Cac nha khoa hoc My dang nghien ciiu lieu mot may bay c6 the c6 toe do gap bay Ian toe do anh sang. Voi may bay do trong mot nam (gia

Một phần của tài liệu phân loại và phương pháp giải đại số 10 (Trang 21 - 25)

Lai gidi

Ta C O mot nam c6 365 ngay, mot ngay c6 24 gio, mpt gio c6 60 phut va mot phiit C O 60 giay

Vay mot nam c6 24.365.60.60 = 31536000 giay.

V i van toe anh sang la 300 nghin km/s nen trong vong mot nam no di dupe

31536000.300 = 9,4608.10'^ k m . ; ; -i;-:::;

ca 2 . B A I T A P L U Y E N T A P

Bai 1.45: So dan cua mot tinh la A = 1034258 ± 300 (nguoi). Hay tim cac chi> so chac va viet A d u o i dang chuan.

Hu&ng dan gidi

Ta C O : = 50 <300 < 500 = 1^9^ nen cac chu so 8 (hang don vj), 5 (hang chuc) va 2 ( hang tram ) deu la cac chir so khong chac.

Cac chCr so con lai 1, 0, 3, 4 la chi> so chac.

Do do each viet chuan cua so A la A ô 1034.lO'' (nguoi).

Bai 1.46: Do chieu dai cua mot con doc, ta dupe so do a = 192,55 m , voi sai so tuang doi khong vupt qua 0,2%. Hay tim cac chu so chac cua d va neu each viet chuan gia trj gan dung cua a .

Huang dan gidi Ta C O sai so t u y f t doi cua so do chieu dai con doc la :

Aa =a.5-, < 192,55.0,2% = 0,3851

Vi 0,05 < Aa < 0,5 . Do do chu so chac cua d la 1, 9, 2.

Vay each viet chuan cua a la 193 m (quy tron den hang don vi).

Bai 1.47: Cho 3,141592 < 7t < 3,141593 . Hay viet gia trj gan diing cua so TI duoi dang chuan va danh gia sai so tuy?t doi ciia gia trj gan dung nay tron^

moi truong hop sau :

a) Gia tri gan dung cua TI c6 5 chii' so chac;

b) Gia trj gan d u n g cua n c6 6 chir so chac;

c) Gia trj gan diing cua 7t c6 3 ehi> so'chac.

Huang dan gidi

a) V i C O 5 chu- so chac nen so gan diing cua n dupe viet d u o i dang chuan la 3,1416 (hay T I * 3 , 1 4 1 6 ) .

Sai s o t u y e t d o i c i i a so gan dung la = |3,1416 - TI| < 0,000008.

b) V i C O 6 chir so chac nen TI a 3,14159 va sai so tuyet doi cua so'gan dung na\

la A„ = |3,14159 - Ti| < 0,000003.

c) V i c 6 3 e h i i s o c h a c n e n T i * 3 , 1 4 va A^ |3,14 - n| < 0,001593.

O N T A P C H U O N G I

Bai 1-48: Cho O x y , lap menh de keo theo va nienh de tuong d u o n g ciia hai menh de sau day va cho biet tinh dung, sai ciia chiing:

p : "Diem M nSm tren phan giac cua goc Oxy ".

n • "Diem M each deu hai canh Ox, O y " . "' " ""'' ' Huang dangiat

p ^ Q : " N e u diem M nam tren phan giac cua goc Oxy thi M each deu hai canh Ox, Oy ": dung.

Q => P : " N e u diem M each deu hai canh Ox, Oy thi M nam tren phan giac ciia goc Oxy " : dung.

p ci> Q : " D i e m M nam tren phan giac ciia goc Oxy neu va chi neu (khi va chi khi) diem M each deu hai canh Ox, O y " : diing.

Hay : P ằ Q : "Dieu kien can va dii de diem M nam tren phan giac ciia goc Oxy la M each deu hai canh Ox, O y " : dimg. . / Bai 1.49: Cho djnh li : "Cho so t u nhien n. Neu n"^ chia he't cho 5 thi n chia het

cho 5". Dinh li nav dupe viet duoi dang P => Q.

a) Hay xac dinh cac menh de P va Q.

b) Phat bieu dinh li tren bang each diing thuat ngir "dieu kien can".

c) Phat bieu dinh li tren bang each diing thuat ngu "dieu kien d i i " .

d) Hay phat bieu djnh li dao (neu c6) cua dinh li tren roi diing cac thuat ngij

"dieu ki^n can va d i i " phat bieu gpp ca hai dinh li thuan va dao.

Huong dan gidi

a) P : " n la so t u nhien va n'^ chia he't cho 5", Q : " n chia he't cho 5".

b) Voi n la so t u nhien, n chia he't cho 5 la dieu kien can de n'^ chia he't cho 5 ; hoac phat bieu each khae : Voi n la so t u nhien, dieu kien can de chia he't cho 5 la n chia he't cho 5.

c) Voi n la s o t u nhien, n"* chia he't cho 5 la dieu kien du de n chia he't cho 5.

Djnh li dao : "Cho so'tu nhien n, neu n chia he't cho 5 thi n^ chia he't cho 5".

That vay, neu n = 5k thi n"^ = 5\k'^: So nay chia he't cho 5.

Dieu kien can va du de n chia he't cho 5 la n"* chia he't eho 5. ' '' •' Bai 1.50: Cho tap X = { 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 }.

3) Hay tim tat ca cac tap con ciia X c6 chiia cac phan tir 1, 3, 5, 7.

°) Co bao nhieu tap con ciia X chira diing 2 phan tir ? Huang dan gidi

^) Cac tap eon ciia X chira c6 cac phan tir 1, 3, 5, 7 dupe thanh lap bang each them vao tap { 1 ; 3 ; 5 ; 7 } cac phan tir con lai ciia tap X. '

Do do tat ca cac tap con cua X c6 chiia cac phan t u 1, 3, 5, 7 la : { 1 ; 3 ; 5 ; 7 } , { l ; 3 ; 5 ; 7 ; 2 } , { ] ; 3 ; 5 ; 7 ; 4 } , { l ; 3 ; 5 ; 7 ; 6 } , { 1 ; 3 ; 5 ; 7 ; 2 ; 4 } , { 1 ; 3 ; 5 ; 7 ; 2 ; 6 } , { 1 ; 3 ; 5 ; 7 ; 4 ; 6 } va X.

b) Gia s u tap can t i m la i a ; b j v o i a b. ., - .-rv''•

• V i X CO 7 phan t u nen c6 7 each chon phan tir a. Sau k h i chon a t h i X con 6 phan t u , do do v o i moi each chon a, ta c6 6 each chon phan t u b, n h u vay c6 7.6 = 42 cap (a ; b) theo each chon nay.

N h u n g v o i each chon tren t h i v o i hai phan t u bat k"i a, b ta da chon lap lai hai Ian, do la hai cap {a;b) va (b;a), n h u n g chi c6 d u y nhat t a p { a ; b } .

42

Do do, CO —="1^ tap con cua X chua d u n g hai phan t u .

Bai 1.51: Xet t i n h d i i n g sai ciia menh de sau va neu m?nh de p h u d j n h ciia no.

a) 3 x € Q : 4 x ^ - 1 = 0 ; b ) 3 x G Z , x ^ = 3 ; c) V n G N * : 2 " + 3 la m o t so nguyen to ; d) Vx e M, x^ + 4x + 5 > 0 .

e) V X G I R , X ' * - x ^ + 2 x + 2 > 0

' Huang dan gidi

a) Giai p h u o n g t r i n h : 4x^ - 1 = 0 o x = ± i e Q . Vay menh de da cho d u n g . M e n h de p h i i d j n h \/x&Q: Ax^ -

b) Ta CO x^ = 3 <=> x = ±V3 . V i ±N/3 i Z nen menh de da cho sai.

M e n h de p h i i d j n h Vx G Z, x^ ;^ 3

c) V o i n = 5 t h i 2 " + 3 = 35, so nay chia het cho 5 (khong nguyen to). D o do menh de da cho sai.

M e n h de phii d j n h " B n e N * : 2" + 3 khong phai la m o t so nguyen to"

d) M e n h de d u n g v i x^ + 4x + 5 = (x + 2)^ + 1 > 0, Vx € K.

M e n h de p h u d j n h 3x e K, x^ + 4x + 5 < 0 ' i J i o s o a

e) x"* - x^ + 2x + 2 = (x^ - 1 + (x + 1)^ nen menh de da cho d i i n g M ? n h de p h i i d j n h 3x G K, x^ - x^ + 2x + 2 < 0

Bai 1.52: Xet d j n h I f : " N e u x la so thuc am t h i x + i < - 2 ".

x a) Viet d j n h l i tren d u o i dang k i hieu.

b) D j n h l i tren c6 d j n h If dao k h o n g ? Giai thich.

c) Su dung thuat ngi> "dieu ki^n can" va "dieu kien d i i " de phat bieu djnh If tren.

Huang dan gidi

a) x e M , x < 0 ^ x + l < - 2 . ^ '

b) M e n h de dao la x G K, x + - < - 2 => x < 0 ".^ •

1 „ x ^ + 2 x + l (x + 1)^ 1 n t- - u ^ - ^ . Ta CO X + - + 2 = = — — do do x + — < - 2 => x < 0 la m^nh de dung

X X X ^ X °

Vay d i n h l i tren c6 d i n h l i dao. ^ ; g^i 1.53: C h u n g m i n h bang phan ehung d j n h If sau:

C h u n g m i n h rang v o i n G N, ta co: n : le o 3n + 1 : chan Huang dan gidi

Thmn: Cho n : le, thi n = 2k + l {k eN) V , ! ,V, ,

r:> 3ô + 1 = 3(2^ + l) + -\=6k + 4 = 2{3k + 2), v o i 3^ + 2 G N

=> 3ô + 1: chan

Dao : Cho 3n + 1 : chan, ta chung m i n h n : le

D u n g p h u o n g phap phan chung: ) . Gia s u n : chan, tuc \an = 2k(k e N) * j

=> 3ô + 1 = 6A: + 1 => 3?7 + 1 : le: trai v o i gia thie't. Vay 3n + l: le. '^^

T u hai phan thuan va dao ta duoe: ô : le o 3ô + 1: chan Bai 1.54: Cho cac tap hop:

A = { x G Z i l < x < 6 ) ,

B = { X G Q I ( 1 - 3 X ) ( X ' ' - 3 x ^ + 2 ) = 0|, C = (0;l;2;3;4;5;6} * a) Viet cac tap h o p A, B d u o i dang liet ke cac phan t u , tap C d u o i dang chi ro

tfnh dac t r u n g cua phan t u .

b) T i m A n B , A u B , A \ B , C g ^ ^ A A n B . c) C h u n g m i n h rang A n ( B u C ) = A.

* Huang dan gidi a) A - . { - l ; 0; 1; 2; 3; 4; 5 } , B = { - l ; i ; l V I

•I V ,

( l- 3 x) ( x' * - 3 x 2+ 2 ) = 0 o

x = ±l •

x = ±-j2&Q • ,

x = l / 3 •'::>*o C = ( X G N I X < 6 | ' ^ ' - ^ -

b) A n B = | - l ; l } ; A u B = { - l ; 0 ; i ; l ; 2 ; 3 ; 4 ; 5 } , A \ = {0;2;3;4;5), C B u A ( A n B ) = {0;l/3;2;3;4;5)

B u C = i - l ; 0 ; l / 3 ; l ; 2 ; 3 ; 4 ; 5 ; 6 ) , A n ( B u C ) = {-1;0;1;2;3;4;5) = A

fiian loai va pnwimg pnapgiiu tjiii so lu

Bai 1.55: T i m quan he bao ham hay bang nhau giua cac tap hop sau day:

a) A = | X € N | x < 2 } ; B = j x e Q b) A = |x £ 4x^ - 9 = o|; ' B = |x 6 K c) A = j x 6 N | l < x < 4 } ; B = { x e Z

Huang dan gidi

a) T a c o : A = { X G N | x < 2 } = > A = { 0 ; l } . (1) (x^ - x)(x^ - 2) = 0 .

(x^ - x) ( x 2 - 2 ) = 0 X + 4x -I-

x^ - 9 = 0 .

X G Q B =

( x 2 - x ) ( x 2 - 2 ) = 0 ô x^ - x = 0 x^ - 2 = 0

x = 0 V X = 1 X = ±V2 ô O Q x = 0

x = l ' B = {0;1}(2) TCr(l) va (2) cho: A = B.

(3) (4) b) Ta c6; 4x^ - 9 = 0 <=> x = ± - g Z A = 0

x^ + 4x = 0 • ằ X = 0 V X = - 4 => B = { 0 ; - 4}.

Tit (3) va (4) cho: A c B.

c) Taco: A = {x e N | 1 < x < 4} => A = {2 ; 3}.

B = { x 6 Z | x ^ - 9 = 0 } = ^ B = { - 3 ; 3 } .

Ta thay: 2 e A ma 2 g B nen A cr B; - 3 e B ma - 3 g A nen B cz A.

Bai 1.56: Cho A = {0; 2; 4; 6}, B = {4; 5; 6}.

a) Hay xac d j n h tat ca cac tap con khac rong X, Y ciia A biet ran;

X u Y = A va ( A n B ) c X ;

b) Hay xac d j n h tat ca cac tap P biet rang (A n B) c P c (A u B).

Huang dan gidi a) T a c o A n B = {4 ; 6 } c X .

D o do cac tap X, Y thoa man yeu cau la: X = {4 ; 6} v Y = { 0 ; 2}, X = { 4 ; 6 ; 0} va Y = {2}, X = { 4 ; 6 ; 2} va Y = {0}.

b) Ta CO A u B = ( 0 ; 2 ; 4 ; 6 ; 5 1 , do do cac tap P thoa m a n dieu kic' t; ' ( A n B ) c P c ( A u B ) l a :

{4 ; 6}, {4 ; 6 ; 0}, {4 ; 6 ; 2}, {4 ; 6 ; 5}, {4 ; 6 ; 0 ; 2}, {4 ; 6 ; 2 ; 5}, { 4 ; 6 ; 5 ; 0 } v a { 4 ; 6 ; 0 ; 2 ; 5 } .

Bai 1.57: Cho ba tap hop:

A = { x e R | - 3 < x < l } ; B = { x 6 R | - l < x < 5 | ; C = {x e S ||x| > 2' .

a) Xac djnh cac tap hop sau day va viet ket qua d u o i dang khoang, doan hay nua khoang: A o B, A u B, (B \) n C.

b) C h u n g m i n h rang: C s ( A u B ) = ( C s A ) n ( C s B ) . Huang dan gidi a) T a c o : A n B = [ - 3 ; l ) n [ - l ; 5 ] = [ - l ; ] ) ;

A u B = [ - 3 ; l ) u [ - l ; 5 ] = [ - 3 ; 5 ] ; B \ = [ - 1 ; 5 ] \ [ - 3 ; 1) = [ l ; 5 . c = { X e IK. | x | > 2 } = ( - ô ; - 2 ] u [ 2 ; + x ) ; (B \nC = [2 ; 5

b ) T a c 6 : C^ ( A u B) = C R [ - 3 ; 5] = ( - x ; - 3 ) u { 5 ; + x ) . (1)

CgA = C K [ - 3 ; l ) = ( ^ ; - 3 ) u [ l ; + x); C , B = C , , [ - 1 ; 5 ] = ; - l ) u ( 5 ; + x ) ; ( C K A ) n ( C j , B ) = ( ^ ; - 3 ) u ( 5 ; + x). (2)

(1) v a ( 2 ) c h o : C^ ( A u B) = ( C B { A ) n ( C K B ) . Bai 1.58: Cho hai tap hop A, B bat k i .

C h u n g m i n h rang: A u B = A r i B < = > A = B.

Huattg dan gidi

• Thuan:/4 u B = /4 n B, ta chung m i n h :/4 = B Vx, X e A X € A u B (vi A c A u B) => X e A n B ( v i A u B = A o B ) x € B (vi A n B c B)

N h u t h e : Vx,x e A => X e B, nen A c B (a) , >

V x , x e B= > x G A u B ( v i B c A u B ) = > x € A n B ( v i A u B = A n B ) => x e A (vi A n B c A)

N h u t h e : V x , x e B = > x e A , n e n B c A (b) .i>

Tir (a) va (b) cho/I = B

• Dao: Cho/4 = B, ta Chung m i n h : A u B = A n B ' Ta CO A u B = A u A ( v i B = /\ = /\)

A n B = A n A ( v i B = /l) = /4 (d) T u (c) va (d) cho A u B = A n B .

T u hai phan thuan va dao ta dugc: A u B = A n B < = > A = B

%hu(mq2 H A M S O B A C N H A T V A B A C H A I

§l.DAICUaNGVEHAMS6 m - ^ -.^.i

A . T O M T A T L Y T H U Y E T * ^ L ©mn ngnia

• Cho D c K , D 7i 0 . Ham so i xac djnh tren D la mot qui t3c dat tuong un, moi so' X 6 D voi mot va chi mot so y e .

• X dugc goi la bien so (doi so), y dugc gpi la gia tri cua ham so / tai x . Ki hieu: v = f (x).

• D dugc goi la tap xdc djnh ciia ham so f . K

2. Cdch cho ham so

• Cho bang bang • Cho bang bieu do • Cho bang cong thiic y = f(x) Tap xdc dinh cua ham so y = f (x) la tap hop tat ca cac so thuc x sao chi bieu thuc f(x) co nghla.

3. <^6 thi cua ham so V*>

Do thi ciia ham so y = f (x) xac dinh tren tap D la tap hop tat ca cac dicn M(x; f(x)) tren mat phang toa do voi mgi x e D .

Chu y: Ta thuong gap do thi cua ham so' y = f (x) la mot duong. Khi do t noi y = f (x) la phuattg trinh cua duong do.

4. Su bien thien cua ham so ^ Cho ham so f xac dinh tren K . ' ^

• Ham so y = f (x) dong bien (tang) tren K neu Vxi,X2 e K : Xj < X2 => f(xi) < f ( x 2 )

• H^m so y = f(x) nghich bien (giam) tren K neu v-

Vxi,X2 G K : X I < X 2 =>f(x^)>f(x2) ^ 5. Tinh chdn le cua ham so

Cho ham so y = f (x) c6 tap xac dinh D .

• Ham so f dugc goi la ham so chin neu voi Vx e D thi -x € D va f(-x) =f(x!

• Ham so f dugc ggi la ham so le neu voi Vx e D thi -x G D va f(-x) =:-f(x)

•^U Chii y: + Do thi cua ham sochan nhqn true tung lam true doi xi'mg.

+ Do thi eua ham sole nhqn goe toq do lam tam doi xung.

6: Tinh tien do thi song song vcri true toa do ^ Dinh ly: Cho (G) la do thj cua y = f (x) va p > 0, q > 0; ta c6

Tjnh tien (G) len tren q don vj thi dugc do thi y = f (x) + q Tinh tien (G) xuong duoi q don vj thi dugc do thi y = f (x) - q Tinh tien (G) sang trai p don vi thi dugc do thi y = f (x + p) Tjnh tien (G) sang phai p don vi thi dugc do thj y = f (x - p) B . C A C P A N G T O A N V A P H l / O N G P H A P G I A I .

DANG TOAN 1: TJM TAP XAC DINH CUA PHUONG TRJNH.

^hucmgphdpgini.

Tap xac djnh cua ham so y = f(x) la tap cac gia tri cua x sao cho bieu thuc f(x) CO nghla

Chu y: Neu P(x) la mot da thuc thi:

CO nghla <=> P(x) ^ 0 P(x)

7P(X) CO nghla o P(x) > 0

CO nghla <=> P(X) >0

Một phần của tài liệu phân loại và phương pháp giải đại số 10 (Trang 21 - 25)

Tải bản đầy đủ (PDF)

(228 trang)