Modeling the Log Return on a Spot Contract Instead of a Forward Contract

Một phần của tài liệu levy processes in Finance Theory, Numerics, and Emoirical facts (Trang 160 - 169)

In the text, we assume thatχis the characteristic function of the distribution ofXT := ln(erTST/S0).

This corresponds to a stock price model of the form

ST =S0erT+XT,

whereXT is the log return on a forward contract to buy the stock at the forward dateT. In some contexts, models of the form

ST =S0eYT

1Obviously, then the integral converges absolutely for allzCwith Rez=R.

are used instead. HereYT is the log return on a spot contract in which one buys the stock today and sells it at dateT. Equating the stock prices leads to the relation

rT+XT =YT.

Consequently, if we are given the characteristic functionψ(u)ofYT, we can calculate the characteristic functionχ(u)ofXT as

χ(u) =E[eiuXT] =eiurTE[eiuYT] =eiurTψ(u).

Therefore if we know the characteristic functionψ, we at once have an expression for the characteristic functionχ(u). This can then be used to price the options as described in the text.

Bibliography

Abramowitz, M. and I. A. Stegun (Eds.) (1968). Handbook of Mathematical Functions. New York:

Dover Publications.

Bachelier, L. (1900). Théorie de la spéculation. Paris: Gauthier-Villars. Translated in Cootner (1964).

Bar-Lev, S. K., D. Bshouty, and G. Letac (1992). Natural exponential families and self- decomposability. Statistics & Probability Letters 13, 147–152.

Barndorff-Nielsen, O. E. (1977). Exponentially decreasing distributions for the logarithm of particle size. Proceedings of the Royal Society London A 353, 401–419.

Barndorff-Nielsen, O. E. (1978). Hyperbolic distributions and distributions on hyperbolae. Scandina- vian Journal of Statistics 5, 151–157.

Barndorff-Nielsen, O. E. (1995). Normal\\inverse Gaussian distributions and the modelling of stock returns. Technical report, Research Report No. 300, Department of Theoretical Statistics, Aarhus University.

Barndorff-Nielsen, O. E. (1997). Normal inverse Gaussian distributions and stochastic volatility mod- elling. Scandinavian Journal of Statistics 24, 1–13.

Barndorff-Nielsen, O. E. (1998). Processes of normal inverse Gaussian type. Finance and Stochas- tics 2, 41–68.

Bauer, H. (1991). Wahrscheinlichkeitstheorie (Fourth ed.). Berlin: Walter de Gruyter.

Bauer, H. (1992). Maò- und Integrationstheorie (Second ed.). Berlin: Walter de Gruyter.

Billingsley, P. (1979). Probability and Measure. New York: John Wiley & Sons.

Bjửrk, T. (1998). Arbitrage Theory in Continuous Time. Oxford: Oxford University Press.

Bjửrk, T., G. Di Masi, Y. M. Kabanov, and W. Runggaldier (1997). Towards a general theory of bond markets. Finance and Stochastics 1(2), 141–174.

Black, F. and M. Scholes (1973). The pricing of options and corporate liabilities. Journal of Political Economy 81(3), 637–654.

Blổsild, P. and M. K. Sứrensen (1992). `hyp' – a computer program for analyzing data by means of the hyperbolic distribution. Research report No. 248, Department of Theoretical Statistics, University of Aarhus.

Box, G. E. P. and M. E. Muller (1958). A note on the generation of random normal deviates. Annals of Mathematical Statistics 29, 610–611.

Brigham, E. O. (1974). The Fast Fourier Transform. Englewood Cliffs, N. J.: Prentice-Hall.

Carr, P., H. Geman, D. R. Madan, and M. Yor (1999). The fine structure of asset returns: An empirical investigation. Working paper. Preliminary version as of December 18, 1999.

Carr, P. and D. B. Madan (1999). Option valuation using the fast Fourier transform. The Journal of Computational Finance 2(4).

Carverhill, A. (1994). When is the short rate Markovian? Mathematical Finance 4, 305–312.

Chan, T. (1999). Pricing contingent claims on stocks driven by Lévy processes. Annals of Applied Probability 9, 504–528.

Chandrasekharan, K. (1989). Classical Fourier Transforms. Berlin: Springer-Verlag.

Chow, Y. S. and H. Teicher (1978). Probability Theory: Independence, Interchangeability, Martin- gales. New York: Springer-Verlag.

Chow, Y. S. and H. Teicher (1997). Probability Theory: Independence, Interchangeability, Martin- gales (Third ed.). New York: Springer-Verlag.

Cootner, P. (Ed.) (1964). The Random Character of Stock Market Prices. Cambridge, Massachusetts:

MIT Press.

Cox, J. C., J. E. Ingersoll, Jr, and S. A. Ross (1985). A theory of the term structure of interest rates.

Econometrica 53(2), 385–407.

Dempster, M. A. H. and S. R. Pliska (Eds.) (1997). Mathematics of Derivative Securities. Cambridge:

Cambridge University Press.

Doetsch, G. (1950). Handbuch der Laplace-Transformation, Volume 1. Basel: Birkhọuser.

Dothan, L. U. (1978). On the term structure of interest rates. Journal of Financial Economics 6, 59–69.

Dybvig, P. H. (1988). Bond and bond option pricing based on the current term structure. Working paper, Olin School of Business, University of Washington.

Eberlein, E. (1999). Application of generalized hyperbolic Lévy motions to finance. Freiburger Zen- trum für Datenanalyse und Modellbildung, FDM Preprint Nr. 64.

Eberlein, E., A. Ehret, O. Lỹbke, F. ệzkan, K. Prause, S. Raible, R. Wirth, and M. Wiesendorfer Zahn (1999). Freiburg Financial Data Tools. Institut fỹr Mathematische Stochastik, Fakultọt fỹr Math- ematik, Universitọt Freiburg.

Eberlein, E. and J. Jacod (1997a, September). Unpublished manuscript.

Eberlein, E. and J. Jacod (1997b). On the range of options prices. Finance and Stochastics 1(2), 131–

140.

Eberlein, E. and U. Keller (1995). Hyperbolic distributions in finance. Bernoulli 1, 281–299.

Eberlein, E., U. Keller, and K. Prause (1998). New insights into smile, mispricing and value at risk:

The hyperbolic model. Journal of Business 71(3), 371–406.

Eberlein, E. and K. Prause (1998). The generalized hyperbolic model: Financial derivatives and risk measures. FDM preprint 56, University of Freiburg.

Eberlein, E. and S. Raible (1999). Term structure models driven by general Lévy processes. Mathe- matical Finance 9(1), 31–53.

El Karoui, N., C. Lepage, R. Myneni, N. Roseau, and R. Viswanathan (1991). The valuation and hedging of contingent claims with Markovian interest rates. Working paper, Université de Paris VI.

Eller, R. and H.-P. Deutsch (1998). Derivate und Interne Modelle. Stuttgart: Schọffer-Poeschel Verlag.

Elworthy, K. D., X.-M. Li, and M. Yor (1999). The importance of strictly local martingales; ap- plications to radial Ornstein-Uhlenbeck processes. Probability Theory and Related Fields 115, 325–355.

Frey, R. and C. A. Sin (1999). Bounds on European option prices under stochastic volatility. Mathe- matical Finance 9, 97–116.

Gerber, H. U. and E. S. W. Shiu (1994). Option pricing by Esscher transforms. Transactions of the Society of Actuaries 46, 99–191.

Goll, T. and J. Kallsen (2000). Optimal portfolios for logarithmic utility. Institut für Mathematische Stochastik, Universitọt Freiburg im Breisgau. To appear in: Stochastic Processes and their Appli- cations.

Harrison, J. M. and S. R. Pliska (1981). Martingales and stochastic integrals in the theory of continu- ous trading. Stochastic Processes and their Applications 11, 215–260.

Hartung, J., B. Elpelt, and K.-H. Klửsener (1986). Statistik (Fifth ed.). Mỹnchen: R. Oldenbourg Verlag.

Heath, D., R. Jarrow, and A. Morton (1992). Bond pricing and the term structure of interest rates: A new methodology for contingent claims valuation. Econometrica 60(1), 77–105.

Ho, T. S. Y. and S.-B. Lee (1986). Term structure movements and pricing interest rate contingent claims. Journal of Finance 41(5), 1011–1029.

Hull, J. and A. White (1990). Pricing interest-rate-derivative securities. Review of Financial Studies 3, 573–592.

Jacod, J. (1979). Calcul Stochastique et Problèmes de Martingales. Lecture Notes in Mathematics 714. Berlin: Springer-Verlag.

Jacod, J. and A. N. Shiryaev (1987). Limit Theorems for Stochastic Processes. Berlin: Springer- Verlag.

Jamshidian, F. (1988). The one-factor Gaussian interest rate model: Theory and implementation.

Working paper, Financial Strategies Group, Merrill Lynch Capital Markets, New York.

Kallsen, J. (1998). Semimartingale modelling in finance. Dissertation. Mathematische Fakultọt der Albert-Ludwigs-Universitọt Freiburg im Breisgau.

Kallsen, J. (2000). Optimal portfolios for exponential Lévy processes. Institut für Mathematische Stochastik, Universitọt Freiburg im Breisgau. To appear in: Mathematical Methods of Operations Research 51/3.

Karatzas, I. and S. E. Shreve (1988). Brownian Motion and Stochastic Calculus. New York: Springer- Verlag.

Keller, U. (1997). Realistic modelling of financial derivatives. Dissertation. Mathematische Fakultọt der Albert-Ludwigs-Universitọt Freiburg im Breisgau.

Kulinskaya, E. (1995). Coefficients of the asymptotic distributions of the Kolmogorov-Smirnov statis- tic when parameters are estimated. Journal of Nonparametric Statistics 5, 43–60.

Loève, M. (1963). Probability Theory (Third ed.). New York: D. van Nostrand Company.

Lukacs, E. (1970). Characteristic Functions (Second ed.). London: Griffin.

Madan, D. B., P. P. Carr, and E. C. Chang (1998). The variance gamma process and option pricing.

European Finance Review 2, 79–105.

Madan, D. B. and F. Milne (1991). Option pricing with V. G. martingale components. Mathematical Finance 1(4), 39–55.

Madan, D. B. and E. Seneta (1987). Chebyshev polynomial approximations and characteristic function estimation. Journal of the Royal Statistical Society Series B 49(2), 163–169.

Madan, D. B. and E. Seneta (1990). The v. g. model for share market returns. Journal of Business 63, 511–524.

Mandelbrot, B. (1963). The variation of certain speculative prices. The Journal of Business 36, 394–

419.

Michael, J. R., W. R. Schucany, and R. W. Haas (1976). Generating random variates using transfor- mations with multiple roots. The American Statistician 30, 88–90.

Moore, D. S. (1986). Tests of chi-squared type. In R. B. D' Agostino and M. A. Stephens (Eds.), Goodness-of-Fit Techniques, Statistics: Textbooks and Monographs, pp. 63–95. New York: Mar- cel Dekker.

Musiela, M. and M. Rutkowski (1997). Martingale Methods in Financial Modelling. Berlin: Springer- Verlag.

Naik, V. and M. Lee (1990). General equilibrium pricing of options on the market portfolio with discontinuous returns. The Review of Financial Studies 3(4), 493–521.

Osborne, M. F. M. (1959). Brownian motion in the stock market. Operations Research 7, 145–173.

Prause, K. (1999). The generalized hyperbolic model: Estimation, financial derivatives, and risk mea- sures. Dissertation. Mathematische Fakultọt der Albert-Ludwigs-Universitọt Freiburg im Breis- gau.

Press, S. J. (1967). A compound events model for security prices. Journal of Business 40, 317–335.

Protter, P. (1992). Stochastic Integration and Differential Equations (Second ed.). Berlin: Springer- Verlag.

Raible, S. (1996). Modellierung der Zinsstrukturkurve unter Verwendung von Lévy-Prozessen.

Diplomarbeit. Institut fỹr Mathematische Stochastik, Universitọt Freiburg im Breisgau.

Ramachandran, B. and K.-S. Lau (1991). Functional Equations in Probability Theory. Boston: Aca- demic Press.

Rao, C. R. and D. N. Shanbhag (1994). Choquet-Deny Type Functional Equations with Applications to Stochastic Models. Chichester: John Wiley & Sons.

Rydberg, T. H. (1997). The normal inverse Gaussian levy process: Simulation and approximation.

Commun. Stat., Stochastic Models 13(4), 887–910.

Samuelson, P. (1965). Rational theory of warrant pricing. Industrial Management Review 6, 13–32.

Schweizer, M. (1996). Approximation pricing and the variance-optimal martingale measure. Annals of Probability 24(1), 206–236.

Stephens, M. A. (1974). Edf statistics for goodness-of-fit tests. Journal of the American Statistical Association 69, 730–737.

Stephens, M. A. (1986). Tests based on edf statistics. In R. B. D' Agostino and M. A. Stephens (Eds.), Goodness-of-Fit Techniques, Statistics: Textbooks and Monographs, pp. 97–193. New York: Mar- cel Dekker.

Tyurin, Y. N. (1985). On the limit distribution of Kolmogorov-Smirnov statistics for a composite hypothesis. Mathematics of the USSR, Izvestiya 25, 619–646.

Vasicek, O. A. (1977). An equilibrium characterization of the term structure. Journal of Financial Economics 5, 177–188.

Watson, G. N. (1944). A Treatise on the Theory of Bessel Functions (Second ed.). Cambridge: The University Press.

Wiesendorfer Zahn, M. (1999). Simulation von Lévy-Prozessen. Diplomarbeit, Institut für Mathema- tische Stochastik, Universitọt Freiburg im Breisgau.

Wolfe, S. J. (1971). On moments of infinitely divisible distribution functions. Annals of Mathematical Statistics 42, 2036–2043.

Index

affine term structure, 85 asymptotic expansion, 82

of Bessel functionKν, 33

of Fourier transform of modified Lévy mea- sure, 34

autonomous coefficient function, 87 bilateral Laplace transform, 64

Bjửrk-Di Masi-Kabanov-Runggaldier model, 110

CGMY distribution, 141 Lévy density, 142 characteristic function

analytic, 111 χ2test, 103

classGτof functions, 16 class D, 125

class LD, 125

compensator of a random measure, 129 continuous in probability, 3

contract function, see payoff function convolution, 64

coupon bond, 77

cumulant generating function, 80, 111 multidimensional, 132

density plot, 99 density process, 2, 113 density, empirical, 75, 99 derivative security, 9

discount bond, see zero coupon bond discounted price, 3

discrete Fourier transform, 70 Doléans-Dade exponential, 131 Esscher transform

for 1-dim distribution, 5 for stochastic processes, 6 face value of a bond, 77

fast Fourier transform, 71 filtration, 2

forward price, 62 forward rate, 78

generalized hyperbolic distribution, 137 characteristic function, 138

density, 137

hyperbolic distribution, 138

increments independent of the past, 3 Kolmogorov distance, 101

Kolmogorov-Smirnov test, 102 Lévy density

of CGMY distribution, 142 Lévy-Khintchine formula, 3, 22

multidimensional, 130 Lévy-Khintchine triplet

of CGMY distribution, 142 Lévy-Khintchine triplet, 3 Lévy measure, 22

modified, 23

Fourier transform of, 23

of generalized hyperbolic distribution, 21–

60

of normal inverse Gaussian distribution, 40 of variance gamma distribution, 141 Lévy motion

generalized hyperbolic, 149 hyperbolic, 149

NIG, 149 Lévy process, 3

CGMY, 45, 142

generated by an infinitely divisible distribu- tion, 149

variance gamma, 140 Lévy term structure model, 77

Một phần của tài liệu levy processes in Finance Theory, Numerics, and Emoirical facts (Trang 160 - 169)

Tải bản đầy đủ (PDF)

(169 trang)