1. Trang chủ
  2. » Luận Văn - Báo Cáo

Tài liệu bồi dưỡng chuyên môn lớp 11 Chương IV: Giới hạn34879

15 1 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 15
Dung lượng 1 MB

Nội dung

TÀI LI U B I D NG CHUYÊN MÔN L P 11 CH NG IV GI I H N ng V n ông –Tr GV: D ng THPT Tân Yên Gi i thi u đ n em b i Tr n Qu c Hoài http://bsquochoai.ga I Gi i h n c a dãy s Gi i h n h u h n Gi i h n đ c bi t: 1 lim  ; lim  (k   ) k n n n n Gi i h n vô c c Gi i h n đ c bi t: lim n  n ) lim qn   (q  1) lim q n  ( q  1) ; lim C  C n lim nk   (k  n   n 2 nh ệí : a) N u lim un = a, lim = b  lim (un + vn) = a + b  lim (un – vn) = a – b  lim (un.vn) = a.b u a  lim n  (n u b  0) b n nh ệí: a)N u lim un   lim 0 un b) N u lim un = a, lim =  lim c) N u lim un = a  0, lim = un  neáu a.vn  lim =  b) N u un  0, n lim un= a a  lim  neáu a.vn  un  a d) N u lim un = + , lim = a un =0   neáu a   neáu a  c) N u un  ,n lim = lim(un.vn) = lim un = d) N u lim un = a lim un  a * Khi tính gi i h n có m t d ng vô đ nh: T ng c a c p s nhân ệùi ốô h n  u1 ,  – , 0. ph i tìm cách kh d ng vơ đ nh S = u1 + u1q + u1q + … =  q  1  1 q M t s ph ng pháp tìm gi i h n c a dãy s :  Chia c t ốà m u cho ệu th a cao nh t c a n 1 n 1 n 1 VD: a) lim  lim 2n  2 n 1  n  n  3n n  lim 1 b) lim 1  2n 2 n   c) lim(n2  4n  1)  lim n2        n n2   Nhân ệ ng ệiên h p: Dùng h ng đ ng th c  a  b  a  b   a  b;   VD: lim n2  3n  n = lim   a  b   a2  ab  b2   a  b n2  3n  n   n2  3n  n n2  3n  n   = lim 3n n2  3n  n ThuVienDeThi.com = ,  Dùng đ nh ệí Ệ p: N u un  ,n lim = VD: a) Tính lim lim un = sin n n sin n 1 sin n  lim  nên lim 0 n n n n 3sin n  cos n b) Tính lim 2n  Vì  Vì 3sin n  cos n  (32  42 )(sin2 n  cos2 n)  nên  3sin n  cos n  2n2  3sin n  cos n Mà lim  nên lim 0 2n2  2n2  2n2  Khi tính gi i h n d ng phân th c, ta ý m t s tr ng h p sau đây:  N u b c c a t nh h n b c c a m u k t qu c a gi i h n b ng  N u b c c a t b ng b c c a m u k t qu c a gi i h n b ng t s h s c a lu th a cao nh t c a t c a m u  N u b c c a t l n h n b c c a m u k t qu c a gi i h n + n u h s cao nh t c a t m u d u k t qu – n u h s cao nh t c a t m u trái d u(ta th ng đ t nhân t chung c a t , m u riêng) Baøi 1: Tính gi i h n sau: (Chia c t m u cho na v i s m a cao nh t Ho c đ t nhân t chung) 1) lim(n2  n + 1) S: + 3n3  2n2  n lim S: 13) 2) lim(n + n + 1) S: - n  3) lim 2n  3n  S: + n4 3 14) lim S: 4) lim  2n  n S: - ( n  1)(2  n )( n  1) 5) lim(2n + cosn) S: + – n2 + n – 1 15) lim S: -1/2 6) lim( n  3sin2n + 5) S: + 2n2 – 4n – 3n  16)lim S: S: + 7) un = n n+1 1 2n  8) un = 2n  3n S: -  17)lim S: n  2n  2n  9) lim S: 2n  n2  n3  4n2  S: + 18) lim n2  3n3  2n2  10) lim S: 3n3  2n2  n 2n  n  lim S: - 19) n2  n  S: 11) lim 2n  n  4n2  2n  20) S: - lim 2n2  n  3 n  12) lim S: 2/3 3n2  2n  Bài 2: Tính gi i h n sau: (Chia cho l y th a có c s l n nh t) 1) lim 2) lim  3n  3n 4.3n  7n1 2.5n  7n S: 3) lim S: 4) lim 4n1  6n2 5n  8n 2n  5n1 ThuVienDeThi.com  5n S: S: 5) lim  2.3n  7n S: -1/2 6) lim  2.3n  6n S: 1/3 5n  2.7n 2n (3n1  5) Bài 3: Tính gi i h n sau: (T d ng vô ±vô cùng; M u d ng vô + vô ;b c c a t m u b ng ta chia cho s m cao nh t;) k k k Chú ý: n k có m ; n có m 4n   n  1) lim n2   n  2) lim 3) lim S: n  4n   n S: n 2 n n2   n6 S: 4n2   n 4) lim 5) lim 6) S: n2  4n   n (2n n  1)( n  3) (n  1)(n  2) lim S: n  4n  4n  S: -1/(  ) 3n2   n n   n2 Baøi 4: Tính gi i h n sau: N u tốn có d ng: + Vơ – vơ khơng có m u (h s c a n b c cao nh t gi ng nhau) + C t m u d ng: Vô cùng- vô (h s c a b c cao nh t gi ng nhau) Thì ta nhân liên h p có c n b c 2,3 r i chia cho l y th a có s m cao nh t N u tốn d ng vơ + vơ kq vô ta đ t nhân t chung có m cao nh t r i tính gi i h n Ho c h s c a n b c cao nh t khác ta chia ho c đ t nhân t chung 1) lim( n2  3n  n) S: + 9) lim 1  n2  n4  3n   S:   2) lim( n2  2n  n  2013) S: 2012 n  4n  4n  10) lim S: -1/(  ) S: -1/2 3) lim n  n  n 3n2   n 4) lim( n2   n  5) S: 11) lim S: - 5) lim( n2  2013  n  5) S: n2   n2  4n   n  6) lim  n2  2n  n  1 S: 12) lim S: -1/2   n  n   n 7) lim  n2  n  n2   S: 1/2   n2   n6 S: 13) lim 8) lim  2n  n3  n  1 S: -1 n   n2   Baøi 5: Tính gi i h n sau: (Gi i h n k p gi a hai bi u th c có k t qu )  1) lim  cos n2 n2  S: 3) lim 3sin6 n  5cos2 (n  1) n2  3sin (n3  2)  n2 (1)n sin(3n  n2 ) lim 4) 2) lim S:  3n2 3n  Bài 6: Tính gi i h n sau: (Rút g n r i tính gi i h n)   1    n 5) lim    1) lim   S: 1/2 (2n  1)(2n  1)  n2  3n  1.3 3.5  1     2) lim  S: 3/2  n(n  2)   1.3 2.4    1  3) lim         S: 1/2  22  32   n2   1    4) lim    S: n(n  1)   1.2 2.3 6) lim   22   n   32   3n ThuVienDeThi.com S: S: S: -1/3 S: 1/2   1   Baøi 7: Cho dãy s (un) v i un =      1   ,v i n 2     n2  a) Rút g n un S: (n+1)/2n b) Tìm lim un S: 1/2 1   Baøi 8: a) Ch ng minh: (n  N*) n n   (n  1) n n n 1 1    b) Rút g n: un = 2 3 n n   (n  1) n c) Tìm lim un S : u1   Baøi 9: Cho dãy s (un) đ c xác đ nh b i:     ( u 1) u n n  n   2n a) t = un+ – un Tính v1 + v2 + … + theo n b) Tính un theo n c) Tìm lim un S: u  0; u2  Baøi 10: Cho dãy s (un) đ c xác đ nh b i:  2un2  un1  un , (n  1) a) Ch ng minh r ng: un+ =  un  , n  2 b) t = un – Tính theo n T tìm lim un S: 2/3 u1  2012  u u u Cho dãy s (un) xác đ nh b i  ; nN* Tìm lim (    n ) (HSG l ng s n 2011) n  u u3 u n 1 u n 1  2012.u n  u n S: - CM đ c dãy t ng : u n 1  u n  2012u n2  n - gi s có gi i h n a : a  2012a  a  a   2012 Vô Lý nên limun =  un u n2 (u  u n ) 1 - ta có :  (   n 1 )  u n 1 u n 1u n 2012u n 1u n 2012 u n u n 1 1 1 V y: S lim(  ) 2012 n  u1 u n 1 20122 Baøi 11: Cho dãy (xn) xác đ nh nh sau:  x1  ( n  N *)  x x 3x    n n  n 1 1 ( n  N * ) Tìm LimSn (HSG l ng s n 2012) t Sn     x1  x  xn  Baøi 12: T ng Dãy c p s nhân lùi vô h n: (1)n 1    n 1  b S = + S: a b.12/11 10 102 10 Baøi 13: Bi u di n s th p phân vô h n tu n hoàn sau d i d ng phân s : 1 a S = + + + … a 0,444 b 0,2121  a  a   a , v i a, b < b  b   b n Baøi 14: L = lim n n   II Gi i h n c a hàm s Gi i h n h u h n Gi i h n đ c bi t: c 0,32111 S: a.4/9 b.21/99 c.289/900 S: (1-b)/(1-a) Gi i h n vô c c, gi i h n Gi i h n đ c bi t: ThuVienDeThi.com vô c c lim x  x0 ;  k chẵn lim x k   ; lim x k   x  x   k lẻ x  x0 lim c  c (c: h ng s ) x  x0 nh ệí:  lim f ( x )  L  x  x0 a) N u  lim g( x )  M   x  x0 thì: * lim  f ( x )  g( x )  L  M lim c  c ; x  x0 * lim  f ( x )  g( x )  L  M x  x0 * lim  f ( x ).g( x )  L.M x  x0 f ( x) L (n u M  0)  x  x0 g( x ) M f(x)  b) N u  lim f ( x )  L  x  x0 * lim * L  * lim x  x0 f ( x)  L c) N u lim f ( x )  L x  x0 lim f ( x )  L x  x0 Gi i h n m t bên: lim f ( x )  L c 0 xk lim   x 0 x x    ; x 0 x 1 lim  lim   x 0 x x 0 x nh ệí:  lim f ( x )  L   x  x0 a) N u  thì: lim g( x )     x  x0  neáu L lim g( x )   x  x0 * lim f ( x )g( x )   lim g( x )  neá u L  x  x0  x  x0 f ( x) * lim 0 x  x0 g( x )  lim f ( x )  L   x  x0 b) N u  thì: lim g( x )    x  x0 lim lim x  x0  f ( x )  neáu L g( x )   g( x )  L.g( x )  Khi tính gi i h n có m t d ng vô đ nh: x  x0  lim  f ( x)  lim  f ( x)  L x x0 x  lim 0. ph i tìm cách kh d ng vơ đ nh x  x0 M t s ph ng pháp Ệh d ng ốô đ nh: D ng P( x ) a) L = lim ố i P(ồ), Q(ồ) ệà đa th c ốà P(ồ0) = Q(x0)= x  x0 Q( x ) Phân tích c t m u thành nhân t rút g n x3  ( x  2)( x  x  4) x  x  12  lim  lim  3 VD: lim x 2 x  x 2 x 2 ( x  2)( x  2) x2 P( x ) b) L = lim ố i P(ồ0) = Q(x0) = ốà P(ồ), Q(ồ) ệà bi u th c ch a c n b c x  x0 Q( x ) S d ng h ng đ ng th c đ nhân l ng liên h p t m u    x    x  2 4 x 1  lim  lim  x 0 x 0 x 0   x x x 2   x  P( x ) c) L = lim ố i P(ồ0) = Q(x0) = ốà P(ồ) ệà biêu th c ch a c n Ệhông đ ng b c x  x0 Q( x ) VD: lim Gi s : P(x) = m u( x )  n Ta phân tích P(x) = VD: lim x 0 v( x ) với m u( x 0)  n v( x0 )  a  m u( x)  a    a  n v( x)   x 1 1 1 1 x  x 1  1 x  lim    x 0  x x x  ThuVienDeThi.com  , ,  – ,    1 1 = lim      x 0  3  1   x  ( x  1)  x     P( x ) D ng : L = lim ố i P(ồ), Q(ồ) ệà đa th c ho c bi u th c ch a c n x  Q( x )  – N u P(x), Q(x) đa th c chia c t m u cho lu th a cao nh t c a x – N u P(x), Q(x) có ch a c n có th chia c t m u cho lu th a cao nh t c a x ho c nhân l h p 2  2 x  5x  x x2 VD: a) lim  lim 2 x  x  x  x  1  x x2 2x  b) lim x  x 1  x  lim x  2  1 1 x2 D ng  – : Gi i h n th ng có ch a c n Ta th ng s d ng ph ng pháp nhân l ng liên h p c a t m u VD: lim x    x  x   lim   x  x   x  x  x  D ng 0.: Ta c ng th ng s d ng ph VD: lim ( x  2) x 2 x x2   1 x ng liên  lim x 2 1 x  x  lim x  ng pháp nh d ng x  x x2  1 x  x 0 0 Bài 1: Tìm gi i h n sau: + Khi thay x=a vào f(x) th y m u khác gi i h n b ng f(a) + Khi thay x=a vào f(x) th y m u b ng t khác gi i h n b ng  1) lim (x2 + x) S: 12 x2  x  x 3 7) lim S: x x 2  x S: ± 2) lim x 1 x  x2  2x  3 S: / 8) lim 1 x  x  x x 1 x 1 S: 3) lim x 0 1 x x 8 3 9) lim S: 3x   x  x  x 4) lim S: -3/2 x 1 x 1 3x   3x  10) lim S:   sin  x   x 2 x 1  S: /   5) lim  x 11) lim x sin S: x x 0 2 lim x 1 S:-2/3 x4  x  Bài 2: Tìm gi i h n sau: (Khi thay x=a vào f(x) th y t =0; m u =0 ta rút g n m t nhân t r i thay ti p t i m u khác xong) cịn n u m u =0 t khác kq  6) x 1 x2 1 S: x 1 x  1  2) lim x    S: -1 x0  x 1) lim 3) lim x2 x3  x2  4) lim x 1 3x  x  x 1 S: 2x  3x  S: x 2 x2 5) lim S: ThuVienDeThi.com 6) lim x  16 S: -8 x3  x2 x3  x2  x  x 2 7) lim S: x  3x  x  3x  5x  8) lim S:1 x 1 x 1  x  x2  x3 9) lim S: x1 1 x x  5x  3x  S: 10) lim x 3 x  8x  x5  11) lim S: 5/3 x 1 x  x 1 12) lim x  5x  x S: 10 (1  x )2 x  5x  x S: 13) lim x 1 x 1    14) lim   S: -1/2 x 1 x  x 1   Bài 3: Tìm gi i h n sau: (M t c n b c 2) x 1 1) lim x 2 4x   S:1/6 x 4  x2 1 S:0 2) lim x 0 x x 5 3 4x 3) lim x 4 x 3 4) lim x 9 9x  x2 S: -1/6 S:-1/54 Bài 4: Tìm gi i h n sau: (Hai c n B c 2) 1 x  1 x 1) lim S: x 0 x x 1 S:2 2) lim x 1 x3 2 3) lim x   x x 2 4x   4) lim x 2 5) lim x 2 2 x 7 3 2x   2 x3 x2  x 6) lim S:3 x 1 x 1 x 1 7) lim   x x 4 1  x   15) lim  S: -1  x 1   x  x    x2  x4 16) lim    S: x 1 x  5x  3(x  3x  2)   x1992  x  S: 1993/1992 x 1 x1990  x  xm 1 18) lim ý t ng c a CSN S: m/n x 1 x n  (1  5x )(1  x )  S: 14 lim x 0 x (1  x )(1  x )(1  3x )  19) lim S: x 0 x 17) lim x  x   x n  n S: n(n+1)/2 x 1 x 1 x n  nx  n  21) lim S: n(n-1)/2 x 1 (x  1)2 20) lim 5) lim x 7 2 x 3 x  49 2x   x  S: -4/15 x 1 x  4x  x  3x  lim 7) S: 9/4 x 1 x2 1 6) lim 8) lim x   x  3x S:1/2 x 1 9) lim 2x   x  3x  x 1 x  1  x 1 11) lim S:3/2 12) S:-4/3 13) lim x   3x  8) lim S:-1/4 x 1 x 1 x 0 x 1 1  2x  lim x 2 x 0 14) lim x 3 15) lim x 0 ThuVienDeThi.com S:1/6 x   x  S: x 1 10) lim S:-3/4 S:-1/3 S: -1/56 S:-3/4 x   2x x 1   x x2   x  16  x   2x x  3x S:-1/4 S:4 S:-2/9 x   x  16  S: 7/24 x x  a  xa 16) lim x a x a 2 , v i a> S: 1/ 2a x 1 17) lim x 1 S:2 x   x  3x Bài 5: Tìm gi i h n sau: (M t c n B c 3) 4x  S :1/3 x 2 x2 2x   2) lim S:2/3 x 1 x 1 1 x 1 5) lim x 0 x2 x 1 6) lim x1 4x   3 1) lim x 3) lim 1 x 1 x5  x3  x 0 S:3 5x   x 7) lim x 0 S:1/3 S:1 S:1 S:24 x 1 Baøi 6: Tìm gi i h n sau: (Hai c n khác b c) 4) lim x 1 1 x  1 x x 1) lim x 0 S:4/3 13) lim 2x   x  x 0 3) 12) lim x 1  x 1 2) lim S :1/6 1 x 1 lim x 0  x x 2 x4 x S:-1/18 x  x  5x  x  10  x  S:-7/72 6) lim x  3 x2  1 4x  1 6x 7) lim S:0 x x 10  x  x  8) lim S:-1/3 x 2 x2 (1  x )(1  x )(1  x )(1  x ) S:1/120 x 1 (1  x)4 17) lim 18) lim x 0 19) lim S:7/54 Bài 7: Tìm gi i h n sau: ( lim x 0 sin x  x x 1) lim S: 2/ S:1 2) lim x  cos x tan x  s in2x S: 3) lim x 0 cos x tgx 4) lim S:4/3  x x x 1  1 x x x x 0  x x  3x   x2   x2 10) lim S:2 x0 x2 x  11  x  11) lim S:7/162 x 2 x  5x  x 2 S:-1/24 14) lim x  11  x  x6  x2 x2  S:-11/24  4x  6x 1 S:5 x 0 x  x  x  15) lim S:7/3 x x (1  n x ) S: 1/n 16) lim x 1 (1  x) S:3/2 5) lim x2  x 1 1 1 x   x S:13/12 4) lim x0 x 9) lim  x3  x2  8) lim x 1  8 x x   x  3x  x   x2  x  sin x ta n x =1)  ; lim x  x x sin 5x x  3x 5) lim S:5/3 6) lim sin 5x sin 33 x sin x S:1/3 x0 45 x  cos 2x S:2 x0 x sin x  cos 4x 8) lim S:4 x 0 2x2 7) lim ThuVienDeThi.com S:5/6 S:-6 S:0 sin 2x 9) lim x 1 1  cos2x x 0 10) lim x0 11) lim x0 12) lim S:4 S: x2 cos x  cos 7x S:12 x2 cos x  cos3x S:2 sin x x0 sin x x 0 tan 2x 13) lim 15) lim x x0 17) lim x0 18) lim x x sin  cos x S:3 S:0  cos3x S:9/25 x0  cos5x  cos 2x xsin x 21) lim x 0 sin 2x  tan3x x 0 x 23) lim x 0 S:1 S:5 S: -1 S:16/ sin( x  1) S:-1/2 x2  4x    sin   x   S:1  39) lim  sin x x  x1 sin x  S:-1/2 cos x   sin x  cos x  tgx  x 42) lim  tgx  x   cot gx x 2 S: S:  x 8 tan( x  2) S:12    45) lim   x S: x   sin x sin 3x   sin 2x  cos 2x S:-1 x 0  sin 2x  cos 2x tan(a  x).tan(a  x)  tan a S:tan4a-1 46) L  lim x 0 x2 22) lim 47) lim (a  x)sin(a  x)  a sin a x x 49) lim x   S:0 x 50) lim x® 51) lim x2  sin x - + cos x tan x  sin2 x  cos x x0 ThuVienDeThi.com sin2 x S: (a+1)sina  2x   sin x x 0 30) lim tan x tan    x  S: 1/2  x  4 2 S: -1 43) lim ( x sin  ) x  x 44) lim  48) ( HGTVT-98): lim px cos cos x  29) lim x 1 1 x lim x® S:0 cos x  tan x 37) lim  41) lim  sin x  cos x sin x 28) lim - x sin x  S:-1/2 cos x  x tan x  sin x S:1/2 x 0 x3 cos4x  cos3x.cos5x 25) lim S: 18 x 0 x2  cos( cos x) S: B góc ph chéo 26) lim x 0 x sin sin 3x S: t n ph 27) lim x   cos x 24)  x S:1/  sin x 40) lim S:4 sin x  sin x 3sin x 22) lim x 38) lim 19) lim S:0 sin   x 35) lim x x  cos x  cos x x 0  36) lim S:1/9   sin 3x 20) lim 34) lim (1  cos 2x ) tgx  16) lim sin x cos x  sin x S:0 x0 tan( x  1) S:1/2  cos x sin 33) lim x   x S:-7/4 x1 x 14) lim  cos x cos x cos 3x S:14 x  tgx   x ) sin( x  S: -2 S:3 32) lim  x   sin x  x 31) lim 3x    x S:1 S: S:1 /8 S:0 52) lim (1- x)tan x® px S:2/ 3x2 - + x2 + S:4 x® 1- cos x x2 S:4/3 54) lim x® + x sin x cos x 53) lim + sin x - 1- sin x S:2 x® x cos x - cos x S:-1/12 56) lim x® sin x 57) lim 2sin2 x  sin x 1 S:-1 x 0 2sin x  3sin x  55) lim  cos x.cos 2x.cos3x S:7 x2  cos x.cos 2x.cos3x cos nx 59) lim x 0 x2 58) lim x 0   cos x  cos     60) lim x 0 sin  tan x  S:n(n+1)(2n+1)/12 S:0 61) lim  sin x   sin x x 0 tan x S:1  cot x S:-3/4 x   cot x  cot x 62) lim   cos x cos 2x cos3x x 0  cos 2x S:3/2 63) lim Bài 8: Tìm gi i h n sau: (gi ng gi i h n dãy s chia cho m cao nh t, nhân liên h p, giá tr t đ i) x 1) lim (3x3 5x2 + 7) S: - 18) xlim S:1 x   x  5  x 1 2) lim (2 x  3x) S:+  x 2x  7x  12 19) lim S: / 3 S:±  3) lim (2 x  3x) x  | x | 17 x  4) lim x  2x  3x  12 S:+  x  S:±  5) lim x  3x  x  x   22) lim x 10) 11) 12) S:+  lim  25) lim 3x(2x  1) lim x  (5x  1)(x x x 1 lim  2x) 14) lim x  15) lim x4  x  2x x  16) lim x  17) lim x   x  10 S:0 1  S: +  28) lim  S:-   x 2  x  x    S:1/3 4x    x S:-  S:-  x3  x2  x x 1 S:-2 x  x   3x  1  x4 1 27) lim S:4; -2/3 lim x2  S:1/2 2x2  x  2x2  x  S:-;+  30) lim x  x 2 2x2  31) lim S:0 x  x  x  29) x  3x  x 3x  (x  1)(x  3x  2) 26) lim    x 0 x x  S:+  x  x2  x x 1 S:6/5 x  x 1 4x  13) lim S:-2/3; 2/3 x  3x  x  2x   S:-  24) lim  x 1 (x  1)2 2x     S:-1/5 x    3x  5x S:-1;1 x2  x3  2x2  x 23) lim S:1 x  2x  x  2x S: ± 23) lim x  2 x  x  2x  S:2 x  x  x 1 S:-  8) lim 3x  2x 5x  x  S:- 2x  x  1  2x x2 21) lim x3  6) lim S:+  x  x  2x  x S:+  7) xlim  x  9) lim x  x4  x4 20) lim x  ThuVienDeThi.com t nhân t , d u x2  2x   4x  lim 32) x  4x    x x  3x  x lim 34) (2 x  1) x  x  5x x  38) lim x  4x  x  40) lim S:1 ( x  2) x  S:4 x   3x x   S:2/5 x  x  3x lim 35) S:3;1/5 x  x  11 S:+  x   2x  (1  x)(1  x)2 (3  x)2 39) lim S:1 x   (2  x)(3  x)2 (  x)2 x  S:0 S:-1;5 4x2  2x    x lim 33) x  x  10 37) lim 4x   x  2 x  5x  S:+  x  x  Bài 9: Tìm gi i h n sau: (gi ng gi i h n dãy s chia cho m cao nh t, nhân liên h p) 14) lim (3x   9x  12x  3) S:- ;0 1) lim  x  x  x  S:1/2 x    x    15) lim  x   x  x   S:0 2) lim ( x  x  x) S:+  x x    lim 36) 3) lim ( x2  3x   x) S:-3/2 x 5) lim x   x 1  x  x 17) lim ( x2  3x   x  2) S:-1/2 S:+  4) lim ( x2  3x   x) x S:0 18) lim ( x  3x   x  1) S:1/2;+  x  6) lim ( x  x   x) S:+ ;-1 19) lim 7) lim ( x   x  ) S:0 20) x x  x 2 8) lim ( x  4x   x  3x  2) S:1/2;-1/2 x 9) lim x   10) lim x   S:2 x2  x   x 2x   x 23) 11) lim x( x   x) S:-1/2; + x  12) lim x    x2   x 1  3x   x  25) lim x  26) lim 13) Cho f(x) = x  2x  - x  2x  Tính gi i h n lim f(x) lim f(x), t nh n x  lim x  S:0  x  x2  x  x  2x   2x  1 24) lim S:-1 lim x  S:+  x lim  x   x   S:0 x      21) lim  x  x  x  x  S:1/2 x    22)  S:+  16) lim ( x2  3x   x  2) x x xét v s t n t i c a gi i h n lim f(x) S :-2 ;2 x x 3  S:-   S:2 x2  x x   x  x  S:0   x  x S:2  x   x3  x   S:2/3 x  Bài 10: Tìm gi i h n sau: a lim x 1 x  b lim (  x  2x) c x5 S:a b 10 c.+ lim x 1 x x 1 d lim x 1 x x 1 1 x  x 1 e lim x 1 x2  x3 d - e Bài 11: Tìm gi i h n sau n u có S: a b -3 c.Ko xđ Bài 12: Tìm gi i h n sau: ( x  15 1) lim S:-  x 2 x  a lim x2 | 3x  | x2 b lim x2 | 3x  | x2 c lim ý đ n d u bi u th c t m u tính gi i h n này) x  15 2) lim S:+  x 2 x  ThuVienDeThi.com x2 | 3x  | x2 3) lim x 3  3x  x x 3 S:-  x2  S:+  x 2 x 2 2 x S:1/3 5) lim  x 2 x  x  2 x 6) lim S:-1/3 x 2 x  x  x2  2x S:0 7) lim x 2 x  3x  8) lim S:5/2 x 2 x 1 S:1 9) lim x 1 x  x 1 10) lim S:-1 x 1 x  4) 11) 12) lim lim x0  lim x2  x3 2x 2x x2  3x  S:-  x x2 x  3x  S:+  lim x x2 x 3 lim S:- ;+ x 4 x  x2  3x  S:+  lim  x  x  x  x2  3x  S:-  lim  x  x  x  13) lim 14) 15) 16) 17) lim 18) x 1  x  3x  x  5x  S: /3  1 x  lim  x  S:0;0 x  x0  19) 20) lim x 1  x2 x2 x 1 S:+ S:1/2 S:-1;1 4x  x Bài 13: Tìm gi i h n m t bên c a hàm s t i m đ c ch ra: (Gi i h n m t bên ti n t i s )   x2  taïi x  S:-6;-2; ko xđ 1) f ( x )   x  x  1  x x   x2  2x x     x3 taïi x  S:-1/6; 32; K xđ 2) f ( x )    x  16 x   x   x  3x  x    3) f ( x )   x  taïi x  S:-1/2; -1/2; -1/2 x  x     1 x 1 x   4) f ( x )    x  taïi x  S:3/2;3/2;3/2  x   Bài 14: Tìm giá tr c a m đ hàm s sau có gi i h n t i m đ c ch ra:  x3   taïi x  S:m=1 1) f ( x )   x  x  mx  x  x  m x   f ( x )   x  100 x  taïi x  S:m=1 x   2) x 3  x 0  ThuVienDeThi.com  x  3m x  1 f ( x)   taïi x  1 x  x  m  x  1  3) S: m=2  x    f ( x)   x  x3  taïi x  S:m=1;m=2 m2 x  3mx  x  4)  III Hàm s liên t c Hàm s ệiên t c t i m t m: y = f(x) liên t c t i x0  lim f ( x )  f ( x0 )  x  x0 xét tính liên t c c a hàm s y = f(x) t i m x0 ta th c hi n b c: B1: Tính f(x0) B2: Tính lim f ( x ) (trong nhi u tr ng h p ta c n tính lim f ( x ) , lim f ( x ) ) x  x0 x  x0  x  x0  B3: So sánh lim f ( x ) v i f(x0) rút k t lu n x  x0 Hàm s ệiên t c m t Ệho ng: y = f(x) liên t c t i m i m thu c kho ng Hàm s ệiên t c m t đo n [a; b]: y = f(x) liên t c kho ng lim f ( x)  f (a), lim f ( x)  f (b) x a (a; b) x b  Hàm s đa th c liên t c R  Hàm s phân th c, hàm s l ng giác liên t c t ng kho ng xác đ nh c a chúng Gi s y = f(x), y = g(x) liên t c t i m x0 Khi đó:  Các hàm s y = f(x) + g(x), y = f(x) – g(x), y = f(x).g(x) liên t c t i x0 f ( x)  Hàm s y = liên t c t i x0 n u g(x0)  g( x ) N u y = f(x) liên t c [a; b] f(a) f(b)< t n t i nh t m t s c  (a; b): f(c) = Nói cách khác: N u y = f(x) liên t c [a; b] f(a) f(b)< ph ng trình f(x) = có nh t m t nghi m c (a; b) M r ng: N u y = f(x) liên t c [a; b] t m = f ( x ) ,M = max f ( x ) Khi v i m i T  (m; M) t n t i  a;b  a;b nh t m t s c  (a; b) cho f(c) = T Bài 1: Xét tính liên t c c a hàm s t i m đ c ch ra: x 3   x  5x  x   x  taïi x  S:Lt 1) f ( x )   x  x  taïi x  1 S: LT 5) f ( x )   x  3x  1 x  1 x    x 3 2 x  3x  x  x   6) f(x) =  t i xo = S:K Lt  x taïi x  S:Lt 2) f ( x )   2x  x   1 x     x2  x3  x  x   x  7) f(x) =  x  t i xo = S:K Lt     x x 3) f(x) =  t i xo = S: Lt 1  2x khix   11   3 x  1  2x  x   t i xo = 4) f(x) =   x 1 x   S:Lt   x  x  t i xo = 8) f(x) =   x   x    x  ThuVienDeThi.com S: Lt 9)  x 5 x   f (x)   x   taïi x  S:Lt ( x  5)2  x    x 1  11) f ( x )    x  2 x  x  taïi x  S:Lt x  1  cos x x  10) f ( x )   taïi x  S:K Lt x   x 1 Bài 2: Tìm m, n,a đ hàm s liên t c t i m đ c ch ra:  x3  x2  x   1 x  1 x  x  x  taïi x  S:m=0  1) f ( x )   x x 1 5) f(x)= t i xo= S:a=-3  3 x  m x   x a  x   x   x  2x  x  t i x = S:a=5/2 2) f(x) =  x   3x   a x   x   x2 t i x0 = S:a=0 6) f(x)=   x2  x 1 ax + 3) f ( x )   taïi x  S:m=2 x   2mx  x  3x  2x  x  4) f(x) =  t i x0 = S:a=2 x  2x  a Bài 3: Xét tính liên t c c a hàm s sau t p xác đ nh c a chúng:  x2  x  3x  x  2 1) f(x) =  Lt / R x   5) f ( x )   x  S: Lt / R x  2 1  x  x  2   x  3x  x   x  3x  10 2) f ( x )  5 x  S:K Lt t i x=2 x    x  2 x   x2   2x   x3  x  6) f(x)=   x  S:K Lt t i x=5  x  1   x  3) f ( x )   x  S:Lt/ R x   3x  4 x  1     x 4  x  2 S:Lt/ R 4) f ( x )   x   x  2 4 Bài 4: Tìm giá tr c a m đ hàm s sau liên t c t p xác đ nh c a chúng:  x3  x2  x   x2  x    x  S:m=0 x  1) f ( x )   x  S:m=3 3) f ( x )   x 1   x  x  3x  m m   x  x x  x  S: m=2 4) f ( x )   x  mx x 1  x  2) f ( x )  2 S: m=1  mx  x  Baøi 5: Ch ng minh r ng ph ng trình sau ln có nghi m: a) x3 – 2x – = S: f(x) liên t c R f(0).f(3)

Ngày đăng: 30/03/2022, 15:33

w