The Piola-Kirchhoff Stress Tensors

Một phần của tài liệu Strength of materials and theory of elasticity in 19th century italy  a brief account of the history of machnics of solids and structures (Trang 128 - 134)

2.4 Piola’s Stress Tensors and Theorem

2.4.2 The Piola-Kirchhoff Stress Tensors

The introduction of Piola’s name to qualify the stress tensors pulled back to the reference configuration is due to Truesdell and Richard Toupin [73] who often refer to the works we have examined in this paper. Frequently, Kirchhoff is mentioned in the same breath as Piola, and this attribution is also due to Truesdell and Toupin; we shall clarify why. Even though we are focused on Piola’s contributions, we will also summarize Kirchhoff’s contribution for a more complete study of the subject. In fact, unlike Piola, Kirchhoff was conscious of introducing a new idea, the stress pulled back in the reference state to study finite deformations. Unfortunately, Kirchhoff’s mathematical treatment was not as good as Piola’s: so the complementarity of under- standing and misunderstanding of mathematical and physical concepts by the two scientists justifies Truesdell’s juxtaposition of Piola’s and Kirchhoff’s names.

In 1852, Kirchhoff [35] published a paper in which he studied the problem of elastic equilibrium in presence of finite displacements. Kirchhoff maintained that he

88pp. 23–24; p. 620.

89pp. 596–597; 246–248; 185.

90p. 620. Our translation.

was inspired by Saint Venant [65], who had formulated a clear definition of a finite measure of strain (which is now indeed called Green-Saint Venant strain tensor) and had given some hints on how to obtain equilibrium equations for non-infinitesimal displacements, claiming that

When tensions are considered over the slightly inclined planes into which the three material planes initially rectangular and parallel to the coordinates have changed, we have, for the six components, the same expressions, as functions of the dilatations and the distortions [the components of the Green-Saint Venant strain tensor], that we have when displacements are very small [65].91(A.2.34)

The conclusion drawn by Saint-Venant in this passage does not seem so clear to a modern reader, and is probably the cause of Kirchhoff’s uncertainties in the con- sidered paper. Quite surprisingly, in fact, Kirchhoff’s article was somewhat obscure and presented incorrect expressions according to modern standards. It is not clear from the text whether Kirchhoff intended to follow an approximated reasoning, or if he made genuine errors. According to Todhunter and Pearson [71]92 Kirchhoff himself later realized the weakness of this paper and did not want to re-publish it in hisGesammelte Abhandlungen[36].

These are Kirchhoff’s words on how he claimed to derive local equilibrium equa- tions in the case of finite displacements (some evident typographical errors have been amended):

I will denote byξ,η,ζthe coordinates of a point after deformation, byx,y,zthe coordinate of the same point before it. I imagine that in the natural state of the body there are three planes, parallel to the coordinate planes, through the point(x,y,z); the parts of these planes, which lay infinitely near the mentioned point, are transformed by the deformation in planes which form non-square, finite angles with the coordinate planes, but infinitely smaller than 90owith each other. I imagine to project the pressure underwent by these planes after the deformation on the coordinate axes, and denote these components: Xx,Yx,Zx,Xy,Yy,Zy, Xz,Yz,Zz, in such a way that for instance Yx is the component alongyof the pressure to which is subjected the plane which was orthogonal to thexaxis before the deformation. These nine pressures are in general non-orthogonal with respect to the planes on which they act, and there are not three equal to other three, like in the case of infinitely small displacement.

Once established the conditions for the equilibrium of a part of the body which before the deformation is an infinitely small parallelepiped with sides parallel to the coordinate axes of lengthdx,dy,dz, one obtains the equations:

ρX= Xx

x +Xy

y +Xz

z ρY= Yx

x +Yy

y +Yz

z ρZ= Zx

x +Zy

y +Zz

z

⎫⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎭

. . . (1)

if we denote byρthe density of the body and by X,Y,Z the components of the accelerating forces acting on the body at the point(ξ,η,ζ). One obtains these equations by considering that the sides and the angles have changed infinitely little, and so one can use the same

91p. 261. Our translation.

92art. 1244, p. 50.

considerations introduced in the equilibrium in presence of infinitely small displacements [35]93(A.2.35)

Thus, Kirchhoff focused on three infinitesimal faces which are parallel to fixed coor- dinate planes and pass through a generic point which undergoes a finite displacement.

He then projected the stresses arising after the deformation on those faces on the fixed coordinate axes and wrote the local equilibrium equations with respect to the same axes. Kirchhoff’s equations (1) above seem inconsistent when what has been said in the previous section is considered. Indeed, they have a similar form of Eqs. (2.11) and (2.19), but do not coincide with them for two reasons:

1. It is not clear how the components Xx,Yx, . . .may coincide with those of Piola’s first stress tensor. Indeed, no information is provided either on how the area affected by the stress changes during deformation, or on the change of metric between the present and the reference configuration.

2. It is not clear where ρis measured. If ρis the mass per unit volume in the present configuration, as it seems to follow from Kirchhoff’s words, this is again inconsistent with the Eq. (2.11), since the mass density is required to be measured in the reference configuration.

It is strange that a sharp expert in physics and a well-educated mathematician like Kirchhoff wrote such inconsistencies. This may perhaps be explained by the fact that Kirchhoff was studying a problem of finite displacements with infinitesimal strain, as explicitly stated in the above quotation, and as conjectured by Saint-Venant:

[…] the mutual distances of points very close vary only in a small ratio […] [65].94(A.2.36) One may then suppose that Kirchhoff considered the body as almost undistorted so that areas and volumes do not vary. In this case, it is still possible to derive local equilibrium equations for the stress components in the present configuration, projected on the fixed coordinated axes, by means of standard procedures. This should be represented by Kirchhoff’s equations (1), ifρis taken as the density in the reference configuration.

It is remarkable how the developments by Piola and Kirchhoff are in a way each other’s mirror images. In the second derivation of the local equilibrium equations which Piola presented inMeccanica de’ corpi naturalmente estesi, he first introduced what we now call Piola’s second stress tensor: its components are the Lagrange multipliers of his variational problem. Then, he introduced what we now call Piola’s first stress tensor simply as a mathematical stratagem with which to write the local equilibrium equations in the present configuration; no mechanical meaning is given to its components. On the other hand, Kirchhoff began by considering from a physical point of view the quantities that we now call the components of Piola’s first stress tensor. Later, he introduced the components of what we now call Piola’s second stress tensor only to obtain a constitutive relation for the components of the first.

93pp. 762–763. Our translation.

94p. 261. Our translation.

References

1. Araldi M (1806) Tentativo di una nuova rigorosa dimostrazione del principio dell’equipollenza.

Mem dell’Is Naz Ital 1(1):415–426

2. Bordoni A (1831) Lezioni di calcolo sublime. Giusti, Milan

3. Bordoni A (1833) Annotazioni agli elementi di meccanica e d’idraulica del professore Giuseppe Venturoli. Giusti, Milan

4. Bottazzini U (1989) I matematici italiani e la ‘moderna analisi’ di Cauchy. Archimede 41:15–29 5. Boussinesq J (1869) Essai sur la théorie des ondes liquides périodiques. Comptes Rendus

Hebdomadaires des Séances de l’Académie des Sci 68:905–906

6. Boussinesq J (1872) Théorie des ondes liquides périodiques. Mémoires présent és par divers savants a lÁcadémie des Sciences de lÍnstitut de France 20:509–615

7. Brillouin L (1960) Les tenseurs en mécanique et en élasticité (1934). Masson, Paris 8. Brunacci V (1798) Calcolo integrale delle equazioni lineari. Allegrini, Florence

9. Brunacci V (1802) L’analisi derivata ossia l’analisi matematica dedotta da un sol principio di considerare le quantità. Bolzani, Pavia

10. Brunacci V (1809) Elementi di algebra e geometria. Stamperia Reale, Milan

11. Capecchi D (2003) Gabrio Piola e la meccanica italiana dell’Ottocento. In: Proceedings of the XXIII Congresso di Storia della Fisica e dell’Astronomia, Bari, pp 95–108

12. Capecchi D (2001) La tensione secondo Cauchy. Hevelius, Benevento

13. Capecchi D, Ruta G (2007) Piola’s contribution to continuum mechanics. Arch Hist Exact Sci 61:303–342

14. Carnot L (1783) Essai sur les machines en général. In: Carnot L (1797) Oeuvres mathématiques.

Decker, Basel

15. Castigliano CA (1879) Théorie des systémes élastiques et ses applications. Negro, Turin 16. Cauchy AL (1823) Recherches sur l’équilibre et le mouvement intérieur des corps solides ou

fluides élastiques ou non élastiques. In: Cauchy AL (1882–1974). Oeuvres complétes (27 vols), vol 1, s 2. Gauthier-Villars, Paris, pp 300–304

17. Cauchy AL (1827) Sur les relations qui existent dans l’état d’équilibre d’un corps solide ou fluide entre les pressions ou tensions et les forces accélératrices. In: Cauchy AL (1882–1974) Oeuvres complétes (27 vols), vol 7. Gauthier-Villars, Paris, pp 141–145

18. Cauchy AL (1828) Sur les équations qui expriment les conditions dequilibre ou les lois du mouvement intérieur dún corps solide élastique ou non élastique. In: Cauchy AL (1882–1974) Oeuvres complétes (27 vols). Gauthier-Villars, Paris, s 2, 8:195-226

19. Cauchy AL (1841) Mémoires sur les condensations et rotations produits par un changement de form dans un systéme de points matériels. In: Cauchy AL (1882–1974). Oeuvres complétes (27 vols), s 2. Gauthier-Villars, Paris, pp 278–287

20. Cauchy AL (1882-1974) Oeuvres compl‘etes (27 vols). Gauthier-Villars, Paris

21. Cesaro E (1889) Sulle variazioni di volume nei corpi elastici. In: Cesaro E (1964–1968) Opere scelte (2 vols in 3 tomes). Cremonese, Rome

22. Cosserat E, Cosserat F (1896) Sur la théorie de l’élasticité. Annales de l’Université de Toulouse 10:1–116

23. Cosserat E, Cosserat F (1907) Sur la statique de la ligne déformable. Comptes Rendus Hebdo- madaires des Séances de l’Académie des Sciences 145:1409–1412

24. Dahan Dalmedico A (1993) Mathộmatisations. Augustin-Louis Cauchy et l’ộcole franỗaise, Du Choix, Paris

25. D’Alembert JL (1758) Traité de dynamique. David, Paris 26. Dugas R (1950) Histoire de la mécanique. Griffon, Neuchâtel

27. Duhem P (1991) Hydrodinamique, élasticité, acoustique. Hermann, Paris

28. Ferroni P (1803) I principi di meccanica richiamati alla massima semplicità ed evidenza.

Memorie di matematica e fisica della Societá italiana delle scienze 10:481–633

29. Filoni A, Giampaglia A (2006) Gabrio Piola 1794–1850. Biografia di un matematico umanista.

Assessorato alla Cultura del Comune di Giussano, Giussano

30. Fontana G (1802) Nuove soluzioni di un problema statico euleriano. Memorie di matematica e fisica della Societá italiana delle scienze 9:626–698

31. Fossombroni V (1796) Memoria sul principio delle velocità virtuali. Cambiagi, Florence 32. Grioli G (1960) Lezioni di meccanica razionale. Borghero, Padua

33. Gurtin ME (1981) An introduction to continuum mechanics. Academic Press, New York 34. Hellinger E (1914) Die allgemeinen ansọtze der mechanik der kontinua. Enzyklopọdie der

mathematischen wissenschaften, Bd. IV/4. B.G. Teubner, Leipzig, pp 602–694

35. Kirchhoff GR (1852) Uber die Gleichungen des Gleichgewichtes eines elastischen Kửrpers bei nicht unendlich kleinen Verscheibungen seiner Theile. Sitzungsberichte der Akademieder Wissenschaften Wien, Bd. 9, pp 762–773

36. Kirchhoff GR (1882) Gesammelte abhandlungen. Barth A, Leipzig

37. Kline M (1972) Mathematical thought from ancient to modern times. University Press, Oxford 38. Lacroix SF (1811) Traité du calcul différentiel et du calcul intégral. Courcier, Paris

39. Lanczos C (1970) The variational principles of mechanics. University Press, Toronto 40. Laqrange JL (1811) Mécanique Analytique (Tome premiere). Courcier, Paris 41. Laqrange JL (1813) Méchanique analitique. Chez la Veuve Desaint, Paris

42. Laqrange JL (1813) Théorie des fonctions analytiques (1797). Imprimerie de la République, Paris

43. Love AEH (1892) A treatise on the mathematical theory of elasticity. Cambridge University Press, Cambridge

44. Magistrini GB (1816) Osservazioni varie sopra alcuni punti principali di matematica superiore.

Memorie di matematica e fisica della Societá italiana delle scienze 17:445–4

45. Malvern LE (1969) Introduction to the mechanics of a continuum medium. Prentice-Hall, Englewood Cliffs

46. Marcolongo R (1905) Meccanica razionale. Hoepli, Milan

47. Masotti A (1950) In memoria di Gabrio Piola nel centenario della morte. Rendiconti dell’Istituto Lombardo, classe di Scienze 83:1–31

48. Mossotti OF (1858) Lezioni di Meccanica razionale. d’Arcais [s.n.]

49. Mỹller CH, Timpe A (1906) Die Grundgleichungen der mathematischen Elastizitọtstheorie.

Enzyklopọdie der mathematischen Wissenschaften, Bd. IV/4. B.G. Teubner, Leipzig, pp 1–54 50. Pepe L (2007) Rinascita di una scienza. Matematica e matematici in Italia (1715–1814).

CLUEB, Bologna

51. Piola G (1821) Sulla teorica dei cannocchiali. Effemeridi astronomiche di Milano, pp 13–36 52. Piola G (1832) La meccanica de’ corpi naturalmente estesi trattata col calcolo delle variazioni.

Opuscoli matematici e fisici di diversi autori, pp 201–236

53. Piola G (1825) Lettere scientifiche di Evasio ad Uranio. Fiaccadori, Reggio Emilia

54. Piola G (1825) Sull’applicazione de’ principj della meccanica analitica del Lagrange ai prin- cipali problemi. Regia Stamperia, Milan

55. Piola G (1833) La meccanica de’ corpi naturalmente estesi trattata col calcolo delle variazioni.

Giusti, Milan

56. Piola G (1836) Nuova analisi per tutte le questioni della meccanica molecolare. Memorie di matematica e fisica della Societá italiana delle scienze 21:155–163

57. Piola G (1844) Elogio di bonaventura cavalieri. Bernardoni, Milan

58. Piola G (1848) Intorno alle equazioni fondamentali del movimento di corpi qualsivogliono considerati secondo la naturale loro forma e costituzione. Memorie di matematica e fisica della Societá italiana delle scienze 24:1–186

59. Piola G (1856) Di un principio controverso della Meccanica Analitica di Lagrange e delle sue molteplici applicazioni. Mem dell’Istituto Lombardo 6:389–496

60. Poinsot L (1848) Éléments de statique (1803). Gauthier-Villars, Paris

61. Poisson SD (1829) Mémoire sur l’équilibre et le mouvement des corps élastiques. Mémorie de l’Académie des Sciences de l’Institut de France 8:357–570

62. Poisson SD (1831) Mémoire sur la propagation du mouvement dans les milieux élastiques.

Mémorie de l’Académie des Sciences de l’Institut de France 10:549–605

63. Poisson SD (1831b) Mémoire sur les équations générales de l’équilibre et du mouvement des corps solides élastiques et des fluides. Journal de l’École Polytechnique 13(20):1–174 64. Prony G (1797) Sur le principe des vitesses virtuelles. Journal de l’École Polytechnique

5(2):191–208

65. Saint Venant AJC Barré de (1847) Mémoire sur l’équilibre des corps solides dans les limites de leur élasticité et sur les conditions de leur résistance quand les déplacements ne sont pas trés petits. Competes Rendus Hebdomadaires des Séances de l’Académie des Sciences 24:260–263 66. Saladini G (1808) Sul principio delle velocità virtuali. Mémorie dell’Istituto Nazionale Italiano

2(1):399–420

67. Signorini A (1930) Sulle deformazioni finite dei sistemi continui. Rendiconti della Reale Accad- emia dei Lincei 12(6):312–316

68. Signorini A (1930) Sulla meccanica dei sistemi continui. Rendiconti della Reale Accademia dei Lincei 12(6):411–416

69. Signorini A (1952) Meccanica razionale con elementi di statica grafica. Società tipografica Leonardo da Vinci, Città di Castello

70. Signorini A (1960) Questioni di elasticità non linearizzata. Cremonese, Rome

71. Todhunter I, Pearson K (1886–1893) A history of the theory of elasticity and of the strength of materials, from Galileo to the present time. Cambridge University Press, Cambridge 72. Trovalusci P, Ruta G, Capecchi D (2006) Il modello molecolare di Voigt. In: Proceedings of

the XVI Congresso di Storia della Fisica e dell’Astronomia, Rome, pp 183–194

73. Truesdell CA, Toupin R (1960) The classical field theories. In: Handbuch der Physik, Bd. III/1.

Springer, Berlin, pp 226–793

74. Truesdell CA, Noll W (1965) The non-linear field theories of mechanics. In: Handbuch der Physik, Bd. III/3. Springer, Berlin

75. Truesdell CA (1991) A first course in rational continuum mechanics. Academic Press, New York

76. Venturoli G (1826) Elementi di meccanica e d’idraulica (1806). Mauri G, Rome

The Mathematicians of the Risorgimento

Abstract The constituting phase of the Kingdom of Italy was a time of recovery of mathematical studies. The political unity facilitated the inclusion of Italian math- ematicians in the context of European research, in particular the German one. The internationalization of Italian mathematics is customarily associated with a trip taken in 1858 by some young mathematicians including Francesco Brioschi, Enrico Betti and Felice Casorati in Europe. In a few years we assist in the development of some schools that will maintain their role even in the 20th century. Among them, those promoted by Enrico Betti and Eugenio Beltrami were undoubtedly the most impor- tant. In this chapter we present briefly the contribution of two of the leading pioneers and their students.

Một phần của tài liệu Strength of materials and theory of elasticity in 19th century italy  a brief account of the history of machnics of solids and structures (Trang 128 - 134)

Tải bản đầy đủ (PDF)

(402 trang)