Tài liệu tham khảo |
Loại |
Chi tiết |
[1] E. Keogh, J. Lin, and A. Fu, “Hot sax: efficiently finding the most unusual time series subsequence,” in Fifth IEEE International Conference on Data Min- ing (ICDM’05) , 2005, pp. 8–9 |
Sách, tạp chí |
Tiêu đề: |
Hot sax: efficiently finding the most unusual time series subsequence |
Tác giả: |
E. Keogh, J. Lin, A. Fu |
Nhà XB: |
Fifth IEEE International Conference on Data Mining (ICDM’05) |
Năm: |
2005 |
|
[2] N. H. An and D. T. Anh, “Comparison of strategies for multi-step-ahead prediction of time series using neural network,” in 2015 International Confer- ence on Advanced Computing and Applications (ACOMP) , 2015, pp. 142–149 |
Sách, tạp chí |
Tiêu đề: |
Comparison of strategies for multi-step-aheadprediction of time series using neural network |
|
[3] P. Malhotra, L. Vig, G. Shroff, and P. Agarwal, “Long short term memory networks for anomaly detection in time series,” in 23rd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning , 2015, pp. 89–94 |
Sách, tạp chí |
Tiêu đề: |
Long short term memory networks for anomaly detection in time series |
Tác giả: |
P. Malhotra, L. Vig, G. Shroff, P. Agarwal |
Nhà XB: |
23rd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning |
Năm: |
2015 |
|
[4] T. Buda, B. Caglayan, and H. Assem, “Deepad: A generic framework based on deep learning for time series anomaly detection,” in Pacific-Asia Confer- ence on Knowledge Discovery and Data Mining , 2018, pp. 577–588 |
Sách, tạp chí |
Tiêu đề: |
Deepad: A generic framework based on deep learning for time series anomaly detection |
Tác giả: |
T. Buda, B. Caglayan, H. Assem |
Nhà XB: |
Pacific-Asia Conference on Knowledge Discovery and Data Mining |
Năm: |
2018 |
|
[5] L. Zhang, L. Yang, C. Gu, and D. Li, “Lstm-based short-term electrical load forecasting and anomaly correction,” E3S Web of Conferences , vol. 182, p. 01004, Jan. 2020 |
Sách, tạp chí |
Tiêu đề: |
Lstm-based short-term electrical load forecasting and anomaly correction |
Tác giả: |
L. Zhang, L. Yang, C. Gu, D. Li |
Nhà XB: |
E3S Web of Conferences |
Năm: |
2020 |
|
[6] Q. Yang and X. Wu, “10 challenging problems in data mining research,”International Journal of Information Technology Decision Making (IJITDM) , vol. 05, pp. 597–604, Dec. 2006 |
Sách, tạp chí |
Tiêu đề: |
10 challenging problems in data mining research |
|
[7] S. Chauhan and L. Vig, “Anomaly detection in ecg time signals via deep long short-term memory networks,” in 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA) , 2015, pp. 1–7 |
Sách, tạp chí |
Tiêu đề: |
Anomaly detection in ecg time signals via deep long short-term memory networks |
Tác giả: |
S. Chauhan, L. Vig |
Nhà XB: |
2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA) |
Năm: |
2015 |
|
[8] S. Das, L. Li, A. Srivastava, and R. Hansman, “Comparison of algorithms for anomaly detection in flight recorder data of airline operations,” in AIAA Aviation Technology, Integration, and Operations Conference , 2012, pp. 5593–5597 |
Sách, tạp chí |
Tiêu đề: |
Comparison of algorithms for anomaly detection in flight recorder data of airline operations |
Tác giả: |
S. Das, L. Li, A. Srivastava, R. Hansman |
Nhà XB: |
AIAA Aviation Technology, Integration, and Operations Conference |
Năm: |
2012 |
|
[9] W. Zhou, J. Wen, Q. Qu, J. Zeng, and T. Cheng, “Shilling attack detection for recommender systems based on credibility of group users and rating time series,” PLOS ONE , vol. 13, no. 5, pp. 1–17, May 2018. [Online].Available: https://doi.org/10.1371/journal.pone.0196533 |
Sách, tạp chí |
Tiêu đề: |
Shilling attack detection for recommender systems based on credibility of group users and rating time series |
Tác giả: |
W. Zhou, J. Wen, Q. Qu, J. Zeng, T. Cheng |
Nhà XB: |
PLOS ONE |
Năm: |
2018 |
|
[10] Y. S. Abu-Mostafa and A. F. Atiya, “Introduction to financial forecasting,”Applied Intelligence , vol. 6, p. 205–213, 1996, n/a |
Sách, tạp chí |
Tiêu đề: |
Introduction to financial forecasting |
Tác giả: |
Y. S. Abu-Mostafa, A. F. Atiya |
Nhà XB: |
Applied Intelligence |
Năm: |
1996 |
|
[12] Z. Tang and P. Fishwick, “Feedforward neural nets as models for time series forecasting,” INFORMS Journal on Computing , vol. 5, pp. 374–385, Nov. 1993 |
Sách, tạp chí |
Tiêu đề: |
Feedforward neural nets as models for time seriesforecasting |
|
[13] J.-H. Wang and J.-Y. Leu, “Stock market trend prediction using arima-based neural networks,” Proceedings of International Conference on Neural Networks (ICNN’96) , vol. 4, pp. 2160–2165, 1996 |
Sách, tạp chí |
Tiêu đề: |
Stock market trend prediction using arima-based neural networks |
Tác giả: |
J.-H. Wang, J.-Y. Leu |
Nhà XB: |
Proceedings of International Conference on Neural Networks (ICNN’96) |
Năm: |
1996 |
|
[16] L. C. Jain and L. R. Medsker, Recurrent Neural Networks: Design and Appli- cations , 1st ed. USA: CRC Press, Inc., 1999 |
Sách, tạp chí |
Tiêu đề: |
Recurrent Neural Networks: Design and Applications |
Tác giả: |
L. C. Jain, L. R. Medsker |
Nhà XB: |
CRC Press, Inc. |
Năm: |
1999 |
|
[17] T. Mikolov, M. Karafiát, L. Burget, J. Cernocký, and S. Khudanpur, “Re- current neural network based language model,” vol. 2, Jan. 2010, pp. 1045–1048 |
Sách, tạp chí |
Tiêu đề: |
Recurrent neural network based language model |
Tác giả: |
T. Mikolov, M. Karafiát, L. Burget, J. Cernocký, S. Khudanpur |
Năm: |
2010 |
|
[18] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Comput. , vol. 9, no. 8, p. 1735–1780, Nov. 1997. [Online]. Available:https://doi.org/10.1162/neco.1997.9.8.1735 |
Sách, tạp chí |
Tiêu đề: |
Long short-term memory |
Tác giả: |
S. Hochreiter, J. Schmidhuber |
Nhà XB: |
Neural Comput. |
Năm: |
1997 |
|
[19] Y. Bu, O. Leung, A. Fu, E. Keogh, J. Pei, and S. Meshkin, “Wat: Finding top- k discords in time series database,” in Proceedings of the 2007 SIAM International Conference on Data Mining , 2007, pp. 449–454 |
Sách, tạp chí |
Tiêu đề: |
Wat: Findingtop- k discords in time series database |
|
[20] A. Patcha and J.-M. J. Park, “An overview of anomaly detection tech- niques: Existing solutions and latest technological trends,” Computer Net- works , vol. 51, pp. 3448–3470, Aug. 2007 |
Sách, tạp chí |
Tiêu đề: |
An overview of anomaly detection techniques: Existing solutions and latest technological trends |
Tác giả: |
A. Patcha, J.-M. J. Park |
Nhà XB: |
Computer Networks |
Năm: |
2007 |
|
[21] E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra, “Dimensionality reduction for fast similarity search in large time series databases,” Knowledge and Information Systems , vol. 3, Jan. 2002 |
Sách, tạp chí |
Tiêu đề: |
Dimensionality reduction for fast similarity search in large time series databases |
Tác giả: |
E. Keogh, K. Chakrabarti, M. Pazzani, S. Mehrotra |
Nhà XB: |
Knowledge and Information Systems |
Năm: |
2002 |
|
[22] J. Lin, E. Keogh, S. Lonardi, and B. Chiu, “A symbolic representation of time series, with implications for streaming algorithms,” Proceedings of the 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, DMKD ’03 , pp. 2–11, Jan. 2003 |
Sách, tạp chí |
Tiêu đề: |
A symbolic representation of time series, with implications for streaming algorithms |
Tác giả: |
J. Lin, E. Keogh, S. Lonardi, B. Chiu |
Nhà XB: |
Proceedings of the 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery |
Năm: |
2003 |
|
[23] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with gradient descent is difficult,” IEEE Transactions on Neural Networks , vol. 5, no. 2, pp. 157–166, 1994 |
Sách, tạp chí |
Tiêu đề: |
Learning long-term dependencies with gradient descent is difficult |
Tác giả: |
Y. Bengio, P. Simard, P. Frasconi |
Nhà XB: |
IEEE Transactions on Neural Networks |
Năm: |
1994 |
|