1. Trang chủ
  2. » Thể loại khác

eigenvalues eigenvectors handout

56 17 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 56
Dung lượng 431,63 KB

Nội dung

EIGENVALUES AND EIGENVECTORS ELECTRONIC VERSION OF LECTURE Dr Lê Xuân Đại HoChiMinh City University of Technology Faculty of Applied Science, Department of Applied Mathematics Email: ytkadai@hcmut.edu.vn HCMC — 2018 Dr Lê Xuân Đại (HCMUT-OISP) EIGENVALUES AND EIGENVECTORS HCMC — 2018 / 56 OUTLINE THE REAL WORLD PROBLEMS EIGENVALUES AND EIGENVECTORS OF A MATRIX DIAGONALIZATION MATL AB Dr Lê Xuân Đại (HCMUT-OISP) EIGENVALUES AND EIGENVECTORS HCMC — 2018 / 56 The Real World Problems MODELLING MOTION PQR → P Q R is the reflection over the x−axis Dr Lê Xuân Đại (HCMUT-OISP) EIGENVALUES AND EIGENVECTORS HCMC — 2018 / 56 The Real World Problems A= 0 −1 is the reflection matrix Therefore, for every point in the plane (x1 , x2 ), the matrix that results in a reflection over the x−axis and then we obtain a new point in the plane (y1, y2) x1 −x2 Question: For every point (x1, x2), find y1 x1 = Ak , (k ∈ N) y2 x2 y1 y2 = x1 −1 x2 Dr Lê Xuân Đại (HCMUT-OISP) = EIGENVALUES AND EIGENVECTORS HCMC — 2018 / 56 Eigenvalues and Eigenvectors of a Matrix A= Definition −1 , u= ,v= We have −1 −1 A −1 −1 = −1 A 0 = = −1 −1 Dr Lê Xuân Đại (HCMUT-OISP) and EIGENVALUES AND EIGENVECTORS HCMC — 2018 / 56 Eigenvalues and Eigenvectors of a Matrix Definition DEFINITION 2.1 If A is an n × n matrix, then a nonzero vector X ∈ Rn , X = is called an eigenvector of A if AX = λ.X for some scalar λ The scalar λ is called an eigenvalue of A and X is said to be an eigenvector corresponding to λ EXAMPLE 2.1 Find eigenvalues and eigenvectors of A= 0 −1 Dr Lê Xuân Đại (HCMUT-OISP) EIGENVALUES AND EIGENVECTORS HCMC — 2018 / 56 Eigenvalues and Eigenvectors of a Matrix Definition The equation AX = λX can be rewritten as (A − λI)X = x1 −1 x2 = 1−λ 0 −1 − λ λx1 λx2 x1 x2 ⇔ = This homogeneous linear system has non-zero solution X = 0, thus 1−λ = ⇔ λ2 − = 0 −1 − λ ⇔ λ1 = −1, λ2 = Dr Lê Xuân Đại (HCMUT-OISP) EIGENVALUES AND EIGENVECTORS HCMC — 2018 / 56 Eigenvalues and Eigenvectors of a Matrix Definition In the case where λ1 = −1, we have 2x1 + 0x2 = ⇔ x1 = 0, x2 = α 0x1 + 0x2 = Therefore, the eigenvectors corresponding to λ1 = −1 are α(0, 1), α = In the case where λ2 = We have 0x1 + 0x2 = ⇔ x1 = β, x2 = 0x1 − 2x2 = Therefore, the eigenvectors corresponding to λ2 = are β(1, 0), β = Dr Lê Xuân Đại (HCMUT-OISP) EIGENVALUES AND EIGENVECTORS HCMC — 2018 / 56 Eigenvalues and Eigenvectors of a Matrix Definition EXAMPLE 2.2 Find eigenvalues and eigenvectors of A= −2 Dr Lê Xuân Đại (HCMUT-OISP) EIGENVALUES AND EIGENVECTORS HCMC — 2018 / 56 Eigenvalues and Eigenvectors of a Matrix Definition AX = λX can be rewritten λx1 λx2 ⇔ 1−λ −2 − λ x1 x2 −2 = x1 x2 = This homogeneous linear system has non-zero solution X = 0, thus 1−λ = ⇔ (1 − λ)2 + = −2 − λ ⇔ λ1,2 = ± 2i Dr Lê Xuân Đại (HCMUT-OISP) EIGENVALUES AND EIGENVECTORS HCMC — 2018 10 / 56 ... corresponding to λ EXAMPLE 2.1 Find eigenvalues and eigenvectors of A= 0 −1 Dr Lê Xuân Đại (HCMUT-OISP) EIGENVALUES AND EIGENVECTORS HCMC — 2018 / 56 Eigenvalues and Eigenvectors of a Matrix Definition... Matrix Definition EXAMPLE 2.2 Find eigenvalues and eigenvectors of A= −2 Dr Lê Xuân Đại (HCMUT-OISP) EIGENVALUES AND EIGENVECTORS HCMC — 2018 / 56 Eigenvalues and Eigenvectors of a Matrix Definition... Dr Lê Xuân Đại (HCMUT-OISP) EIGENVALUES AND EIGENVECTORS HCMC — 2018 12 / 56 Eigenvalues and Eigenvectors of a Matrix Characteristic equation FINDING EIGENVALUES AND EIGENVECTORS OF A SQUARE MATRIX

Ngày đăng: 01/01/2022, 16:28

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN