Tiêu chuẩn mã hóa tiên tiến (AES)

Một phần của tài liệu Giáo trình mật mã học an toàn thông tin TS thái thanh tùng (Trang 40 - 46)

Chương 2. Mã hóa khóa đối xứng

2.3. Tiêu chuẩn mã hóa tiên tiến (AES)

Từ cuối thập niên 1980, đầu thập niên 1990, xuất phát từ những lo ngại về độ an toàn và tốc độ thấp khi áp dụng bằng phần mềm, giới nghiên cứu đã đề xuất khá nhiều thuật toán mã hóa khối để thay thế DES. Những ví dụ tiêu biểu bao gồm: RC5, Blowwfish, IDEA (International Data Encryption Algorithm: Thuật toán mã hóa dữ liệu quốc tế), NewDES, SAFER và FEAL. Hầu hết những thuật toán này có thể sử dụng từ khóa 64 bit của DES mặc dù chúng thường được thiết kế hoạt động với từ khóa 64 bit hay 128 bit. Bản thân DES cũng cải tiến để có thể được sử dụng an toàn hơn.

Năm 2001, sau một cuộc thi quốc tế, NIST đã chọn ra một thuật toán mới là Tiêu chuẩn mã hóa tiên tiến AES (Advanced Encryption Standard) để thay thế cho DES. Thuật toán được trình diện dưới tên là Rijndael. Những thuật toán khác có tên trong danh sách cuối cùng của cuộc thi AES gồm: RC6, Serpent, MARS và Twofish. AES là thuật toán mã hóa khối được chính phủ Hoa Kỳ áp dụng làm tiêu chuẩn mã hóa thay cho tiêu chuẩn DES trước đó. Giống như tiêu chuẩn DES, AES được kỳ vọng áp dụng trên phạm vi toàn thế giới và đã được nghiên cứu rất kỹ lưỡng. AES được chấp thuận làm tiêu chuẩn liên bang bởi Viện Tiêu chuẩn và Công nghệ Quốc gia Hoa Kỳ (NIST) trong một quá trình tiêu chuẩn hóa kéo dài 5 năm.

Thuật toán được thiết kế bởi hai nhà mật mã học người Bỉ:

Joan Daemen và Vincent Rijmen. Thuật toán được đặt tên là

"Rijndael" khi tham gia cuộc thi thiết kế AES theo cách ghép tên của hai đồng tác giả. Thuật toán được dựa trên bản thiết kế Square có trước đó của Daemen và Rijmen; còn Square lại được thiết kế dựa trên Shark. Khác với DES sử dụng mạng Feistel, Rijndael sử dụng mạng thay thế-chuyển vị. AES có thể dễ dàng thực hiện với tốc độ cao bằng phần mềm hoặc phần cứng và không đòi hỏi nhiều bộ nhớ. Do là một tiêu chuẩn mã hóa mới, AES đang được triển khai sử dụng rộng rãi hàng loạt.

2.3.2. Mô tả thuật toán

Mặc dù 2 tên AESRijndael vẫn thường được gọi thay thế cho nhau nhưng trên thực tế thì 2 thuật toán không hoàn toàn giống nhau. AES chỉ làm việc với khối dữ liệu 128 bit và khóa có độ dài 128, 192 hoặc 256 bit trong khi Rijndael có thể làm việc với dữ liệu và khóa có độ dài bất kỳ là bội số của 32 bit nằm trong khoảng từ 128 tới 256 bit. Các khóa con sử dụng trong các chu trình được tạo bởi quá trình tạo khóa con Rijndael. Hầu hết các phép toán trong thuật toán AES đều thực hiện trong một trường hữu hạn. AES làm

việc với từng khối dữ liệu 4×4 bytes (tiếng Anh: state, khối trong Rijndael có thể có thêm cột). Quá trình mã hóa gồm 4 bước:

1. AddRoundKey: mỗi byte của khối được kết hợp với khóa con, các khóa con này được tạo ra từ quá trình tạo khóa con Rijndael.

2. SubBytes: đây là phép thế (phi tuyến) trong đó mỗi byte sẽ được thế bằng một byte khác theo bảng tra (Rijndael S-box).

3. ShiftRows: đổi chỗ, các hàng trong khối được dịch vòng.

4. MixColumns: quá trình trộn làm việc theo các cột trong khối theo một phép biến đổi tuyến tính. Tại chu trình cuối thì bước MixColumns được thay thế bằng bước AddRoundKey.

Bước AddRoundKey. Tại bước này, khóa con được kết hợp với các khối. Khóa con trong mỗi chu trình được tạo ra từ khóa chính với quá trình tạo khóa con Rijndael; mỗi khóa con có độ dài giống như các khối. Quá trình kết hợp được thực hiện bằng cách XOR từng bit của khóa con với khối dữ liệu.

Bước SubBytes. Các byte được thế thông qua bảng tra S-box.

Đây chính là quá trình phi tuyến của thuật toán. Hộp S-box này được tạo ra từ một phép nghịch đảo trong trường hữu hạn GF (28) có tính chất phi tuyến. Để chống lại các tấn công dựa trên các đặc tính đại số, hộp S-box này được tạo nên bằng cách kết hợp phép nghịch đảo với một phép biến đổi affine khả nghịch. Hộp S-box này cũng được chọn để tránh các điểm bất động (fixed point).

Bước ShiftRows. Các hàng được dịch vòng một số vị trí nhất định. Đối với AES, hàng đầu được giữ nguyên. Mỗi byte của hàng thứ 2 được dịch trái một vị trí. Tương tự, các hàng thứ 3 và 4 được dịch 2 và 3 vị trí. Do vậy, mỗi cột khối đầu ra của bước này sẽ bao gồm các byte ở đủ 4 cột khối đầu vào. Đối với Rijndael với độ dài khối khác nhau thì số vị trí dịch chuyển cũng khác nhau.

Bước MixColumns. Bốn byte trong từng cột được kết hợp lại theo một phép biến đổi tuyến tính khả nghịch. Mỗi khối 4 byte đầu vào sẽ cho một khối 4 byte ở đầu ra với tính chất là mỗi byte ở đầu vào đều ảnh hưởng tới cả 4 byte đầu ra. Cùng với bước ShiftRows, MixColumns đã tạo ra tính chất khuếch tán cho thuật toán. Mỗi cột được xem như một đa thức trong trường hữu hạn và được nhân với đa thức c(x) = 3x3 + x2 + x + 2 (modulo x4 + 1). Vì thế, bước này có thể được xem là phép nhân ma trận trong trường hữu hạn.

Trong bước AddRoundKey, mỗi byte được kết hợp với một byte trong khóa con của chu trình sử dụng phép toán XOR.

Trong bước SubBytes, mỗi byte được thay thế bằng một byte theo bảng tra, S; bij = S(aij).

Trong bước ShiftRows, các byte trong mỗi hàng dịch vòng trái.

Số vị trí dịch chuyển tùy từng hàng.

Trong bước MixColumns, mỗi cột được nhân với một hệ số cố định c(x).

Hình 2.6: Sơ đồ thuật toán AES 2.3.3. Tối ưu hóa

Đối với các hệ thống 32 bit hoặc lớn hơn, ta có thể tăng tốc độ thực hiện thuật toán bằng cách sát nhập các bước SubBytes, ShiftRows, MixColumns và chuyển chúng thành dạng bảng. Có cả thảy 4 bảng với 256 mục, mỗi mục là 1 từ 32 bit, 4 bảng này chiếm 4096 byte trong bộ nhớ. Khi đó, mỗi chu trình sẽ được bao gồm 16 lần tra bảng và 12 lần thực hiện phép XOR 32 bit cùng với 4 phép XOR trong bước AddRoundKey.

Trong trường hợp kích thước các bảng vẫn lớn so với thiết bị thực hiện thì chỉ dùng một bảng và tra bảng kết hợp với hoán vị vòng quanh.

2.3.4. Độ an toàn của AES

Vào thời điểm năm 2006, dạng tấn công lên AES duy nhất thành công là tấn công kênh bên (side channel attack). Vào tháng 6 năm 2003, Chính phủ Hoa Kỳ tuyên bố AES có thể được sử dụng cho thông tin mật.

"Thiết kế và độ dài khóa của thuật toán AES (128, 192 và 256 bit) là đủ an toàn để bảo vệ các thông tin được xếp vào loại TỐI MẬT (secret). Các thông tin TUYỆT MẬT (top secret) sẽ phải dùng khóa 192 hoặc 256 bit. Các phiên bản thực hiện AES nhằm mục đích bảo vệ hệ thống an ninh hay thông tin quốc gia phải được NSA kiểm tra và chứng nhận trước khi sử dụng."

Điều này đánh dấu lần đầu tiên công chúng có quyền tiếp xúc với thuật toán mật mã mà NSA phê chuẩn cho thông tin TUYỆT MẬT.

Nhiều phần mềm thương mại hiện nay sử dụng mặc định khóa có độ dài 128 bit.

Phương pháp thường dùng nhất để tấn công các dạng mã hóa khối là thử các kiểu tấn công lên phiên bản có số chu trình thu gọn.

Đối với khóa 128 bit, 192 bit và 256 bit, AES có tương ứng 10, 12 và 14 chu trình. Tại thời điểm năm 2006, những tấn công thành công được biết đến là 7 chu trình đối với khóa 128 bit, 8 chu trình với khóa 192 bit và 9 chu trình với khóa 256 bit.

Một số nhà khoa học trong lĩnh vực mật mã lo ngại về an ninh của AES. Họ cho rằng ranh giới giữa số chu trình của thuật toán và số chu trình bị phá vỡ quá nhỏ. Nếu các kỹ thuật tấn công được cải thiện thì AES có thể bị phá vỡ. Ở đây, phá vỡ có nghĩa chỉ bất cứ phương pháp tấn công nào nhanh hơn tấn công kiểu duyệt toàn bộ (tấn công bạo lực).

Vì thế một tấn công cần thực hiện 2120 plaintexts cũng được coi là thành công mặc dù tấn công này chưa thể thực hiện trong thực tế. Tại thời điểm hiện nay, nguy cơ này không thực sự nguy hiểm và có thể bỏ qua.

Tấn công kiểu duyệt toàn bộ quy mô nhất đã từng thực hiện là do distributed.net thực hiện lên hệ thống 64 bit RC5 vào năm 2002 (Theo định luật Moore thì nó tương đương với việc tấn công vào hệ thống 66 bit hiện nay).

Một vấn đề khác nữa là cấu trúc toán học của AES. Không giống với các thuật toán mã hóa khác, AES có mô tả toán học khá đơn giản. Tuy điều này chưa dẫn đến mối nguy hiểm nào nhưng một số nhà nghiên cứu sợ rằng sẽ có người lợi dụng được cấu trúc này trong tương lai.

Vào năm 2002, Nicolas Courtois và Josef Pieprzyk phát hiện một tấn công trên lý thuyết gọi là tấn công XSL và chỉ ra điểm yếu tiềm tàng của AES. Tuy nhiên, một vài chuyên gia về mật mã học khác cũng chỉ ra một số vấn đề chưa rõ ràng trong cơ sở toán học của tấn công này và cho rằng các tác giả đã có thể có sai lầm trong tính toán.

Việc tấn công dạng này có thực sự trở thành hiện thực hay không vẫn còn để ngỏ và cho tới nay thì tấn công XSL vẫn chỉ là suy đoán.

2.3.5. Tấn công kênh bên (Side channel attacks)

Tấn công kênh bên không tấn công trực tiếp vào thuật toán mã hóa mà thay vào đó, tấn công lên các hệ thống thực hiện thuật toán có sơ hở làm lộ dữ liệu.

Tháng 4 năm 2005, Daniel J. Bernstein công bố một tấn công lên hệ thống mã hóa AES trong OpenSSL. Một máy chủ được thiết kế để đưa ra tối đa thông tin về thời gian có thể thu được và cuộc tấn công cần tới 200 triệu plaintexts lựa chọn. Một số người cho rằng tấn công không thể thực hiện được trên Internet với khoảng cách vài điểm mạng.

Tháng 10 năm 2005, Adi Shamir và 2 nhà nghiên cứu khác có một bài nghiên cứu minh họa một vài dạng khác. Trong đó, một tấn công có thể lấy được khóa AES với 800 lần ghi trong 65 mili giây.

Tấn công này yêu cầu kẻ tấn công có khả năng chạy chương trình trên chính hệ thống thực hiện mã hóa.

Một phần của tài liệu Giáo trình mật mã học an toàn thông tin TS thái thanh tùng (Trang 40 - 46)

Tải bản đầy đủ (PDF)

(220 trang)