandSociety,8(2),81- 93.
34 th ).HawaiiI n t e r n a t i o n a l C o n f e r e n c e onSystemSciences,IEEE,Hawaii.
Tran,H.L.(2014) Vietname-commercereport2013.Retrievedfromhttp:// www.vec ita gov.vn/a npham/208/V ie tnam-E -commerce-Report-
(2005).Anoverviewo f onlinet ru st : concepts, elements,andimplications.ComputersinH umanBehavior,(21),105–125.
Williamson,O.E.(1985).TheEconomicInstitutionofCapitalism.FreePress,NewYork,NY.
Yu,J.,Ha,I.,Choi,M.,&Rho,J.(2005).ExtendingtheTAMforat-commerce.Information
( 2 0 0 7 ) Determinantso f i n t e r n e t s h o p p i n g behavior:Ana p p l i c a t i o n o f r e a s o n e d behaviourtheory.International.JournalofManagement,24(4),744.
IamastudentofUEH’sInternationalSchoolofBusiness(ISB).And,Iamconductingastudyo n theim pactofsocialpresenceinthewebinterfaceoncustomer’spurchaseintentiontowardonlinestores Iwouldappreciateforyoursupportifyouspendafewminutestofillinginthisquestionnaire.
Inframeworkofresearch,afictitiouswebsitesellingjewelrywasdesigned.Besidepresentationo f thepictu reandtheotherinformationofproductsuchasprice,material,size,color,original… websiteinterfacewillbeaddedelements:
- Sociallyr i c h media:c u s t o m e r rating,customerr e c o m m e n d a t i o n s , s h a r i n g w i t h o t h e r s o c i a l websitesuchasfacebook,twister,googleetc
IamastudentofUEH’sInternationalSchoolofBusiness(ISB).And,Iamconductingastudyo n impac tofsocialpresenceinthewebinterfaceonattitude’scustomertowardonlinestores.Iw o u l d appreci ateforyoursupportifyouspendafewminutestofillinginthisquestionnaire.P l e a s e notethatt hereisnorightorwronganswers.
Ina s s u m p t i o n , y o u havedemandt o b u y j e w e l r y ( f o r examplen e c k l e t ) a s a giftf o r yourgirlfriendsandyouarevisitingthebelowwebsites(appendixC).
Withthefollowingstatements,pleasecheckcross(X)thenumberthatmostfitsyouro p i n i o n (Anchoredby:1.Stronglydisagree;2.Disagree;3.Disagreesomewhat;4.
Withthefollowingstatements,pleasecheckcross (X)thenumberthatmostfitsyour opinion(Anchoredby:1.Stronglyimprobable;2.Improbable;3.Somewhatimprobable;4.Neutral;5.Somewh atprobable;6.Probable;7.Stronglyprobable)
N Mean Std.Deviation Std.Error 95%ConfidenceIntervalforMean Minimum Maximum
Rấtmonganh/chịdànhchútthờigiantrảlờiPhiếukhảosátnày.Tấtcảýkiếncủaanh/ chịđềucógiátrịđốivớibàinghiêncứunày.Tôixincamkếtmọithôngtincủaanh/ chịđềuđượcbảomậtvàchỉdùngvớimụcđíchphụcvụbàinghiêncứunày.Trongquátrìnhthựchiệnkhảosátnếuan h/chịcóthắcmắc,vuilòngliênhệđịachỉemailtuongvidg@gmail.com hoặc sốdiđộng:0905027373
1/Sốlầnbạnđãmuasắmquamạnginternet* o Chưacó o 1lần o 2lần o 3lần o Nhiềuhơn3lần
2/Thờigiansửdụnginternet* o Dưới1năm o 1-3năm o 4-6năm o Trên6năm
Tìnhhuốnggiảđịnh,bạncónhucầumuatrangsức(vídụdâyđeocổ)làmquàtặngchobạngáivàbạnđangghéthăm websitedướiđây.Anh/chịvuilòngquansátkỹwebsitedướiđâytrướckhitrảlờinhữngcâuhỏitiếptheo
Chịvuilòngđánhgiámứcđộđồngýcủamìnhvớicácphátbiểuliênquanđếnwebsitevừaquansáttheoquiướctừthấ pđếncaonhưsau:1.Hoàntoànkhôngđồngý2.Khôngđồngý3.Khôngđồngým ộ t phần4.Trunglập/ khôngcóýkiến5.Đồngýmộtphần6.Đồngý7.Hoàntoànđồngý
Chịvuilòngđánhgiámứcđộđồngýcủamìnhvớicácphátbiểudướiđâytheoquiướctừthấpđếncaonhưsau:1.Ho àntoànkhôngcókhảnăng2.Khôngcókhảnăng3.Khôngcókhảnăngmộtp h ầ n 4.Trunglập/
Khôngcóýkiến5.Cókhảnăngmộtphần6.Cókhảnăng7.Hoàntoàncókhản ă n g ÝĐỊNHMUAHÀNG