1. Trang chủ
  2. » Khoa Học Tự Nhiên

Lecture notes in mathematics

267 3 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Lecture Notes in Mathematics
Tác giả Klaus Barbey, Heinz K6nig
Người hướng dẫn C. R. DePrima
Trường học California Institute of Technology
Chuyên ngành Mathematics
Thể loại lecture notes
Năm xuất bản 1977
Thành phố Pasadena
Định dạng
Số trang 267
Dung lượng 10,26 MB

Cấu trúc

  • 3. H o l o m o r p h i c F u n c t i o n s (19)
  • 4. T h e F u n c t i o n C l a s s e s H o I # ( D ) a n d H # ( D ) (23)
  • 3. T h e a b s t r a c t F . a n d M . R i e s z T h e o r e m (38)
  • 4. G l e a s o n P a r t s (41)
  • 5. T h e a b s t r a c t S z e g ~ - K o l m o g o r o v - K r e i n T h e o r e m (43)
  • 2. R e t u r n t o t h e a b s t r a c t F . a n d M . R i e s z T h e o r e m . . . . . . . . 4 7 3. T h e G l e a s o n a n d H a r n a c k M e t r i c s . . . . . . . . . . . . . . . 4 8 4. C o m p a r i s o n o f t h e t w o G l e a s o n P a r t D e c o m p o s i t i o n s (54)
  • I. B a s i c N o t i o n s a n d C o n n e c t i o n s w i t h t h e F u n c t i o n (67)
    • 3. T h e F u n c t i o n C l a s s e s H # a n d L # (76)
    • 4. T h e S z e g ~ S i t u a t i o n (83)
  • I. T h e M o d u l i o f t h e i n v e r t i b l e E l e m e n t s o f H # (68)
    • 2. S u b s t i t u t i o n i n t o e n t i r e F u n c t i o n s (91)

Nội dung

H o l o m o r p h i c F u n c t i o n s

S S S w h i c h m e a n s t h a t for e a c h z6D t h e m e a s u r e P ( z , - ) l (and in p a r t i c u l a r for z=O the m e a s u r e I itself) is m u l t i p l i c a t i v e on A ( D ) T h e same is t r u e for H~(D)

Proof: L e t h = < e > and f= F o r O~R > I = I < < b , a > , z > l F o r z=O i n p a r t i c u l a r I < a , b > l = I < b , a > l iii) l < a , b > = < l a , l b > f o r a l l 16S iv) lal-lbl < il < l a I + I b l

1+tl zl w h i c h is at o n c e t r a n s f o r m e d i n t o the a s s e r t i o n I z l ~ c t ( u , v ) To p r o v e the s e c o n d i n e q u a l i t y it s u f f i c e s to a s s u m e t h a t nfIl O } , w h i c h is a cone in R e L Y ( m ) We deduce f r o m 3.14 that S is weak* closed

In fact, if fn6S w i t h IfnlO since S c o n t a i n s all f u n c t i o n s f

/ lhj2+tp " - - a 2 + b 2 + t a V t>O lhj2+2tP+t2vcum = a 2 + b 2 + 2 t a + t 2 ii) We p r o v e 5.4 and can a s s u m e that b=O T h e n from i) we o b t a i n

~ a ~t : / l h j 2 + t p V d m > / lhJ2+tp V d m lhI2+2tP+t 2 =[JhJ>t] lhl2+2tp+t 2

Z ~I [Jh|zt]~ V d m = ẵ ( V m ) ( [ Jhlzt]) V t > O , w h i c h is the assertion, iii) For t>O the d i f f e r e n c e t[ lh12 - lhl2+tp ] = Pt 2 [hI2-t2

Jhj2+t 2 lhl2+2tP+t '2j (lhI2+t2) (lhI%2tp+t 2) is of m o d u l u s ~P and tends ÷ -P p o i n t w i s e for t+ ~ S i n c e

Ibl2-vdm=-I 2t~X2dw(xl =-S w{xl: t I l h l Z + t z 0 x - + t - 0 + x + t ÷ ~ t(I) 2 ÷ ~ 1 ÷ ~ I

T h e r e s u l t c o u l d b e d e d u c e d f r o m 5.4 a n d 5.2 w i t h a w o r s e c o n s t a n t W e p r e f e r t o b a s e t h e p r o o f o n t h e s u b s t i t u t i o n t h e o r e m 4.7 i) L e t s 6 ~ w i t h R e s >_O T h u s s=Isle it w i t h Itl~ a n d h e n c e sT=IsITe iTt f o r t h e m a i n b r a n c h I t f o l l o w s t h a t R e s T = I S l T C O S T t ~ I s I T c o s ~ ii) F o r e > O w e h a v e

Q 6 R e L(m) b e i t s c o n j u g a t e f u n c t i o n (up t o a n a d d i t i v e r e a l c o n s t a n t ) F o r t h e l a t t e r p a i r s o f f u n c t i o n s P a n d Q in t h e u n i t d i s k s i t u a t i o n t h e above r e s u l t s 5.4 a n d 5 5 a s w e l l as 5.6 a n d 5 8 a r e w e l l - k n o w n c l a s s i c a l t h e o - r e m s d u e t o K o l m o g o r o v O f c o u r s e t h e s e t h e o r e m s c a n b e e x p e c t e d t o e x - t e n d t o c o n j u g a t e f u n c t i o n s in t h e a b s t r a c t H a r d y a l g e b r a s i t u a t i o n B u t i t is a s u r p r i s e to s e e t h e m v a l i d u n d e r a s s u m p t i o ~ w h i c h a r e m u c h w e a k e r e v e n i n t h e u n i t d i s k s i t u a t i o n

W e l i s t s o m e s i m p l e p r o p e r t i e s , i) ~(f) is c l o s e d , ii) T h e r e e x i s t s a r e p r e s e n t a t i v e f u n c t i o n x ~ f(x) s u c h t h a t f ( x ) 6 m ( f ) f o r a l l x 6 X iii) e ( f ) + ~ , iv) If ~ ( f ) = { c } t h e n f = c o n s t = c

~ ( m ) C h o o s e a r e p r e s e n t a t i v e f u n c t i o n x ~ h ( x ) w i t h h ( x ) # t f o r a l l x 6 X ii) L e t K a n d B d e n o t e c l o s u r e a n d b o u n d a r y o f G r e l a t i v e t o t h e R i e - m a n n s p h e r e L e t A c C ( K ) c o n s i s t o f t h o s e f u n c t i o n s w h i c h a r e h o l o m o r p h i c o n G In v i e w o f t h e m a x i m u m m o d u l u s p r i n c i p l e t h e r e s t r i c t i o n f ~ f l B is a s u p n o r m i s o m o r p h i s m A ÷ A I B L e t 8 6 P r o b ( B ) b e a J e n s e n m e a s u r e f o r f l B ~ f ( t ) o n A I B a f t e r I I I 1 1 F o r e a c h u 6 ~ t h e f u n c t i o n z ~ U - Z - 1 _ u - a is i n A since

W e c l a i m t h a t f o r a l l u E G t h e s t r i c t < r e l a t i o n h o l d s t r u e T o s e e t h i s n o ~ t h a t u ~ / l o g ~u-z d8 (z) is a c o n t i n u o u s r e a l - v a l u e d f u n c t i o n o n G w h i c h s a t i s f i e s t h e m e a n v a l u e e q u a t i o n a n d h e n c e is h a r m o n i c o n G T h e r e f o r e u ~ / l o g u - z dg (z) l o g u - t is a h a r m o n i c f u n c t i o n ~ 0 o n [ u 6 G : u ~ t } w h i c h t e n d s ÷ ~ f o r u+t In v i e w o f t h e m a x i m u m p r i n c i p l e it m u s t t h e r e f o r e b e > 0 i n a l l p o i n t s u + t i n G as w e h a v e c l a i m e d , iii) F r o m t h e a b o v e w e h a v e

P r o o f : i) L e t U , V c ~ b e d i s j o i n t o p e n s e t s w i t h & + c U u V A s s u m e t h a t a6U A f t e r 6.2 it s u f f i c e s t o p r o v e & + D V = ~ T o s e e t h i s l e t G b e a c o m - p o n e n t o f V T h e n G is a d o m a i n i n ~ a n d a i n t h e e x t e r i o r o f G N o w ~G is d i s j o i n t t o V a n d t o U a n d h e n c e ~ G A A + = ~ T h e n 6.1 i m p l i e s t h a t G D A + = ~ as w e l l It f o l l o w s t h a t V n & + = ~ ii) A s s u m e t h a t t~A T h e n t h e r e e x i s t s

1 _ 1 _ 1 1 _ 1 ~ (h_ ~)6H, h - z ( h - s ) - ( z - s ) h - s 1_z- {s h - s Z 0 h - s s o t h a t z 6 P a n d h e n c e in f a c t P is o p e n as w e l l ii) N o w f o r s 6 ¢ - ~ ( h ) w e h a v e s 6 & ( h ) ~h1-~s ~ H # ~ h 1 _ ~ H ~ s 6 Q T h e r e f o r e A ( h ) c Q U m ( h ) = ~ - P w h i c h is c l o s e d a n d h e n c e A ( h ) c Q U ~ ( h ) F u r t h e r m o r e Q c & ( h ) a n d h e n c e Q c ( A ( h ) ) °

T h e L u m e r s p e c t r u m w a s i n t r o d u c e d ( u n d e r t h e n a m e o f i n n e r s p e c t r u m ) a n d t h e e s s e n t i a l o f 6.5 w a s a n n o u n c e d in L U M E R [ 1 9 6 5 ] T h e n 6.6 a p p e a - r e d in K O N I G [ 1 9 6 7 a ] [ 1 9 6 7 c ] a n d 6.7 in K O N I G [ 1 9 6 6 b ] T h e o r e m 6.8 (re- s t r i c t e d t o L I f u n c t i o n s w h i c h is u n e s s e n t i a l ) is o n e o f t h e m a i n r e - s u l t s i n K O N I G [ 1 9 6 5 ] F o r t h e c o n n e c t e d n e s s l e m m a 6.2 w e h a v e b e e n s u p p - l i e d w i t h i n d e p e n d e n t p r o o f s f r o m o u r t o p o l o g i c a l f r i e n d s T t o m D i e c k a n d R F r i t s c h

I n t h e u n i t d i s k s i t u a t i o n t h e c l a s s i c a l c o n j u g a t i o n is t h e o p e r a - t i o n w h i c h a s s o c i a t e s w i t h e a c h p 6 R e H a r m ( D ) t h e u n i q u e f u n c t i o n q 6 R e H a r m ( D ) s u c h t h a t p + i q 6 H o l ( D ) a n d q ( O ) = O In o r d e r t o e x t e n d t h e c o n j u g a t i o n t o t h e a b s t r a c t H a r d y a l g e b r a s i t u a t i o n w e h a v e t o r e - d e f i n e it as a n o p e r a t i o n w h i c h t a k e s p l a c e o n t h e u n i t c i r c l e S: t h a t is w h i c h a s s o c i a t e s w i t h e a c h P f r o m a c e r t a i n s u b c l a s s E o f R e L ( 1 ) a u n i q u e f u n c t i o n Q 6 R e L ( 1 ) T h e i m m e d i a t e i d e a to d e f i n e i t v i a P + i Q 6 H # ( D ) p l u s s o m e n o r m a l i z a t i o n o f Q is b o u n d to f a i l s i n c e t h e r e a r e l o t s o f n o n c o n s t a n t r e a l - v a l u e d f u n c t i o n s in H # ( D ) A n d t h e r e is n o o b v i o u s i d e a h o w t o r e s t r i c t E a n d H # ( D ) in o r d e r t o e s c a p e f r o m t h e s e n o n - c o n s t a n t f u n c t i o n s a n d s t i l l p r e s e r v e a not too n a r r o w d e f i n i t i o n S o l e t u s s e e k t o t r a n s p l a n t t h e i n i t i a l d e f i n i t i o n f r o m D t o S

~ o l e t ( p + i Q ) l > o f o r a l l t6~ It is c l e a r t h a t t h i s d e f i n i t i o n c a n b e e x t e n d e d to the a b s t r a c t H a r d y a l g e b r a s i t u a t i o n F u r t h e r m o r e w e s e e t h a t e a c h f u n c t i o n P 6 R e L ( I ) w h i c h is c o n j u g a b l e i n t h e n e w s e n s e m u s t b e i n

R e L ( m ) ÷ [ - ~ , ~ ] is f i n i t e - v a l u e d a n d l i n e a r T h e m a i n a c h i e v e m e n t is t h e n t h e c h a r a c t e r i z a t i o n o f E w i t h t h e m e a n s o f M I t r e q u i r e s t h e f u l l p o - w e r o f t h e m a i n t h e o r e m s o f C h a p t e r IV T h e p r i n c i p a l r e s u l t is t h a t a f u n c t i o n P £ R e L ( m ) w h i c h is b o u n d e d , o r a t l e a s t n o t t o o f a r r e m o t e f r o m b o u n d e d n e s s i n s o m e s e n s e o r o t h e ~ is in E i f f t h e i n t e g r a l f P V d m h a s t h e s a m e v a l u e f o r a l l t h o s e V 6 M f o r w h i c h i t e x i s t s in t h e e x t e n d e d s e n s e H e r e a f t e r w e p r o v e f o r E ~ : = E n R e L ~ ( m ) a s i m p l e b u t p o w e r f u l a p p r o x i m a t i o n t h e o r e m : t h a t R e H c E ~ is d e n s e in E ~ in a s e n s e w h i c h is m u c h s h a r p e r t h e n w e a k * d e n s i t y T h e r e s u l t h a s i m p o r t a n t i m m e d i a t e i m - p l i c a t i o n s T h i s is c o n c e i v a b l e s i n c e i n t h e S z e g ~ s i t u a t i o n M = { F } w e h a v e E = R e L I ( F m ) a n d h e n c e E ~ = R e L ~ ( m ) , s o t h a t h e r e t h e a p p r o x i m a t i o n t h e o r e m s h a r p e n s t h e f u n d a m e n t a l r e s u l t t h a t R e H is w e a k • d e n s e i n

P r o o f : T h e u n i q u e n e s s a s s e r t i o n is o b v i o u s T h e b a s i c i d e a o f t h e e x i s t e n c e p r o o f is c a r e f u l d i f f e r e n t i a t i o n o f t h e v e c t o r - v a l u e d f u n c t i o n t ~ h t W e h a v e t o f a c e t e c h n i c a l d i f f i c u l t i e s d u e t o t h e f a c t t h a t t h e s i z e o f t h e f u n c t i o n Q £ R e L(m) t o b e c o n s t r u c t e d is n o t r e s t r i c t e d a t all i) T h e f u n c t i o n ~ ÷ L I ( m ) : t ~ h t is c o n t i n u o u s in L I ( m ) - n o r m T h e r e f o r e t w e c a n f o r m t h e e l e m e n t a r y i n t e g r a l H t : = f h u d U 6 L 1 (m) Vt£1~ F r o m t h e f u n d a -

The function Q6L(m) derived earlier is real-valued, indicating that ht equals h_t, which leads to Ht being equal to -H_t Consequently, it follows that ht - 1 is equal to iQHt for all t This relationship confirms the uniqueness assertion from the previous section Furthermore, we assert that for each fixed E(r), the expression ~ (ht - 1) approaches iQ as t approaches zero.

L 1 ( m ) - n o r m In fact, from i) ii) we see that for n fixed

(ht-1) He (n) =t (He (n) +t-He (n)) - 1 H t ÷ h e (n) -I = i Q H e ( n ) for t+O in LI (m)-norm, and on E(r) the f u n c t i o n IH (n) I is ~ some 6>0 for n s u f f i c i e n t l y large vi) We n o w p r o v e that h t = e itQ for all t6~ For this p u r p o s e o b s e r v e

:=hte-itQ that the f u n c t i o n s h~ V t 6 ~ fulfill the a s s u m p t i o n s of the theo- rem so that i)-v) can be a p p l i e d to them as well Thus we o b t a i n a u n i q u e Q~6L(m) such that h [ - 1 = i O ~ H [ Vt6~, and on each fixed E~(r) we have ~(h~-1~

~ Q ~ for t÷O in LI (m)-norm But on each E(r) we have in L I

(m)-norm It follows that Q~=O Thus h~=1 or ht=e itQ for all t6% QED

2.1 THEOREM: For P 6 ReL(m) the s u b s e q u e n t p r o p e r t i e s are e q u i v a l e n t i) a ( e t m ) a ( e - t P ) = I V t 6 ~ ii) ~(P) 6 ~ and ~(tP) =t.e(P) V t 6 ~ iii) There exists a f u n c t i o n Q 6 ReL(m) such that e t ( P + i Q ) £ H # V t6~

In this case the f u n c t i o n Q 6 ReL(m) is u n i q u e up to an a d d i t i v e real constant H e n c e there e x i s t s a u n i q u e Q6ReL(m) such that in a d d i t i o n

The f u n c t i o n c l a s s E is d e f i n e d to c o n s i s t of the f u n c t i o n s P6ReL(m)

112 w h i c h possess the e q u i v a l e n t p r o p e r t i e s i)ii)iii) in 2.1 The functions

P 6 E are called conjugable For P6E the unique f u n c t i o n Q6ReL(m) such that e t ( P + i Q ) 6 H # and ~ ( e t ( P + i Q ) ) = e ta(P) V t E ~ is c a l l e d the c o n j u g a t e f u n c t i o n of P and w r i t t e n Q=:P*

2.2 LEMMA: C o n s i d e r a sequence of functions UnEH# w i t h lUnl~ some

G6L # such that lim suplUni!1 and ~(Un) ~I T h e n there exists a subse- n÷~ q u e n c e Un(Z) w h i c h tends +I for £+~

Proof of 2.2: Take f u n c t i o n s v z 6 H w i t h IviI~1, v£÷I and Iv£1G~c Z vZ~I we can assume that ~ ( v £ ) > 1 - ~ For V E M then

/lv~(Un-1) I 2vdm = ~1 {VzUn-1)+(1-v Z) ] 2volta

I n t r o d u c e now G n : = S u p { l U s I : S ~ n } and o b s e r v e that fun = n= n lim sup lUn]~1 for n Then n÷~ lim sup ~Ivz(Un-1) ]2Vdm I n +~ = V :

Thus there exists a sequence 1 ~ n ( 1 ) < < n ( i ) ~ n ( i + 1 ) < such that

It follows that v i ( U n ( z ) - 1 ) ÷ O and h e n c e that Un(1)÷1 for ~÷~ QED

Proof of 2.1:i) ~ i i ) F r o m V.I.2 we have O < a ( e t P ) < ~ V t E ~ and hence a ( t P ) 6 ~ and a ( t P ) + e ( - t P ) = O Vt6~ F u r t h e r m o r e e t P 6 L # V t6~ N o w

~((s+t)P)=O T h e n letZ-11 = I ( e t X - 1 ) e i t y + ( e i t Y - 1 ) l ~ ( e t X - 1 ) + leitY-11

Now e t X - l < t x e t X < t x e T X and x < ~ ( 1 + e x ) < ! e Cx so that e t X - 1 < ~ e (T+E)x And leity-II~21sint2~I~tly I The a s s e r t i o n follows QED°

2.8 P R O P O S I T I O N : A s s u m e that P6E is b o u n d e d b e l o w or b o u n d e d above Then P + i P ~ 6 H # a n d ~ ( P + i P ~ ) = e ( P )

Proof: We can a s s u m e that P~O T h e n V.4.1 can be applied T h e a s s e r - tion follows QED

In one d i r e c t i o n we o b t a i n an i n s t a n t final result

3.1 THEOREM: Let P6ReL(m) w i t h e ± P 6 L # A s s u m e that the i n t e g r a l /PVdm has the same v a l u e c6[-~,~] for all those V 6 M for w h i c h it e x i s t s in the e x t e n d e d sense T h e n P6E and e(P)

Proof: We a p p l y IV.3.9 to tP w i t h real t~O It follows that - ~ < ~ ( t P ) ~

~tc Thus c 6 ~ and h e n c e ~ ( t P ) 6 ~ Vt6~ T h e n f r o m ~ ( t P ) ~ t c and ~ ( - t P ) ~ - t c we o b t a i n ~ ( t P ) = t c VtE~ QED

In the o p p o s i t e d i r e c t i o n it w o u l d be m o s t p l e a s a n t to d e d u c e from P6E that

/ I P I V d m < ~ and /PVdm = e(P) for all V6M, or at least for those V 6 M for w h i c h /PVdm exists in the e x t e n d e d sense But we c a n n o t p r o v e this u n l e s s we i m p o s e an a d d i t i o n a l b o u n d e d n e s s con- d i t i o n u p o n PEE w h i c h a p p e a r s to be s h a r p e r than the i m p l i c a t e d c o n d i - tion e ± P 6 L #

P r i o r to the m a i n p o i n t w e n o t e a s i m p l e b u t i m p o r t a n t a s s e r t i o n w h i c h is in o b v i o u s r e l a t i o n to V 4 1 o n t h e f u n c t i o n c l a s s H +

3.3 P R O P O S I T I O N : o) L e t P 6 E a n d V 6 M be s u c h t h a t / e - 6 P v d m < ~ for s o m e 6>0 T h e n l l P I V d m < ~ a n d / P V d m ~ e ( P ) i) If P 6 E is b o u n d e d b e l o w t h e n e ( P ) = S u p { / P V d m : V E M } ii) If P E E ~ : = E D R e L ~ ( m ) t h e n a(P) = / P V d m for a l l VEM

I e - t ~ ( P ) ~ f e - t P v d m , e-~(P) < (fe-tPvdm) ~ r so t h a t II.5.1 i m p l i e s t h a t - ~ ( P ) ~ / ( - P ) V d m T h e a s s e r t i o n f o l l o w s , i) f o l l o w s f r o m o) a n d 3 2 i i ) ii) is t h e n o b v i o u s QED

In the n e x t l e m m a w e i n t r o d u c e the s h a r p e n e d b o u n d e d n e s s c o n d i t i o n q u o t e d a b o v e a n d p r o v e a c e r t a i n e x t e n s i o n of the b a s i c t h e o r e m I V 3 1 0 3.5 L E M M A : D e f i n e

I n f { ~ ( ( f - h ) +] : h 6 R e L = ( m ) } < ~ + ( f ) < I n f { @ ((f-h) +] : h £ R e L ~ ( m ) } ii) f bounded above ~ e + ( f ) = O ~ e f £ L # iii) We have

Proof: i) To prove the left estimation let OO] w h i l e on [f O, w h i l e t h e f i f t h e s t i m a t i o n is b a s e d on t h e i n e q u a l i t y uv < t p - - up + I v q V U , v ~ O a n d t > O for c o n j u g a t e 1 < p , q < ~,

IunI ~ luI, IPn I ~ IPI, u n ÷ u, ~ ( U n ) r e a l a n d ÷ ~ ( u ) = O, Ivnl ~ ivl, IQnl ~ QI, v n ÷ v, M ( V n ) r e a l a n d ÷ ~ ( v ) = O

O n t h e o t h e r h a n d the i n t e g r a n d c o n v e r g e s + ( h - f h F d m - u ) (u-iv) p o i n t - w i s e a n d w i t h t h e m a j o r a n t ( l h I + I f h F d m I + l u l ) ( l u l + I v l ) 6 L 1 ( F m ) in v i e w of 2) It f o l l o w s t h a t

It is a p l e a s a n t c o n s e q u e n c e t h a t the f u n c t i o n s in H a d m i t a s i m p l e c h a r a c t e r i z a t i o n v i a m u l t i p l i c a t i v i t y u n d e r i n t e g r a t i o n as f o l l o w s

4.7 C O R O L L A R Y : A s s u m e t h a t F 6 M is d o m i n a n t o v e r X T h e n for f E L ~ ( m ) t h e s u b s e q u e n t p r o p e r t i e s a r e e q u i v a l e n t i) f6H ii) f ( f + u ) 2 V d m = ( f ( f + u ) V d m ) 2 for a l l u 6 H a n d V6M iii) / f 2 V d m = (ffVdm) 2 f o r a l l V 6 M a n d f f u F d m = f f F d m / u F d m for all u6H

P r o o f : i) ~ i i ) a n d ii) ~ i i i ) a r e o b v i o u s So a s s u m e iii) T h e se- c o n d a s s u m p t i o n s h o w s t h a t f ± H~F T h u s a f t e r 4.5 it r e m a i n s to p r o v e t h a t f I N B u t f o r U , V 6 M a n d O ~ t ~ I w e h a v e ( I - t ) U + t V 6 M a n d h e n c e

P r o o f : T h e i n c l u s i o n m is o b v i o u s In o r d e r to p r o v e = t a k e a f u n c - t i o n h 6 L ~ ( m ) w h i c h a n n i h i l a t e s t h e s e c o n d m e m b e r T h i s m e a n s t h a t h ± H F a n d h I N T h e n 4.5 i m p l i e s t h a t h 6 H a n d ~ ( h ) = / h F d m = O I t f o l l o w s t h a t h a n n i h i l a t e s K S i n c e tbe s e c o n d m e m b e r is a c l o s e d l i n e a r s u b s p a c e o f L1 (m) t h e a s s e r t i o n f o l l o w s QED

I) It is c l e a r t h a t Xs6M F u r t h e r m o r e G : = ( I - I ~ P ( a , ' ) , I - - ~ ) 6 M , w h e r e w e k n o w t h a t G > O f r o m S e c t i o n I.I i n i t i a l r e m a r k i) In fact, for f= ( u , < u l > ( a ) ) 6 H w e h a v e

2) M = { ( I - t ) X s + t G : O < t < 1 } In o r d e r to see c let V c M so t h a t O 0 s u c h t h a t V ~ c F V V 6 M ii) F is a n i n t e r n a l p o i n t o f t h e c o n v e x s e t M c R e L 1 ( m ) , t h a t is t o e a c h V 6 M t h e r e e x i s t s a n e > O s u c h t h a t F - e(V-F) £ M ii') T h e r e e x i s t s a n e > O s u c h t h a t F - e(V-F) 6 M V V 6 M iii) N = {c(V-F) :V 6 M a n d c > O}

P r o o f : i) ~ i ' ) A s s u m e t h a t t h e a s s e r t i o n is n o t t r u e T h e n t h e r e e x i s t f u n c t i o n s V n £ M s u c h t h a t V n ~ n 2 n F is f a l s e ( n = I , 2 ) ° N o w V : = ~ 1 V 6 M a n d h e n c e V ~ c F f o r s o m e c > O I t f o l l o w s t h a t V < 2 n v n=1 2 n n n c 2 n F ~ n 2 n F f o r a l l s u f f i c i e n t l y l a r g e n S o w e o b t a i n a c o n t r a d i c t i o n i') ~ i i ' ) F o r V 6 M a n d e > O t h e r e l a t i o n F - e ( V - F ) 6 M is e q u i v a l e n t t o e(V-F) ~ 0 o r V ~ (I+~)F T h u s t h e i m p l i c a t i o n is c l e a r , ii') ~ i i )

F is t r i v i a l , ii) ~ i i i ) W e h a v e t o p r o v e t h e i n c l u s i o n c L e t f £ N, t h a t is f = c ( U - V ) w i t h U , V 6 M a n d c>O F r o m ii) w e h a v e a n e > O s u c h t h a t W: = F - e ( V - F ) = ( I + s ) F - e V 6 M It f o l l o w s t h a t f = c ( U - V ) = c ( U + W - ( I + E ) F ) = c 1+a ( ~ - F )

In the context of the well-defined relationship F > O on X, we observe that for ε > 0, the function approaches certain limits, leading to a contradiction based on the established inequalities Specifically, we define fn as the minimum of f and n for n ≥ 1, which allows us to express the difference f - fn in terms of a non-negative component Consequently, we conclude that the function e(f) belongs to the space L# This result reinforces the foundational principles outlined in IV.3.13 QED.

In o r d e r to i l l u s t r a t e c o n d i t i o n ~4) above we insert the next result

We shall come b a c k to this c o n t e x t in C h a p t e r viii (see also IV.4.5)

6.3 REMARK: C o n s i d e r the s u b s e q u e n t c o n d i t i o n s i) M is c o m p a c t in o ( R e L 1 ( m ) , R e L ~ ( m ) ) ii) If O ~ fn 6 ReLY(m) and fn40 then 8(f n) ÷ O iii) = o + ) If O ~ fn 6 ReLY(m) and fn40 then e(fn ) + 0

Then i) ~ i i ) ~ i i i ) (let us a n n o u n c e that also ii) ~ i ) as it w i l l be seen in V I I I 3 1 )

Proof: i) ~ i i ) The f u n c t i o n s f n : V ~ / f n V d m are 0 ( R e L 1 ( m ) , R e L ~ ( m ) ) c o n t i n u o u s r e a l - v a l u e d f u n c t i o n s on M w i t h s u p n o r m llfnll = @(fn ) Since fn + 0 the Dini t h e o r e m implies that 8(fn)÷O ii) ~ i i i ) is o b v i o u s from IV.3.9 QED

For O ~ F 6 ReL1(m) and I ~ p < ~ let us now d e f i n e

R p(Fm):=R-~-~eLp(Fm) :={f6ReL(m) :Bfn6Re H w i t h / I f - f n l P F d m ÷ O } , so that l i k e w i s e

The final r e s u l t of the first p a r t of the p r e s e n t s e c t i o n then reads as follows

6.4 P R O P O S I T I O N : For F 6 M c o n s i d e r the s u b s e q u e n t p r o p e r t i e s i) F is internal ii) F is enveloped iii) RI (Fm) c E a n d e(f) = S f F d m V f 6 R I ( F m ) iv) R I ( F m ) c E v) R I ( F m ) A R e L Y ( m ) c E ~ a n d h e n c e = E ~

~ c / f F d m f o r a l l O ~ f 6 R e L ( m ) T h u s c o n d i t i o n I) in 6 2 is o b v i o u s , ii) iii) L e t f £ R I ( F m ) S i n c e F > O o n X w e h a v e a s e q u e n c e f £ R e H s u c h t h a t n f n ÷ f a n d I f n I ~ G w i t h G 6 R e L I ( F m ) a n d h e n c e e G 6 L ° ( F m ) c L # F r o m 2 4 i ) w e s e e t h a t f £ E a n d a ( f ) = / f F d m , iii) ~ i v ) a n d iv) ~ v ) a r e t r i v i a l T h u s i t r e m a i n s t o p r o v e t h e e q u i v a l e n c e v) ~ v i ) N o w o b s e r v e t h a t b o t h v) a n d vi) i m p l y t h a t F > O o n X F o r vi) t h i s is o b v i o u s , a n d to d e d u c e i t f r o m v) n o t e t h a t t h e c h a r a c t e r i s t i c f u n c £ i o n X B o f B : = [ F = O ] is i n

T h e n w e c a n p a s s o v e r to ~ T c L P ( F P m ) a n d h e n c e a s s u m e t h a t F = I T h e d e s i - r e d r e s u l t t h e n r e a d s as f o l l o w s : If a l i n e a r s u b s p a c e T c L ~ ( m ) is L P ( m ) - n o r m c l o s e d f o r s o m e 1 ~ p < ~ t h e n d i m T < ~ W e s h a l l p r o v e t h i s v e r s i o n ii) I t is c l e a r t h a t T is L ~ ( m ) - n o r m c l o s e d T h u s f r o m t h e c l o s e d g r a p h t h e o r e m w e o b t a i n a c o n s t a n t c > O s u c h t h a t Ilfll~ ~ clIflILp v f £ T W e

= L S ( m ) llfIlP = SlflPdm < IIfIIP~ s ] I f l S d m < cP-SllfIlP~ s llfIILs(m ) ,

II < cs Iifl S(m) a n d h e n c e t h e a s s e r t i o n a s w e l l iii) N o w w e d e d u c e f r o m IIfll ~

, [ t£fi, ~ cl, ~ tifi,IL 2 = c [ ~ Iti, 2] £=I ~=I (m) Z 1

A f t e r i n t e g r a t i o n it follows that n ~ c 2 m ( X ) Thus d i m T < ~ QED

6.6 P R O P O S I T I O N : Let F 6 M Then the s u b s e q u e n t p r o p e r t i e s are e q u i - valent i) N ReLI (m) c F ( R e L = ( m ) ) ii) N Q F ( R e L = ( m ) ) is L 1 ( m ) - n o r m c l o s e d and F f u l f i l l s the e q u i v a l e n t c o n d i t i o n s i) - vi) in 6.4 iii) dim N

Ngày đăng: 27/05/2022, 09:19