MATHEMATICAL AND NUMERICAL TABLES

Một phần của tài liệu Ebook Principles of communications (Trang 736 - 758)

This appendix contains several tables pertinent to the material contained in this book. The tables are

1. The GaussianQ-Function 2. Trigonometric Identities 3. Series Expansions 4. Integrals

5. Fourier Transform Pairs 6. Fourier Transform Theorems

n G.1 THE GAUSSIAN Q-FUNCTION

In this appendix we examine the Gaussian Q-function in more detail and discuss several approximations to theQ-function.1The Gaussian probability density function of unit variance and zero mean is

Zðxị ẳ 1 ffiffiffiffiffiffi

p2pex2=2 ðG:1ị

and the corresponding cumulative distribution function is Pðxị ẳ

ðx

ƠZðtịdt ðG:2ị The GaussianQ-function is defined as2

Qðxị ẳ1Pðxị ẳ ð¥

x

Zðtịdt ðG:3ị

An asymptotic expansion forQðxị, valid for largex, is Qðxị ẳZðxị

x 1 1

x2 ỵ 1ð3ị

x4 ỵ ð1ịn1ð3ị ð2n1ị x2n

ỵRn ðG:4ị

1The information given in this appendix is extracted from Abramowitz and Stegun, (1972) (originally published in 1964 as part of the National Bureau of Standards Applied Mathematics Series 55).

2Forx<0;Qðxị ẳ1Qðjxjị.

719

where the remainder is given by

Rnẳ ð1ịnỵ11ð3ị ð2n ỵ1ị ð¥

x

Zðtị

t2nỵ2 dt ðG:5ị which is less in absolute value than the first neglected term. Forx 3, less than 10% error results if only the first term in (G.4) is used to approximate the GaussianQ-function.

A finite-limit integral for theQ-function, which is convenient for numerical integration, is3

Qðxị ẳ 1 p

ðp=2 0

exp

x2 2 sin2f

df; x 0

1 1 p

ðp=2 0

exp

x2 2 sin2f

df; x<0 8>

>>

<

>>

>:

ðG:6ị

The error function can be related to the GaussianQ-function by erfðxị/ 2

ffiffiffiffip p ðx

0

et2dtẳ12Qð ffiffiffi 2

p xị ðG:7ị

The complementary error function is defined as erfcxẳ1erfxso that Qðxị ẳ1

2erfc x ffiffiffi2 p

ðG:8ị which is convenient for computing values using MATLAB since erfc is a subprogram in MATLAB but theQ-function is not (unless you have a Communications Toolbox).

Table G.1 A Short Table ofQ-Function Values

x Q(x) x Q(x) x Q(x)

0 0.5 1.5 0.066807 3.0 0.0013499

0.1 0.46017 1.6 0.054799 3.1 0.00096760

0.2 0.42074 1.7 0.044565 3.2 0.00068714

0.3 0.38209 1.8 0.035930 3.3 0.00048342

0.4 0.34458 1.9 0.028717 3.4 0.00033693

0.5 0.30854 2.0 0.022750 3.5 0.00023263

0.6 0.27425 2.1 0.017864 3.6 0.00015911

0.7 0.24196 2.2 0.013903 3.7 0.00010780

0.8 0.21186 2.3 0.010724 3.8 7:2348105

0.9 0.18406 2.4 0.0081975 3.9 4:8096105

1.0 0.15866 2.5 0.0062097 4.0 3:1671105

1.1 0.13567 2.6 0.0046612 4.1 2:0658105

1.2 0.11507 2.7 0.0034670 4.2 1:3346105

1.3 0.096800 2.8 0.0025551 4.3 8:5399106

1.4 0.080757 2.9 0.0018658 4.4 5:4125106

3J. W. Craig, A new, simple and exact result for calculating the probability of error for two-dimensional signal constellations.IEEE MILCOM’91 Conference Record., Boston, MA, 25.5.1– 25.5.5, November 1991.

M. K. Simon and D. Divsalar, Some new twists to problems involving the Gaussian probability integral.IEEE Transactions on Communication,46: 200–210, February 1998.

A short table of values forQðxịis given in Table G.1. Note that values ofQðxịforx<0 can be found from the table by using the relationship

Qðxị ẳ1Qðxị ðG:9ị

For example, from Table G.1,Qð0:1ị ẳ1Qð0:1ị ẳ10:46017ẳ0:53983.

n G.2 TRIGONOMETRIC IDENTITIES

cosuẳ eju ỵeju 2 sinu ẳ ejueju

2j cos2uỵsin2uẳ1

cos2usin2u ẳcosð2uị 2 sinucosu ẳsinð2uị

cosucosv ẳ1

2cosðuvị ỵ 1

2cosðu ỵvị sinucosvẳ 1

2sinðuvị ỵ 1

2sinðuỵvị sinusinvẳ 1

2cosðuvị 1

2cosðuỵvị cosðuvị ẳcosucosvsinusinv sinðuvị ẳ sin u cosvcosusinv

cos2u ẳ 1 2 þ 1

2cosð2uị cos2nu ẳ 1

22n X

n1 kẳ0

2 2n k

!

cosẵ2ðnkịu ỵ 2n n !

( )

; na positive integer

cos2n1u ẳ 1 22n2

X

n1 kẳ0

2n1 k

!

cosð2n2k1ịu

( )

sin2uẳ 1 21

2cosð2uị sin2nuẳ 1

22n X

n1 kẳ0

ð1ịnk2 2n k

!

cosẵ2ðnkịu ỵ 2n n !

( )

sin2n1u ẳ 1 22n2

X

n1 kẳ0

ð1ịnỵk1 2n1 k

!

sinð2n2k1ịu

" #

n G.3 SERIES EXPANSIONS

ðuỵvịnẳXn

kẳ0

n k

unkvk; n

k

ẳ n!

ðnkị!k!

Lettingu ẳ1 andvẳx; wherejxj1 results in the approximations:

ð1 ỵxịn ffi1 ỵnx; ð1xịn ffi1nx; ð1 ỵxị1=2ffi1ỵ 1 2x loga uẳlogeulogae; logeuẳlnuẳlogealogau

euẳXƠ

kẳ0

uk

k!ffi1 þu; juj1 lnð1 ỵuị ffiu; juj1

sinuẳXƠ

kẳ0

ð1ịk u2kỵ1

ð2k ỵ1ị!ffiuu3

3!; juj1 cosu ẳXƠ

kẳ0

ð1ịk u2k

ð2kị!ffi1u2

2!; juj1 tanuẳu ỵ 1

3u3 þ 2

15u5 þ

Jnðuị ffi

(

un

2nn! 1 u2

22ðn ỵ1ị ỵ u4

224ðnỵ1ịðnỵ2ị

;juj1

ffiffiffiffiffiffi 2 pu r

cos

unp

2 p

2

;juj1

I0ðuị ffi

(

1þ u2 22 þ u4

24 þ ffieu2=4; 0u1 eu

ffiffiffiffiffiffiffiffiffi

p2pu; u1

n G.4 INTEGRALS

G.4.1 Indefinite

ésinðaxịdxẳ 1

acosðaxị

écosðaxịdxẳ1 asinðaxị

Ð

sin2ðaxịdxẳx 2 1

4asinð2axị

Ð

cos2ðaxịdxẳx 2 þ 1

4asinð2axị

Ð

xsinðaxịdxẳa2ẵsinðaxị axcosðaxị

Ð

xcosðaxịdxẳa2ẵcosðaxị ỵ axsinðaxị

Ð

xmsinx dxẳ xmcosxỵm

Ð

xm1cosx dx

Ð

xmcosx dxẳxmsinxm

Ð

xm1sinx dx

Ð

expðaxịdxẳa1expðaxị

Ð

xmexpðaxịdxẳa1xmexpðaxị a1m

Ð

xm1expðaxịdx

Ð

expðaxịsinðbxịdxẳ ða2 ỵb2ị1expðaxịẵasinðbxị bcosðbxị

Ð

expðaxịcosðbxịdxẳ ða2 ỵb2ị1expðaxịẵacosðbxị ỵbsinðbxị

G.4.2 Definite ð¥

0

xm1

1 ỵxndxẳ p=n

sinðmp=nị; n>m>0

Ðp

0sin2ðnxịdxẳép

0cos2ðnxịdxẳp

2; nan integer

Ðp

0sinðmxịsinðnxịdxẳép

0cosðmxịcosðnxịdx ẳ 0; m6ẳn;mandninteger

Ðp

0sinðmxịcosðnxịdxẳ

( 2m

m2n2; mþnodd

0; mþneven

Ð¥

0xa1cosbx dxẳGðaị ba cos pa

2

; 0<jaj<1; b>0

Ð¥

0xa1sinbx dxẳGðaị ba sin pa

2

; 0<jaj<1; b>0

Ð¥

0xnexpðaxịdxẳ n!

anþ1; n an integer and a>0

Ð¥

0expða2x2ịdxẳ ffiffiffiffip p

Ð¥ 2jaj

0x2nexpða2x2ịdxẳ1 ð3ị ð5ị ð2n1ịpffiffiffiffip

2nþ1a2nþ1 ; a>0

Ð¥

0expðaxịcosðbxịdxẳ a

a2 þb2; a>0

Ð¥

0expðaxịsinðbxịdxẳ b

a2 þb2; a>0

Ð¥

0expða2x2ịcosðbxịdxẳ ffiffiffiffip p

2a exp b2 4a2

Ð¥

0xexpðax2ịIkðbxịdxẳ 1

2aexp b2 4a

; a>0

ð¥ 0

cosðaxị b2 ỵx2dxẳ p

2bexpðabị; a>0; b>0 ð¥

0

xsinðaxị b2 ỵx2 dxẳp

2expðabị; a>0; b>0 ð¥

0

sincðxịdxẳ ð¥

0

sinc2ðxịdxẳ1 2

n G.5 FOURIER TRANSFORM PAIRS

Signal Fourier transform

Pðt=tị ẳ 1; jtj t

0; otherwise2 (

tsincðftị ẳtsinðpftị pft

2Wsincð2Wtị P f

2W

Lðt=tị ẳ 1jtj

t; jtj t 0; otherwise 8<

: tsinc2ðftị

Wsinc2ðWtị L f

W

expðatịuðtị; a>0 1

ðaỵj2pfị

texpðatịuðtị; a>0 1

ðaỵj2pfị2

expðajtjị; a>0 2a

a2ỵ ð2pfị2 exp p t

t

2

texpẵ pðtfị2

dðtị 1

1 dðfị

cosð2pf0tị 1

2dðff0ị ỵ1

2dðf ỵf0ị

sinð2pf0tị 1

2jdðff0ị 1

2jdðf ỵf0ị

uðtị 1

j2pf þ1 2dðfị 1

ðptị jsgnf;sgnf ẳ

1; f>0 1; f <0 P¥

mẳ ƠdðtmTsị fsPƠ

nẳ Ơdðfn fsị; fsẳ 1 Ts

n G.6 FOURIER TRANSFORM THEOREMS

Name

Time domain operation (signals assumed real)

Frequency domain operation Superposition a1x1ðtị ỵa2x2ðtị a1X1ðfị ỵa2X2ðfị

Time delay xðtt0ị Xðfịexpðj2pt0fị

Scale change xðatị jaj1X f

a

Time reversal xðtị Xðfị ẳXðfị

Duality Xðtị xðfị

Frequency translation xðtịexpðj2pf0tị Xðff0ị

Modulation xðtịcosð2pf0tị 1

2Xðff0ị ỵ1

2Xðf ỵf0ị

Convolution* x1ðtịx2ðtị X1ðfịX2ðfị

Multiplication x1ðtịx2ðtị X1ðfịX2ðfị

Differentiation dnxðtị

dtn ðj2pfịnXðfị

Integration Ðt

Ơxðlịdl Xðfị

j2pf þ1 2Xð0ịdðfị

x1ðtịx2ðtị/éƠ

Ơx1ðlịx2ðtlịdl:

n HISTORICAL REFERENCES

1. Gallager, R. G. (1963)Low Density Parity-Check Codes, MIT Press, Cambridge, MA.

2. Hartley, R. V. L. (1928) Tranmission of informa- tion.Bell System Technical Journal,7: 535–563.

3. Kotel’nikov, V. A. (1959)The Theory of Optimum Noise Immunity, McGraw-Hill, New York. Doctoral dis- sertation presented in January 1947 before the Acadamic Council of the Molatov Energy Institute of Moscow.

4. Middleton, D. (1960)An Introduction to Statis- tical Communication Theory, McGraw Hill, New York.

Reprinted by Peninsula Publishing, 1989.

5. North, D. O. (1943) An analysis of the factors which determine signal/noise discrimination in pulsed- carrier systems.RCA Technical Report PTR-6-C, June.

Reprinted in theProceedings of the IEEE,51: 1016–1027 (July 1963).

6. B. Oliver, J. Pierce, and C. Shannon (1948) The Philosophy of PCM, Proc. IRE, 16: 1324–1331, November.

7. Rice, S. O. (1944) Mathematical analysis of ran- dom noise.Bell System Technical Journal,23: 282–332 (July 1944);24: 46–156 (January 1945).

8. Shannon, C. E. (1948) A mathematical theory of communications. Bell System Technical Journal, 27:

379–423, 623–656 (July).

9. Wiener, N. (1949)Extrapulation, Interpolation, and Smoothing of Stationary Time Series with Engineer- ing Applications, MIT Press, Cambridge, MA.

10. Woodward, P. M. (1953)Probability and Infor- mation Theory with Applications to Radar, Pergamon Press, New York.

11. Woodward, P. M. and J. L. Davies (1952) Infor- mation theory and inverse probability in telecommunica-

tion.Proceedings of the Institute of Electrical Engineers, 99: Pt. III, 37–44 (March).

Books

12. Abramowitz, M. and I. Stegun (1972)Handbook of Mathematical Functions, Dover Publications, New York, (reprinting of the original National Bureau of Standards version).

13. Ash, C. (1992) The Probability Turing Book, IEEE Press, New York.

14. Bennett W. R. (1974) Envelope Detection of a Unit-Index Amplitude Modulated Carrier Accompanied by Noise.IEEE Trans. Information Theory,IT-20, 723- 728 (November, 1974).

15. Biglieri, B., D. Divsalar, P. J. McLane, and M. K.

Simon (1991)Introduction to Trellis-Coded Modulation with Applications, Macmillan, New York.

16. Blahut, R. E. (1987) Principles and Practice of Information Theory, Addison-Wesley, Reading, MA.

17. Bracewell, R. (1986) The Fourier Transform and Its Applications, 2nd ed., McGraw-Hill, New York.

18. Carlson, A. B., P. B. Crilly, and J. Rutledge (2001) Communication Systems, 4th ed., McGraw-Hill, New York.

19. Clark, G. C., Jr. and J. B. Cain (1981) Error- Correction Coding for Digital Communications, Plenum Press, New York.

20. Couch, L. W., II (2007) Digital and Analog Communication Systems, 7th ed., Pearson Prentice Hall, Upper Saddle River, NJ.

21. Cover, T. M. and J. A. Thomas (2006)Elements of Information Theory, 2nd ed., Wiley, New York.

726

22. Gallager, Robert G. (1968)Information Theory and Reliable Communication, Wiley, New York.

23. Gardner, F. M. (1979)Phaselock Techniques, 2nd ed., Wiley, New York.

24. Gibson, J. D. (ed.) (2002)The Communications Handbook, 2nd ed., CRC Press, Boca Raton, FL.

25. Goldsmith, A. (2005)Wireless Communications, Cambridge University Press, Cambridge, UK.

26. Haykin, S. (1996) Adaptive Filter Theory, 3rd ed., Upper Saddle River, NJ: Prentice Hall.

27. Haykin, S. (2000) Communication Systems, 4th ed., Wiley, New York.

28. Heegard C. and S. B. Wicker (1999)Turbo Cod- ing, Kluwer Academic Publishers, Boston, MA.

29. Helstrom, C. W. (1968)Statistical Theory of Signal Detection, 2nd ed., Pergamon Press, New York.

30. Holmes, J. K. (1987)Coherent Spread Spectrum Systems, Wiley, New York.

31. R. C. Houts and R. S. Simpson, ‘‘Analysis of waveform distortion in linear systems,’’ IEEE Transac- tions on Eduction, vol. 12, pp. 122–125, June 1968.

32. Kamen, E. W. and B. S. Heck (2007)Fundamen- tals of Signals and Systems, 3rd ed., Prentice Hall, Upper Saddle River, NJ.

33. Kay, S. M. (1993)Fundamentals of Statistical Signal Processing: Volume I, Estimation Theory, Pren- tice Hall PTR, Upper Saddle River, NJ.

34. Kay, S. M. (1998)Fundamentals of Statistical Signal Processing: Volume II, Detection Theory, Prentice Hall PTR, Upper Saddle River, NJ.

35. Kobb, B. Z. (1996)Spectrum Guide, 3rd ed., New Signals Press, Falls Church, VA.

36. Kobb, B. Z. (2001)Wireless Spectrum Finder, McGraw-Hill, New York.

37. Lathi, B. P. (1998)Modern Analog and Digital Communication Systems, 3rd ed., Oxford University Press, Oxford.

38. Leon-Garcia, A. (1994)Probability and Random Processes for Electrical Engineering, Addison-Wesley, Reading, MA.

39. Liberti, J. C. and T. S. Rappaport (1999)Smart Antennas for Wireless Communications: IS-95 and Third Generation CDMA Applications, Prentice Hall PTR, Upper Saddle River, NJ.

40. Lin, S. and D. J. Costello, Jr. (2004)Error Cor- recting Coding: Fundamentals and Applications, 2nd ed., Prentice Hall, Upper Saddle River, NJ.

41. Lindsey, W. C. and M. K. Simon (1973),Tele- communications Systems Engineering, Prentice Hall, Upper Saddle River, NJ.

42. Mark, J. W. and W. Zhuang (2003) Wireless Communications and Networking, Prentice Hall, Upper Saddle River, NJ.

43. McDonough, R. N. and A. D. Whalen (1995) Detection of Signals in Noise, Academic Press, San Diego, CA.

44. Meyr, H. and G. Ascheid (1990)Synchronization in Digital Communications, Volumes I and II, Wiley, New York.

45. Mumford, W. W. and E. H. Scheibe (1968)Noise Performance Factors in Communication Systems, Hor- izen House-Microwave, Dedham, MA.

46. Ott, H. W. (1988) Noise Reduction Techni- ques in Electronic Systems, John Wiley and Sons, New York.

47. Paulraj, A., R. Nabar, and D. Gore (2003)Intro- duction to Space-Time Wireless Communications, Cam- bridge University Press, Cambridge, UK.

48. Papoulis, A. (1991)Probability, Random Vari- ables, and Stochastic Processes, 3rd ed., McGraw-Hill, New York.

49. Peterson, R. L., R. E. Ziemer, and D. A. Borth (1995) Introduction to Spread Spectrum Communica- tions, Prentice Hall, Upper Saddle River, NJ.

50. Poor, H. V. (1994) An Introduction of Signal Detection and Estimation, Springer, New York.

51. Proakis, J. G. (2007)Digital Communications, 6th ed., McGraw-Hill, New York.

52. Proakis, J. G. and M. Salehi (2005)Fundamentals of Communication Systems, Prentice Hall, Upper Saddle River, NJ.

53. Rappaport, T. S. (1996)Wireless Communica- tions: Principles and Practice, Prentice Hall, Upper Saddle River, NJ.

54. Ross, S. (2002)A First Course in Probability, 6th ed., Prentice Hall, Upper Saddle River, NJ.

55. Scharf, L. (1990)Statistical Signal Processing, Addison-Wesley, Reading, MA.

56. Shannon, C. E. and W. Weaver (1963)The Math- ematical Theory of Communication, University of Illi- nois Press, Urbana, IL.

57. Siebert, William (1986) Circuits, Signals, and Systems, McGraw-Hill, New York.

58. Simon, M. K. (2002) Probability Distributions Involving Gaussian Random Variables, Kluwer Academ- ic Publishers, Boston.

59. Simon, M. K. and M. -S. Alouini (2005)Digital Communication over Fading Channels: A Unified Ap- proach to Performance Analysis, Wiley, 2nd ed., New York.

60. Simon, M. K., S. M. Hinedi, and W. C. Lindsey (1995)Digital Communication Techniques: Signal De- sign and Detection, Prentice Hall, New York.

61. Sklar, B. (2001)Digital Communications: Fun- damentals and Applications, 2nd ed., Prentice Hall, Upper Saddle River, NJ.

62. Skolnik, M. I. (ed.) (1970) Radar Handbook, 2nd ed., McGraw-Hill, New York.

63. Stiffler, J. J. (1971)Theory of Synchronous Com- munications, Prentice Hall, Upper Saddle River, NJ.

64. Stuber, G. L. (2001) Principles of Mobile Communication, 2nd ed., Kluwer Academic Publishers, Boston, MA.

65. Taub, H. and D. L. Schilling, (1986)Principles of Communication Systems, 2nd ed., McGraw-Hill, New York.

66. Tranter, W. H., K. S. Shanmugan, T. S. Rappaport, and K. L. Kosbar (2004)Principles of Communication Systems Simulation with Wireless Applications, Prentice Hall, Upper Saddle River, NJ.

67. Tse, D., and P. Viswanath (2005)Fundamentals of Wireless Communication, Cambridge University Press, Cambridge, UK.

68. Van der Ziel, A. (1970)Noise: Sources, Charac- terization, Measurement, Prentice Hall, Upper Saddle River, NJ.

69. Van Trees, H. L., (1968)Detection, Estimation, and Modulation Theory, Vol. I, Wiley, New York.

70. Van Trees, H. L., (1970)Detection, Estimation, and Modulation Theory, Vol. II, Wiley, New York.

71. Van Trees, H. L., (1971)Detection, Estimation, and Modulation Theory, Vol. III, Wiley, New York.

72. Verdu, S. (1998)Multiuser Detection, Cambridge University Press, Cambridge, UK.

73. Viterbi, A. J. (1966)Principles of Coherent Com- munication, McGraw-Hill, New York.

74. Viterbi, A. J., J. K. Wolf, E. Zehavi and R.

Padovani. ‘‘A Pragmatic Approach to Trellis-Coded Mod- ulation,’’IEEE Communications Magazine, 27, 11–19 (July 1989).

75. Walpole, R. E., R. H. Meyers, S. L. Meyers, and K. Ye (2007)Probability and Statistics for Engineers and Scientists, 8th ed., Prentice Hall, Upper Saddle River, NJ.

76. Williams, A. B., and F. J. Taylor (1988)Electronic Filter Design Handbook, 2nd ed., McGraw-Hill, New York.

77. Wozencraft, J. M., and I. M. Jacobs, (1965) Principles of Communication Engineering, Wiley, New York.

78. Ziemer, R. E., and R. L. Peterson (2001)Intro- duction to Digital Communication, 2nd ed., Prentice Hall, Upper Saddle River, NJ.

79. Ziemer, R. E., W. H. Tranter, and D. R. Fannin (1998)Signals and Systems: Continuous and Discrete, 4th ed., Prentice Hall, Upper Saddle River, NJ.

Abramowitz, M., 78, 288, 572, 719 Alamouti, S. M., 543

Alouini, M. S., 440 Amoroso, F., 470 Anderson, J. B., 688 Andrews, F. T., 11 Arthers, E., 471 Ascheid, G., 501 Ash, C., 294

Bennett, W. R., 353, 496 Berrow, C., 15 Biglieri, E., 437, 675 Bingham, J. A. C., 522 Blahut, R. E., 675 Bracewell, R., 99 Cain, J. B., 675 Calderbank, A. R., 543 Carlson, A. B., 202 Chang, R. W., 522 Clark, G. C., 675 Craig, J. W., 477, 720 Costello, D. J., Jr., 15, 637, 675 Couch, L. W., II, 202, 240 Cover, T. M., 672 Davies, D. I., 14 Divsalar, D., 720 Dym, H., 470 Ebert, P. M., 525 Fijalkow, I., 447 Forney, G. D., 15, 525 Franks, L. E., 503 Gallager, R. G., 15, 617 Gardner, F. M., 202 Georghiades, C., 503 Gersho, A., 715 Giannakis, G. B., 522 Gibby, R. R., 522

Gibson, J. D., 538, 546, 705 Gitlin, R. D., 12

Glavieux, A., 15 Glisson, T. H., 717 Goldsmith, A., 538

Grey, S., 546 Grieco, D. M., 520 Haride, K., 470 Hartley, R. V. L., 607 Haykin, S., 202, 378, 449 Heck, B. S., 99

Heegard, C., 675 Heller, J. A., 656 Helstrom, C. W., 598 Hinedi, S., 501 Houts, R. C., 380 Inglis, A. F., 7, 12 Ippolito, L. J., 10

Jacobs, I. M., 14, 471, 571, 598, 656 Jafarkhani, H., 543

Jeanclaude, I., 526 Johnson, C. R., Jr., 447 Kalet, I., 497 Kamen, E. W., 99 Karam, G., 526 Kasturia, S., 12 Kay, S. M., 598 Kivett, J. A., 470 Kobb, B. Z., 3 Kopp, B. T., 501

Kotel’nikiv, V. A., 14, 471, 598 Lathi, B. P., 202, 378 Leon-Garcia, A., 293 Letaief, K. B., 517 Liberti, J. C., 543 Lin, S., 637, 675

Lindsey, W. C., 501, 502, 504, 581 Luecke, B. J., 504

Mark, J. W., 16, 538 Max, J., 717 Maxemchuk, N. F., 16 McDonough, R. N., 598 Middleton, D., 14 Morota, K., 470

Mumford, W. W., 688, 689, 698 Naquib, A. F., 543

North, D. O., 14

Odenwalder, J. P., 656 Ojanpera, T., 546 Oliver, 3

Osborne, W. P., 501 Ott, H. W., 698 Papoulis, A., 334 Pawula, R. F., 486

Peterson, R. L., 240, 508, 510, 513, 521, 549, 656, 658, 675, 698

Poor, H. V., 598 Prabha, V. K., 486, 492

Proakis, J. G., 240, 331, 437, 439, 453, 549

Pursley, M. B., 517 Rappaport, S. S., 520 Rappaport, T. S., 538, 543 Rice, S. O., 1, 496 Ross, S., 293 Rowe, H. E., 492 Salehi, M., 240, 331 Sari, H., 526

Scheibe, E. H., 688, 689, 698 Schilling, D. L., 202, 321, 378 Sharf, L., 598

Scholtz, R. A., 186, 504, 511 Serpedin, E., 503

Seshadri, N., 543 Shanai, 437

Shannon, C. E., 1, 675 Siebert, W., 59

Simon, M. K., 274, 440, 502-504, 581, 601, 720

Simpson, R. S., 380 Sklar, B., 668, 675 Skolnik, M. J., 510 Stegun, I., 78, 288, 572, 719 Stiffler, J. J., 501, 502, 504 Stuber, G. L., 538 Sundberg, C. E., 668 Tarokh, V., 543 Taub, H., 202, 371, 378 Taylor, D. P., 16 Taylor, F. J., 70 Thitimajshima, P., 15 Thomas, J. A., 672

729

Torrieri, D. J., 639 Tranter, W. H., 16, 202, 378 Treichler, J. R., 447 Tse, D., 538

Ungerboeck, G., 668, 670, 671, 672 Van der Ziel, A., 698

Van Trees, H. L., 407, 555, 562, 563, 581, 598

Verdu, S., 15, 518, 543 Viswanath, P., 538 Viterbi, A. J., 672 Walpole, 293 Wang, Z., 522 Weaver, W., 675 Weinstein, S. B., 525 Whalen, A. D., 598 Wicker, S. B., 675

Wiener, N., 1 Williams, A. B., 70 Winters, J. H., 12 Wintz, P. A., 504 Woodward, P. M., 14

Wozencraft, J. M., 14, 471, 571, 598 Zhuang, W., 538

Ziemer, R. E., 58, 92, 99, 240, 508, 549, 656, 668, 675, 698

Absorption, 10–11

Adaptive delta modulation, 189 Adaptive equalization, 449 Adaptive filter, 14

Adjacent channel interference, 497 Administrative Radio Conference, 7 Advanced Mobile Phone System, 537 Advanced Technology Satellite, 11 Aliasing, 80

Alphabet, 620

Amplitude density spectrum, 38 Amplitude distortion, 64 Amplitude jitter, 233 Amplitude modulation (AM)

coherent detection, 115 defined, 115

detection gain, 348

effect of interference on, 159–162 effect of noise on, 357–353 efficiency, 117

envelope detection of, 115–117 index, 115

optimal performance of, 667 square law detection of, 204 Amplitude response function, 60 Amplitude-shift keying (ASK), 238, 385,

392, 404 Amplitude spectrum, 38 Analog baseband system, 342 Analog pulse modulation, 182–186 Analog signal, 4

Analog-to-digital conversion (see also Pulse-code modulation), 384 Analytic signal, 85

Angle modulation (see alsoFrequency modulation)

bandwidth of signal, 147–152 demodulation of, 154–159 deviation ratio, 148 effect of noise on, 357–363 frequency deviation, 136 frequency deviation constant, 137 index, 141

interference in, 162–167 narrowband modulation, 138, 149 narrowband-to-wideband conversion,

139, 152–154 phase deviation, 136 phase deviation constant, 137 power in signal, 147–152 spectrum with sinusoidal signal,

141–147

wideband modulation, 149 Antenna coverage, 528–530 Antenna gain, 533 Antipodal signals, 399

Aperiodic signal, 18

A posterioriprobability, 14, 563 Apparent carrier, 468

Arithmetical average, 268 Asynchronous system, 385 Atmospheric attenuation, 10 Atmospheric noise, 5 Attenuator noise, 694 Autocorrelation function

deterministic signals, 52 properties, 53, 313 random signals, 305 random pulse train, 314 Available power, 685 Average cost, 557 Average information, 608 Average power, 23 AWGN model, 342 Balanced discriminator, 158 Bandlimited channels, 426–431 Bandlimited white noise, 313 Bandpass limiter, 156 Bandpass signals, 87–89 Bandpass systems, 89–91 Bandwidth

bit-rate, 389 efficiency, 491

efficient modulation, 688–672 expansion factor, 666 limited operation, 626 noise-equivalent, 322–325 relation to risetime, 75–78 Barker sequence, 510

Baseband data transmission, 210, 386–391 Basis set

complete, 27 defined, 25 normalized, 26 orthonormal, 26 Basis vector, 25, 564 Bayes detection, 554–564 Bayes estimation, 554, 585–589 Bayes’ rule, 248, 253

Bent-pipe system, 526, 532–535 Bessel filter, 72

Bessel functions, table of, 142 Bessel polynomial, 72 BIBO stability, 58

Binary random waveform, 314–316 Binary system, 385

Binary unit, 385 Binit, 387

Binomial coefficient, 280 Binomial distribution, 280, 282 Binomial theorem, 281

Biphase-shift keying (BPSK), 405–407 Bit, 211, 387, 607

Bit-rate bandwidth, 389 Bit synchronization, 387 Boltzmann’s constant, 341 Burst-error-correcting code, 657 Butterworth filter, 71–73, 324 Capacity limits, 517 Carrier frequency, 111 Carrier nulls, 144 Carrier reinsertion, 125

Carrier synchronization, 167, 499–502 Carson’s rule, 149

Causal system, 59

Cellular mobile radio, 537–546 Central-limit theorem, 284 Channel

Bandlimited, 422–432 binary erasure, 676 binary symmetric, 615 capacity, 613–617 characteristics, 5–14 continuous, 624 defined, 5

electromagnetic wave, 7–11 fading, 6, 424, 542, 582 feedback, 661–665

guided electromagnetic wave, 11 matrix, 610

measurement, 689–691 memoryless, 609 models, 609–612 multipath, 431–437 noiseless, 614 optical, 12

representation of, 609–612 satellite, 611, 526–537, 695–698 slowly fading, 582

transition probability, 609 transmission, 6–12 types of, 6–12 Channel capacity

binary symmetric channel, 615 continuous channel, 624 defined, 613

noiseless channel, 614 Characteristic function, 275 Chebyshev filter, 72 Chebyshev inequality, 289 Chebyshev polynomial, 72 Chip period, 515

Cochannel interference, 540

Code division multiple access (CDMA), 517

Code synchronization, 520

731

Coding definitions

alphabet, 620 block codes, 626–646 constraint span, 647 efficiency, 620 error vector, 631 generator matrix, 633 Hamming distance, 627 Hamming weight, 627 instantaneous codes, 620 nonblock codes, 620 noninstantaneous codes, 620 parity-check matrix, 631 space-time, 543 syndrome, 632 perfect code, 639 systematic code, 631 word length, 620 for error control

BCH codes, 637–638 block codes, 626–646

burst-error correcting codes, 657 code rate, 627

convolutional codes, 647–657 cyclic codes, 635

Golay codes, 636 group codes, 634 Hamming codes, 634–635 interleaved codes, 657 linear codes, 634 repetition codes, 629 single parity-check codes, 628,

630–635

structure of parity-check codes, 628–634

trellis-coded modulation, 668–671 turbo code, 659

Viterbi decoding (Viterbi algorithm), 650–657

source encoding described, 384, 617 Huffman, 623 Shannon-Fano, 622

Coherent demodulation, 114, 385, 500 Communication system, 3

Communication theory, 13 Commutator, 195 Companding, 375 Compound event, 246

Complementary error function, 289 Complex envelope, 87

Compressor, 376

Conditional expectation, 272 Conditional entropy, 612 Conditional mean, 587 Conditional probability, 247 Conditional probability density, 260 Conditional risk, 587

Consistent estimate, 592 Constraint span, 647

Continuous-phase modulation (CPM), 668–672

CONUS, 529 Convolution, 40

Convolutional code, 647–657 Convolution theorem, 44 Correlation, 309, 398 Correlation coefficient, 278 Correlation detection, 401 Correlation receiver, 400

Cost of making a decision, 557 Costas phase-lock loop

for carrier synchronization, 438 demodulation of DSB, 114 Courier satellite, 526 Covariance, 278, 304 Cramer-Rao inequality

Cross-correlation function, 316–317 Cross-power, 262

Cross-power spectral density, 316–317 Crosstalk, 195

Cumulative distribution function, 254–256 Cycle-slipping phenomenon, 177 Cyclic codes, 635

Cyclic prefix, 525

Cyclostationary process, 314 Data transmission

Baseband, 210–237, 386–391 with modulation, 391–426 Data vector, 574

Decimation in time, 92 Decision feedback, 449 Decision rule, 577

De-emphasis (seePre-emphasis) Delay distortion, 64

Delay spread, 524, 542 Delta function, 21 Delta modulation, 187–190 Demod/remod system, 535–537 Demodulation phase errors, 353–357 Detection, statistical

Bayes detection, 555–559

maximuma posterioridetection, 563 minimum probability of error detection,

562–563

Neyman-Pearson detection, 562 Detection gain

in AM, 358 defined, 345 in DSB, 345 optimal, 666 in SSB, 347

Differential encoding, 409

Differential phase-shift keying (DPSK), 409–417

Differentiation theorem, 43 Diffuse multipath, 6

Digtal audio broadcasting, 522 Digital modulation

amplitude-shift keying (ASK), 238, 385, 392, 403

biphase-shift keying (BPSK), 405–407 differential phase-shift keying (DPSK),

409–417, 485–486

frequency-shift keying (FSK), 238, ,385, 392, 407, 468, 480–485

M-ary PAM, 418

minimum-shift keying (MSK), 465–471 noncoherent FSK, 417

offset quadriphase-shift keying (OQPSK), 464

phase-shift keying (PSK), 238, 385, 392, 404

quadriphase-shift keying (QPSK), 385, 474–478

staggered QPSK, 464 Digital signal, 4

Digital subscriber lines, 522 Digital telephone system, 197 Digital–to-analog conversion, 384

Dimensionality theorem, 571 Direct sequence (DS) spread-spectrum,

512–519 Dirichlet conditions, 28 Discrete Fourier transform, 91–95 Discriminator, 154

Disjoint sets, 246 Distortion

amplitude, 64 harmonic, 67, 108 intermodulation, 67 nonlinear, 64, 67 phase (delay), 64

Distortionless transmission, 64 Diversity transmission, 439, 585 Dot product, 564

Double-sideband modulation (DSB) coherent demodulation of, 112 defined, 112

detection gain, 345

effect of interference on, 159–160 effect of noise on, 343–345 optimal performance of, 667 Duality theorem, 43

Earth stations, 530–532 Echo I, 526

Effective carrier, 161

Effective noise temperature, 691 Effective radiated power, 696 Efficient estimate, 592 Electromagnetic spectrum, 8 Electromagnetic-wave propagation

channels, 7–11 Energy, 23

Energy spectral density, 39 Ensemble, 303

Entropy, 608, 621 Envelope, 76, 85 Envelope detection

of AM signals, 115 of FSK signals, 419–423

Envelope-phase representation of noise, 325

Equal gain combining, 439 Equalization

Adaptive, 14 decision-directed, 449 filter, 184, 436

minimum mean-square error, 446–450 transversal implementation, 229 zero-forcing, 442–445 Equivalent noise temperature, 691 Ergodic process, 304, 306 Error correcting codes (seeCoding) Error-detection feedback, 661–665 Error function, 289

Error probability (seespecific system) Estimation

applications

estimation of signal phase, 594–596 pulse amplitude modulation, 593–594 based on multiple oberservations,

589–591 Bayes, 586–588 conditional mean, 587 conditional risk, 587 cost function, 586 Cramer–Rao inequality, 591 Efficient, 592

likelihood equations, 589

likelihood function, 589

maximuma posteriori (MAP), 587 maximum likelihood, 588–589, 592 multiple observations, 589–591 rule, 586

theory, 585–592 unbiased, 591 Euler’s theorem, 18 Event, 246 Excess phase, 468 Expander, 376 Expectation, 269 Extended source, 618, 621 Eye diagrams, 232–234 Fading, 437–443, 582 Fading margin, 458 False alarm, 559

Fast Fourier transform, 91–95

Fast frequency-shift keying (FFSK), 468 Fast hop, 519

Federal Communications Commission (FCC), 9

Feedback channels, 661–665 Feedback demodulators

Costas phase-lock loop, 180 phase-lock loop, 167–180 Filter

adaptive, 14 Bessel, 71–73

Butterworth, 71–73, 324 Chebyshev, 71–73 de-emphasis, 167, 362 equalization, 226–231 ideal, 68–70

intermediate-frequency, 134 matched, 14, 394–402 postdetection, 343 predetection, 343, 362 pre-emphasis, 167 radio frequency, 134 reconstruction, 80 transversal, 229 Weiner, 14 whitening, 402

Filtered Gaussian process, 320 Fixed system, 57

Fourier coefficients, 26, 567–568 Fourier series

complex exponential, 28 generalized, 25–27 symmetry properties, 29, 30 trigonometric, 30

Fourier transforms

amplitude and phase spectra, 37 defined, 37

discrete, 91–95 fast, 92 inverse, 31 periodic signals, 50 symmetry properties, 38 table of, 724

theorems, 41–50, 725 Frame, 504

Free distance, 655–671 Free-space loss, 696

Free-space propagation, 695–698 Frequency bands, 8, 9

Frequency deviation, 137, 148 Frequency diversity, 439 Frequency divider, 182

Frequency division multiplexing, 192

Frequency hopped (FH) spread-spectrum, 519

Frequency modulation bandwidth of signal, 147–150 Carson’s rule, 149

de-emphasis, 166 demodulation of

noiseless, 154–159, 167–180 in the presence of noise, 360–362 deviation constant, 137

deviation ratio, 148 discriminator, 154

effect of interference on, 162–167 effect of noise on, 360–362 index, 145

indirect, 153

narrowband modulation, 138–140 narrowband-to-wideband conversion,

139

optimal performance of, 667 power in signal, 147–152 pre-emphasis in, 166

spectrum with sinusoidal modulation, 141–147

stereophonic broadcasting, 193 threshold effects, 162, 363–371, 373 Frequency multiplier, 181

Frequency reuse, 538 Frequency-shift keying (FSK)

Coherent, 407, 480 M-ary, 480

Noncoherent, 481– 485 Frequency translation, 133–136 Frequency translation theorem, 43 Friis’ formula, 692

Fundamental period, 18

Fundamental theorem of information theory, 624

Gamma function, 290 Gaussian process, 304 Gaussian Q-function, 288 Generalized Fourier series, 25–28 Generator matrix, 633

Geometric distribution, 284 Geostationary satellite, 528 Global positioning system, 510 Globalstar system, 528 Global system for mobile, 537 Golay code, 636

Gram–Schmidt procedure, 569 Gray code, 419

Ground-wave propagation, 8 Group codes, 634

Group delay, 65 Guard band. 531 Guard time, 532

Guided electromagnetic-wave channels, 11 Halfwave symmetry, 30

Hamming codes, 634–635 Hamming distance, 505, 627 Hamming weight, 628 Handoff, 538 Harmonic term, 31 Hartley, 607

Hermite functions, 569 High-side tuning, 135 Hilbert transforms

analytic signals, 85 defined, 82 properties, 83

History of communications, 2–3 Huffman code, 623

Hybrid spread spectrum, 548 Ideal filters, 68–70

Ideal sampling waveform, 78 Ignition noise, 6

Image frequency, 134 Impulse function, 23 Impulse noise, 6 Impulse response

ideal filters, 69 of linear system, 57

Indirect frequency modulation, 153 Information, 607

Information feedback, 661 Information rate, 617

Information theory, 15, 606–624 Instantaneous sampling, 78 Intangible economy, 1 Integrals (table of), 722–724 Integral-squared error, 26

Integrate-and-dump detector, 386–387, 401

Integration theorem, 44 Intelsat, 526

Interference

adjacent channel, 497 in angle modulation, 162–167 in linear modulation, 159–162 intersymbol, 211, 220–222, 402, 413 multipath, 431–437

Interleaved codes, 657 Intermodulation distortion, 67

International Telecommunications Union (ITU), 7

Intersatellite communications

Intersymbol interference, 211, 220–222, 402, 413

Ionosphere, 8 Iridium system, 528 Isotropic radiation, 695 Jacobian, 266 Joint entropy, 612 Joint event, 246 Joint probability

cumulative distribution function, 259 density function, 259, 303

matrix, 610 Kraft inequality, 678 Kronecker delta, 26, 494, 568 Laplace approximation, 282 Laser, 11

Last mile problem, 12, 522 Legendre functions, 569 Likelihood function, 589 Likelihood ratio, 558 Limiter, 156 Line codes, 211–220 Linear modulation

amplitude modulation, 115–120 double-sideband modulation, 112–136 interference in, 159–162

single-sideband modulation, 121–129 vertigial-sideband modulation, 129–133 Linear systems

amplitude response, 60 causal, 58–59 definition of, 56

Một phần của tài liệu Ebook Principles of communications (Trang 736 - 758)

Tải bản đầy đủ (PDF)

(758 trang)