Giai cac phuong trinh sau

Một phần của tài liệu Phân loại phương pháp giải đại số giải tích 11 (Trang 23 - 28)

4 3 Bai 13. Giai cac phuong trinh sau

Bai 16. Giai cac phuong trinh sau

1. l + 3tanx = 2sin2x 2. cot x - tan x + 4 sin 2x = sin2x Giai

1. Dieu kien: cos x 9t 0 <=> x — + k7t

Phuong trinh ô 1 + 3 ^'"^ = 4 sinx cosx <=> cosx + 3sinx - 4sinxcos^ x . cosx Day la phuong trinh dang cap bac ba nen ta chia hai ve ciia phuong trinh cho cos^ X (do cos x ^ 0 ), ta dugc phuong trinh:

1 tan — + 3 — = 4tanx <=> 1 + tan^ x + 3tanx(l + tan^ x) = 4tanx X '' ' ' '

cos X cos X I '

oStan'' X + tan^ x - tanx +1 = 0<=> tanx = -1 <=> x = -— + kTi thoa man dieu kien . 4

* Nhan xet: De giai phuang trinh nay ngay tu dau ta c6 the chia hai ve cua phuong trinh cho cos^ x hoac su dung cong thuc:

. ^ 2 sinx cosx 2 tanx sin2x = • sin^x+cos^x 1 + tan^x

phuong trinh chi chua ham tan nhu tren.

2. Dieu kifn: sin2x 5^ 0 x ^ k^ ''' ' ^ r>u - u cos X sin X ^ . - 1 1 huong trinh <=> — + 4 sin 2x = —

va chuyen phuong trinh ban dau ve

1 X':}::' sTi));'; 'i(ji)h;rj.,;.r ;

Sinx cosx sinx cosx , O cos^ X - sin^ X + 4 sin 2x. sin X cos X = 1

o cos 2x + 2sin^ 2x - 1 = 0 <=> 2cos^ 2x - cos2x - 1 = 0

ocos2x = - ^ (do sin2x^0<=>cos2x^±l )<=>x = ± ^ + k7i, k e Z .

Phdn loai va phtfangphdpgiai Dai so-Giai tick 11

* CM v:

Ta can l u u y den cong thirc: tan x + cot x = va cot x - tan x 2cot2x . sm2x

M < '

Bai 17. Giai cac p h u o n g trinh sau:

1-2>/2(sin2x + cos2x) , n 1. ^ ^ = 6 t a n 2( x - - )

sin4x 8, 2. 3cot^x + 2 V 2 s i n ^ x = (2 + 3\/2)cosx

3. 2sin2x - cos2x = 7 s i n x + 2cosx - 4 . Giai sin4x 0

1. Dieu kien:

cos(x —

'It'

"3 !f..'l'>,'} ?

Phuong trinh o — ^ = 6tan ( x - - )

sin4x 8

7t ^ , l - 4 c o s 2 t 2 . l - 4 c o s 2 t , l - c o s 2 t Dat t = x — ta co: = 6tan t <=> = 6

8 . .n cos4t l + cos2t s i n ( ^ + 4 t )

<=> (1 - 4cos2t)(l + cos2t) = 6(1 -cos2t)(2cos^ 2t - 1 )

<=> 12cos^2t- 16cos^ 2t-9cos2t + 7 = 0 o ( 2 c o s 2 t -l)(6cos^ 2t -5co,s2t - 7 ) = 0 cos2t=-

2 <

6oos^2t-5oos2t-7=0

oos2t=- 2 oos2t = 5 - ^

12

t = ± - + k7T

6

^ ^ 1 5-7T93 , t = ±-arccos + kn 2 12

; k e Z .

'S.I

Ket hop dieu kien ta c6:

X = - ± - + k7t

8 6

7t 1 5-N/i93 , X = - ± -arccos + k7t

8 2 12

la nghiem ciia phuong trinh

2. Dieu kien: x^kn

P h u o n g t r i n h ô . ^ ^ 2 ^ - ^ + 272 sin^x = (2 +3\/2)cosx . , sin X

< b 3cos^ X - 3\/2 sin^ x.cosx + 2\/2 sin"* x - 2 s i n ^ xcosx =tl"°

<=> (cosx - \/2sin^ x)(3cosx - 2sin^ x) = 0

<=> V2ccs^x + cosx-\/2=0 2co6" X + 3cosx-2 = 0

<=>

cosx = -- T + N / 3

^2 cosx= —

2

\[6-\l2 x = ±arccos + k27r

; k e Z . X = ± - + i<27t

3 3. <=> 4 s i n x c o s x - 1 + 2sin x - 7 s i n x - 2 c o s x + 4 = 0

<=> 2cos x(2 sin x - 1 ) + (2 sin x - l)(sin x - 3) = 0 '

<=>(2sinx-l)(2cosx + s i n x - 3 ) = 0 <=>

s i n x = -1 2

X = - + k27t

6

X = — + k27i

6

; k e Z .

2cosx+sinx-3=0

(Ltm y: l a s i n x + bcosx I < Va^ + => 2cosx + sin x < >/5 < 3 ).

Bai 18. Giai cac p h u o n g trinh sau:

2. cotx + tanx = sinx + cosx

^ sin x + cos X 1 _ 1

1. = - c o t 2 x

5sin2x 2 8sin2x

3. 3 s i n x + 2cosx = 2 + 3 t a n X 4. sin (3n x ^ 1 . 71 3x

= —sin 1 [\0 2j 2 l l O 2 J

1. Dieu kien: sin2x5!:0

Giai

Ta C O sin"* x + cos'* x = |sin^ x + cos^ x j - 2sin^ cos^ x = 1 - - s i n ^ 2x

9 5

Nen p h u o n g trinh c6 dang 2 - sin x = 5cos2x - -

Hay 4 c o s ^ 2 x - 2 0 c o s 2 x + 9 = 0, suy ra cos2x = - (k)ai), cos2x = i Vay x = ± — + k n v a i k e Z .

6

2. Dieu kien: sin x ^ 0, cos x ^ 0

I , , . *, , . , , cosx sin X

K h i d o p h u o n g trinh o — = sin x + cos x

A

<=>|cos^ x - s i n ^ X

sm X cos X

= sin X cos X (sin X + cos x)

o (cos X + sin x)(cos x - sin x cos x - s i n x ) = 0 cosx + sinx = 0

cosx - sin x cosx - sin x = 0

tan X = -1 ; sin^ X + cos^ X + 2cosx - 2sin x - 2sin xcosx + (1 - \/2)(1 + -Jl) = 0

7t , , ,

X = — + KTt • -.m

4

| c o s x - s i n x + ! ^y2 j cosx - sin x + 1 + \/2 = 0 •

X = + i<7t

4

cos X - sin X +1 - V2 j = 0

cos X - sin X + 1 + ^\ 0

X = - — + i<TC

4 sin X 71

V 4 , 1 - V 2

X = + i<7t X = — + arcsin 4

4

X =71 + arcsin 4

+ 2kn keZ .

+ 2 k 7 r

3. Dieu kien: cosx ^ 0

Phuong trinh o 3sinx + 2cosx = 2cosx + 3sinx

o ( 3 s i n x + cosx)

tan X = — 3 0 cos X = 1

C O S X

C O S X

X = arctan

x = 2 k 7 t

= 0 o

3sinx + C O S X = 0 1

cosx = 0

+ kTT

keZ .

i | i i | .7.

4. Dat: x = — rr + u . K h i do p h u o n g trinh tro thanh: sin u i .

2j = - s m 2 - + —

U 2)

1 1 V3 . V3 .

<=> - cos 2 l 2 y — = — cos 2 [2j — + — s i n 2 l 2 y — 0 — s i n 2 V2J = 0 <=> u = 2 k 7 i

4 4

<=> x 71 = 2 k 7 i <=> x = — 7 1 + 2 k 7 i , k e Z .

15 15 Bai 19. Giai cac p h u o n g trinh sau:

1.2cosx + tanx = 1 + 2sin2x ,; ;>

2. cosx - 2cos3x = 1 + .sinx 46 . • • :

3. sin x + s i n X + — + sin4x = sin

/

2x 71

I 3 j ~ 3 j

4. cos4x + sin2x

cos3x + sin3x = 2N/2sin X + —

V 4 ,

1. 2cosx + tanx = 1 + 2sin2x Dieu kien: cosx ^ 0

+ 3 Giai

s i n x

Chi do p h u o n g trinh <=> 2 cos x + = 1 + 4 sin x cos x . cosx

<=> 2cos^ X + sin X = cosx + 4sinxcos^ x <=> cosx(2cosx - 1 ) = sinx^4cos^ ^

<r> (2cosx - l ) ^ c o s x - sin x(2cosx +1)) = 0 <=>

1 ••, , . • ^

2cosx - 1 = 0 ,,, J sin X - cos X + 2 sin X cos x = 0 cos x =

(cos x - sin x)^ + (cos x - sin x) - 1 = 0 x = - + 2m7t

3

x = — + 2 m 7 r

3 cosx-sinx = cosx-sinx =

V 5 - 1 2 - ^ - 1

<=>

x = - + 2 m 7 i

3

7C „ x = i-2m7r

f 71^3 ^/5-l

COS X + - = 1^

A) 2V2

^ 7t^ - V 5 - 1

COS X + -

4 2^/2

X = - + 2 m 7 t

3

x = - - + 2 r r O T

3 x = arccosx

x = arccosx

^ V 5 - l ^

V 2V2 , - - + 2 n 7 i

4

V 2V2 , - ^ + 2 m c 2. cosx - 2cos3x = 1 + \/3.sinx

Phuang trinh cosx sin x = 2cos3x + 1 <=> 2cos X + — 71

V 3 , = l + 2cos3x Vai t = X + — t h i p h u a n g trinh tro thanh: , |

3

2cost = l - 2 c o s 3 t c i > 2 c o s t + 2cos3t = l "

Vai u = cosu t h i t a c o : 2u + 2(4u^ - 3u) = 1 o (2u + l ) ( 4 u ^ - 2 u - l ) = 0 47

u = 2 u =

<=>

t = ± - 7 i + 2 k n

t = ± | 7 r +2kTc ; k e Z .

t = ± - 7 l + 2k7I

; 5 Vay nghiem cua p h u o n g trinh da cho:.

n 4 14

X = 71 + 2 k n , X = — + 2 k 7 r , x = — n + 2kn, x = rr + 2 k 7 r ,

3 5 15 2

X = 71 + 2 k 7 r

15

X = T : + 2 k 7 r

15

k e Z .

3, sin x + s i n X + - + sin4x = sin 2x — 3 Phuong trinh o sin x + sin

<=> 2 sin

71 X + —

3J + sin4x - sin 2x — 3 = 0

r 7t> 7t^

x + — cos + sin X + — cos 3x

V 6j k6v 6) - 0

<=> sin

<=> sin

7t X + —

6 cos 3 x - -

6, + cos = 0

71

Sin cos

X +

n

X + —

V 6J

M x ^

C O S

2 ;

rsx 7t^

I 2 6J 2 C O S

= 0

= 0 - 0

3xA

V 2 J C O S ' 3 X _ 7 I

. 2 6

7t

= 0

X = — + k7t

6

x = - + - k T C , k e Z . 3 3

2,

X = 7C + - k7I

3 4. cos4x + sin2x = 272 sin X + — 7t

cos3x + sin3x 4

Dieu kien: cos 3x + s in3x ^ 0 Ta c6: cos4x + sin2x = cos4x + cos

+ 3

2x — 2 = 2 cos cos 3x + s in3x = cos 3x + cos 3x —

3x — cos X + — 7t 4 j

2J ••••;.5 j ; , ) ' /

CtyTNHH MTV DWH Khans Viet"

Khi do p h u o n g trinh tro thanh: 2cos^ X + — TC = 272 s i n

/ \ 7t X + —

I 4 , I 4 J

<r>2sin^ ^ 71 X + —

V 4/ + 272 sin X + — 71

V 4/ + 1 = O o s i n x + - 4j

V2

+ 3 X = — + 2k7i

2 k e Z .

X = 71 + 2k7:

Bai 20. Giai cac p h u o n g trinh sau: ' 1

1. sin^ x.cos3x + cos^ xsin3x = — ,>

4

2. 2sin2x + (273 - 3)sin x + (2 - 373)cosx = 6 - ^3 3. sin^" x + cos'° x sin^ x + cos^ x

4cos^ 2x + sin^ 2x 4. cos3x + 72-cos^ 3x = 2^1 + sin^ 2x

Giai 1 A p d u n g cong thuc ha bac ta c6:

Phuong trinh ci> (?, . 1 . ^

—sin X — sin 3x cos3x +

^4 4 - c o s x + — cos3x

4 4 sin3x = —

4

<=> —(sinxcos3x + sin3xcosx) = --<=> sin4x = - 1 3 3

Vay ta c6 duoc x = - — + —, ke Z la nghiem cua p h u o n g trinh da cho.

8 2

2. Phuong trinh <=> 2sin2x + ^273 - sjsinx + ^2 - 373)cosx = 6 - 73

•ằ 2sin 2x + 2173 sin x + cos X j - 3^sin X + 73 cos x j = 6 - 73

<=>2sin2x + 4sin

771

^ 7t^

x + —

6 - 6 s i n X + —

3 = 6- 7 3 Dat x = t + — . Taco: 2sin

6 2t + - 7 : ^

3 + 4sin t + - 7 t

6 - 6sin t + 971 = 6 - 7 3

<=> sin2t + 7 3 c o s 2 t - 2 s i n t - 2 7 3 c o s t + 6 c o s t - 6 + 73 = 0 o s i n 2 t - 2 s i n t + 6 ( c o s t - l ) + 7 3( c o s 2 t - 2 c o s t + l ) = 0

<=> 2sin t(cost -1 ) + 6(cost -1 ) + 73|2cos^ t - 2 c o stj = 0

'cost = l •^"•••^

sint + 7 3 c o s t = - 3 (vn)

< = > ( c o s t - l ) ( 2 s i n t + 2N/^cost + 6] = 0 o ô t = k27t

Suy ra nghiem cua p h u o n g trinh: x = — + k27t.

6

• :•• . (K' • 49

3. D i e u kien: 4cos2 2x + sin^ 2x ?i: 0 Vx.

Ta c6: sin^ x + cos^ x = 1 - - s i n ^ 2x = - ( 4 - 3sin^ 2 x )

4 " 4V / Suy ra sin^ x + cos^ x 1

= —. N e n p h u o n g t r i n h <:> sin^'' x + cos^° x = 1 (*) 4cos^2x + sin^2x 4

,10,

Do • 0 < sin'' x < 1 0 < cos^ x < 1

N e n p h u o n g t r i n h ằ

sin^" x < sin^ x . I Q 10 • 2 2

=> sin x + cos x < sin x + cos x = 1 10 2

cos X < cos x •

s i n ' " X = sin^ x cos^°x = cos^x

sinx = 1 cosx = 0 sinx = 0 cosx = 1 4 . A p d u n g b d t a + b < /2(a^+b^^ ta co:

= 2

<=> X = k 7 t , k e Z . ;

cos3x + V2-cos^ 3x < ^2^cos^ 3x + 2 - c o s ^ 3x

Ma 2 f l + s i n 2 2 x ) > 2 nen phuong trinh J c o s 3 x= 7 2 ^ ^ ^jcx>63x=l

o i n^ Y^ n sinxcosx=0

V i cosx = 0 => cos3x = 0 ; sinx = 0 :

sin2x=0

cos X = 1 => cos 3x = 1 cos X = - 1 => cos 3x = - 1 D o do (*) o cosx = 1 <=> X = k27i, k e Z .

Bai 21. Giai cac p h u o n g trinh sau:

1. 1+ sin^ X cosx + ^1+ cos^ x j s i n x = 1+ sin2x

.r"\ ,j;

2. sin —+ cos— X X

x 2 + V S c o s x = 2

- sin2x + 2 c o s x - s i n x - l „

3. 7 = = 0 4.

sin 3x + -~

4J

t a n x sinx + cosx = N/2cot x + -

, ' . ^ * j H W w Giai

1. P h u o n g t r i n h <=>(sinx + cosx)(sinx.cosx + l ) - ( s i n x + cosx) = 0

<=> (sinx + cosx)(sinx.cosx + 1 - s i n x - c o s x ) = 0 . ti ' • o (sin X + cos x ) ( l - sin x ) ( l - cos x) = 0

Giai ra ta dugc cac nghiem: x = - - ^ + k 7 i , x = ^ + k 2 T t , x = k 2 7 i , k e Z .

50 ; .

2 Phuong t r i n h <=> 1 + sinx + Vscosx = 2 <=>—sinx + — c o s x = i

<=> cos X — 71

6 = — o 2

X = + k27i \ x =+ k27r

6

3. Dieu kien: tan x —J3 <=> x ?t - + k n 3 ;|

Phuong t r i n h ằ sin 2x + 2 cos x - sin x - 1 = 0 • y

<r>(sinx + l ) ( 2 c o s x - l ) = 0 giai p h u o n g t r i n h nay va d o i chieu dieu kien ta dugc nghiem cua p h u o n g t r i n h la: x = — + k 2 K , k e Z .

3 1 i

4. Dieu kien:

sinx +cosx ^0 sin X + — 7t

4

X ^ — + kn

^ 0 4 f

sin P h u o n g t r i n h <=>

3x + cos x + •

V 4 sin 3x + - 2 cos sin X + cosx

sin X + — 4

X + - V 4 , sin x + c o s x cos x + s i n x

sin 3x + —

4 = 2cos sin

^ 7 1 ^ X + —

V 4 , . Dat t = X + ta CO p h u o n g t r i n h j ^ ' i- H " ?

3 t - ^

2 = 2cos t o - cos3t = 2cos t <=> 4cos^ t - 5cos t = 0

<=> COS t - 0 < = > t = — + k 7 i= > x = — + k7r

Bai 22. Giai cac p h u o n g trinh sau:

V l + C O S X + 7 l - cosx 1. 4 s i n x = •

C O S X

3. sin^ X +sin^ 3x = s i n x s i n ^ 3x 4

4. ^ 2cos 1 ^ x +

COS xj

Vay nghiem cua p h u o n g t r i n h la: x = + k::.

2. tan^ x + tan^ y + cot^ ( x + y) = 1

sin^ x + -—\

sin X

= 12 + —siny . 2

51

Một phần của tài liệu Phân loại phương pháp giải đại số giải tích 11 (Trang 23 - 28)

Tải bản đầy đủ (PDF)

(202 trang)