THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Tiêu đề | Big Data and Mobility as a Service |
---|---|
Tác giả | Haoran Zhang, Xuan Song, Ryosuke Shibasaki |
Trường học | The University of Tokyo |
Chuyên ngành | Spatial Information Science |
Thể loại | thesis |
Năm xuất bản | 2022 |
Thành phố | Kashiwa |
Định dạng | |
---|---|
Số trang | 443 |
Dung lượng | 8,74 MB |
Nội dung
Ngày đăng: 14/03/2022, 15:30
Nguồn tham khảo
Tài liệu tham khảo | Loại | Chi tiết |
---|---|---|
[17] Shaheen S., Cohen A. Innovative mobility: carsharing outlook carsharing market overview, analysis, and trends. UC Berkeley:Transportation Sustainability Research Center; 2020. Retrieved from: https://escholarship.org/uc/item/9jh432pm | Link | |
[3] Wang J.-P., Liu T.-L., Huang H.-J. Tradable OD-based travel permits for bi-modal traffic management with heterogeneous users.Trans Res E: Logist Transp Rev. 2018;118:589–605 | Khác | |
[4] Zhang Q., et al. Origin-destination-based travel time reliability under different rainfall intensities: an investigation using open- source data. J Adv Transp. 2020;2020 | Khác | |
[5] Ma J., et al. Ridesharing user equilibrium problem under OD- based surge pricing strategy. Transp Res B Methodol. 2020;134:1–24 | Khác | |
[6] Wang Y., et al. Using mobile phone data for emergency management: a systematic literature review. Inf Syst Front.2020;1–21 | Khác | |
[7] Kraemer M.U., et al. The effect of human mobility and control measures on the COVID-19 epidemic in China. Science.2020;368(6490):493–497 | Khác | |
[8] Huo E., et al. Mining massive truck GPS data for freight OD estimation: case study of liaoning province in China. In: CICTP 2020; 2020:86–98 | Khác | |
[9] Behara K., Bhaskar A., Chung E. A methodological framework to explore latent travel patterns and estimate typical OD matrices: a case study using Brisbane Bluetooth multi-density OD database.2020 Quteprints: 199363. [Working Paper] (Submitted (not yet accepted for publication)) | Khác | |
[10] Forghani M., Karimipour F., Claramunt C. From cellular positioning data to trajectories: steps towards a more accurate mobility exploration. Transp Res C: EmergTechnol.2020;117:102666 | Khác | |
[11] Katranji M., et al. Deep multi-task learning for individuals origin- destination matrices estimation from census data. Data Min Knowl Disc. 2020;34(1):201–230 | Khác | |
[12] Dey S., Winter S., Tomko M. Origin-destination flow estimation from link count data only. Sensors. 2020;20(18):5226 | Khác | |
[13] Iqbal M.S., et al. Development of origin-destination matrices using mobile phone call data. Transp Res C: EmergTechnol. 2014;40:63–74 | Khác | |
[14] Mamei M., et al. Evaluating origin-destination matrices obtained from CDR data. Sensors. 2019;19(20):4470 | Khác | |
[15] Barua L., Zou B., Zhou Y. Machine learning for international freight transportation management: a comprehensive review. Res Transp Bus Manag. 2020;34:100453 | Khác | |
[16] Liu C., et al. Time-dependent vehicle routing problem with time windows of city logistics with a congestion avoidance approach.Knowl-Based Syst. 2020;188:104813 | Khác | |
[18] Xiang Q., Wu Q. Tree-based and optimum cut-based origin- destination flow clustering. ISPRS Int J Geo Inf. 2019;8(11):477 | Khác | |
[19] Guo X., et al. An OD flow clustering method based on vector constraints: a case study for Beijing taxi origin-destination data.ISPRS Int J Geo Inf. 2020;9(2):128 | Khác | |
[20] Vlachos M., Kollios G., Gunopulos D. Discovering similar multidimensional trajectories. In: Proceedings 18th international conference on data engineering, IEEE; 2002 | Khác | |
[21] Berndt D.J., Clifford J. Using dynamic time warping to find patterns in time series. In: KDD workshop, Seattle, WA, USA;1994 | Khác | |
[22] Yuan Y. Image-based gesture recognition with support vector machines. University of Delaware; 2008 | Khác |
TỪ KHÓA LIÊN QUAN
TÀI LIỆU CÙNG NGƯỜI DÙNG
TÀI LIỆU LIÊN QUAN