cách học đại số tuyến tính

Tài liệu Ôn thi cao hoc đại số tuyến tính bài 8 - PGS TS Vinh Quang ppt

Tài liệu Ôn thi cao hoc đại số tuyến tính bài 8 - PGS TS Vinh Quang ppt

... 0 . . . . . . . . . . . . . . . 0 0 0 0 0 0 · · · 1 −1 0 0 0 0 · · · 0 1          4 ĐẠI SỐ TUYẾN TÍNH §8. Giải bài tập về ma trận nghịch đảo Phiên bản đã chỉnh sửa PGS TS Mỵ Vinh Quang Ngày ... tháng 12 năm 2004 Bài 21. Tìm ma trận nghịch đảo của ma trận A =    1 0 3 2 1 1 3 2 2    Giải Cách 1. Sử dụng phương pháp định thức Ta có: det A = 2 + 12 − 9 − 2 = 3 A 11 =      1 1 2 2      = ... 2      = −2 A 33 =      1 0 2 1      = 1 Vậy A −1 = 1 3    0 6 −3 −1 −7 5 1 −2 1    Cách 2. Sử dụng phương pháp biến đổi cấp Xét ma trận A =    1 0 3 2 1 1 3 2 2        1...

Ngày tải lên: 15/12/2013, 10:15

5 1K 27
Tài liệu Ôn thi cao hoc đại số tuyến tính bài 10 - PGS TS Vinh Quang doc

Tài liệu Ôn thi cao hoc đại số tuyến tính bài 10 - PGS TS Vinh Quang doc

... gian vectơ hoặc chỉ có một vectơ, hoặc có vô số vectơ. 3. Xét sự độc lập tuyến tính và phụ thuộc tuyến tính. Tìm hạng và hệ con độc lập tuyến tính tối đại của các hệ sau: (a) α 1 = (1, 0, −1, 0), ... rank{α 1 , α 2 , α 3 , α 4 } = 3 Hệ con độc lập tuyến tính tối đại của hệ α 1 , α 2 , α 3 , α 4 là {α 1 , α 2 , α 4 }. 5 2 Độc lập tuyến tính, phụ thuộc tuyến tính 2.1 Các khái niệm cơ bản Cho V là không ... . . , 0) • Hệ vectơ α 1 , α 2 , . . . , α n gọi là hệ vectơ độc lập tuyến tính (ĐLTT) nếu nó không phụ thuộc tuyến tính, nói cách khác hệ α 1 , α 2 , . . . , α n ĐLTT khi và chỉ khi: nếu a 1 α 1 +·...

Ngày tải lên: 15/12/2013, 10:15

6 877 24
Tài liệu Ôn thi cao hoc đại số tuyến tính bài 11 - PGS TS Vinh Quang doc

Tài liệu Ôn thi cao hoc đại số tuyến tính bài 11 - PGS TS Vinh Quang doc

... đều tương đương và độc lập tuyến tính. Do đó, theo định lý cơ bản chúng có số vectơ bằng nhau. Số đó gọi là số chiều V , ký hiệu là dimV . Vậy theo định nghĩa: dimV = số vectơ của một cơ sở bất ... vectơ đều phụ thuộc tuyến tính (b) Mọi hệ có n vectơ độc lập tuyến tính đều là cơ sở của V (c) Mọi hệ có n vectơ là hệ sinh của V đều là cơ sở của V (d) Mọi hệ độc lập tuyến tính, có k vectơ đều ... 4y 1 − 4y 2 + 2y 3 x 2 = y 1 − 2y 2 + y 3 x 3 = −2y 1 + 3y 2 − y 3 4 ĐẠI SỐ CƠ BẢN (ÔN THI THẠC SĨ TOÁN HỌC) Bài 11. Cơ Sở, Số Chiều Của Không Gian Vectơ PGS TS Mỵ Vinh Quang Ngày 27 tháng 3 năm...

Ngày tải lên: 15/12/2013, 10:15

6 932 23
Tài liệu Ôn thi cao hoc đại số tuyến tính bài 12 - PGS TS Vinh Quang docx

Tài liệu Ôn thi cao hoc đại số tuyến tính bài 12 - PGS TS Vinh Quang docx

... vectơ (α) biểu thị tuyến tính được qua hệ (β). Do đó theo bổ đề cơ bản, ta có m ≤ n, tức là dim U ≤ dim V . Nếu dim U = dim V = n thì α 1 , . . . , α n là hệ độc lập tuyến tính có đúng n = dim ... của A + B. Thật vậy: 2 2.3 Không gian con các nghiệm của hệ phương trình tuyến tính thuần nhất Cho hệ phương trình tuyến tính thuẩn nhất m phương trình, n ẩn.      a 11 x 1 + a 12 x 2 + · ... trận cấp m × n (A, B ∈ M m×n (R)). Chứng minh: rank(A + B) ≤ rank A + rank B 7 ĐẠI SỐ CƠ BẢN (ÔN THI THẠC SĨ TOÁN HỌC) Bài 12. Không gian vectơ con PGS TS Mỵ Vinh Quang Ngày 28 tháng 2 năm 2006 1...

Ngày tải lên: 15/12/2013, 10:15

7 1,1K 19
Tài liệu Ôn thi cao hoc đại số tuyến tính bài 13 - PGS TS Vinh Quang pdf

Tài liệu Ôn thi cao hoc đại số tuyến tính bài 13 - PGS TS Vinh Quang pdf

... biểu thị tuyến tính được qua hệ gồm 1 véctơ {α}. Mặt khác vì α khác véctơ không nên hệ {α} là hệ véctơ độc lập tuyến tính. Vậy dim R + = 1 và cơ sở của R + là hệ gồm 1 véctơ {α} với α là số thực ... véctơ {A 1 , A 2 } độc lập tuyến tính. Vậy {A 1 , A 2 } là cơ sở của V và dim V = 2 1 1 Đánh máy: LÂM HỮU PHƯỚC, Ngày: 15/02/2006 5 ĐẠI SỐ CƠ BẢN (ÔN THI THẠC SĨ TOÁN HỌC) Bài 13. Bài tập về không ... trình tuyến tính (∗) có nghiệm duy nhất (0, 0, . . . , 0) khi và chỉ khi ma trận các hệ số của hệ (∗) không suy biến khi và chỉ khi detA = 0. 5. Hệ véctơ α 1 , α 2 , . . . , α m biểu thị tuyến tính...

Ngày tải lên: 15/12/2013, 10:15

5 890 24
w