1. Trang chủ
  2. » Luận Văn - Báo Cáo

Khảo sát vết tiếp xúc cặp bánh răng trụ răng nghiêng (helical gears)

117 26 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Khảo sát vết tiếp xúc cặp bánh răng trụ răng nghiêng (helical gears)
Tác giả Nguyễn Trọng Đại
Người hướng dẫn TS. Nguyễn Tuấn Kiệt
Trường học Đại học Bách Khoa
Chuyên ngành Công nghệ chế tạo máy
Thể loại luận văn thạc sĩ
Năm xuất bản 2012
Thành phố TP. Hồ Chí Minh
Định dạng
Số trang 117
Dung lượng 7,39 MB

Cấu trúc

  • 1.3 Nhận xét 6 (15)
  • CHƯƠNG 2: CƠ SỞ LÝ THUYẾT 8 (17)
    • 2.1 Thông số hình học bánh răng nghiêng 8 (17)
    • 2.2 Phương trình bề mặt bánh răng trụ răng nghiêng 11 (20)
    • 2.3 Mối quan hệ vận tốc 15 (24)
    • 2.4 Điều kiện ăn khớp của bề mặt bánh răng 17 (26)
    • 2.5 Độ cong chính và hướng chính bề mặt 20 (29)
    • 2.6 Mối quan hệ giữa độ cong chính của bề mặt liên hợp ăn khớp 23 (32)
    • 2.7 Ellipse tiếp xúc 30 (39)
  • CHƯƠNG 3: ÁP DỤNG LÝ THUYẾT TÍNH TOÁN CHO CẶP BÁNH RĂNG TRỤ RĂNG NGHIÊNG 40 (49)
    • 3.1 Khảo sát quá trình ăn khớp của cặp bánh răng trụ răng nghiêng với hai trục song (49)
  • song 40 (0)
    • 3.2 Mô hình hóa bề mặt bánh răng 46 (55)
    • 3.3 Tính toán độ cong chính và ellipse tiếp xúc 57 CHƯƠNG 4: THIẾT KẾ MÔ HÌNH KIỂM NGHIỆM VẾT TIẾP XÚC 65 (67)
    • 4.1 Sử dụng phần mềm inventor 11 thiết kế, lắp ráp mô hình kiểm nghiệm vết tiếp xúc 65 (75)
    • 4.2 Quá trình chế tạo mô hình 67 (77)
    • 5.2 Tính toán vết tiếp xúc cho cặp bánh răng trụ răng thẳng 71 (80)
    • 5.3 Tính toán vết tiếp xúc cho cặp bánh răng trụ răng nghiêng 76 (85)
  • CHƯƠNG 6: KẾT LUẬN VÀ HƯỚNG PHÁT TRIỂN ĐỀ TÀI 84 (93)
    • 6.1 Kết quả nghiên cứu 84 (93)
    • 6.2 Hướng phát triển 85 (94)

Nội dung

Nhận xét 6

Bộ truyền bánh răng bị rung động, gây ra tiếng ồn là do sự thay đổi của lực tác động

Hình 1.3.1 Các yếu tố kích thích gây rung động

- Độ lớn của lực tiếp xúc: Là nguyên nhân chủ yếu gây ra rung động

- Hướng của lực tiếp xúc: Thay đổi đối với bánh răng Cycloidal và bánh răng

Hypocycloidal [20] Đối với bánh răng thân khai hướng biến đổi là do ảnh hưởng

Sự thay đổi của lực

- Vị trí lực tiếp xúc: Do vết tiếp xúc di chuyển trong quá trình ăn khớp

Sự biến đổi lực trong bánh răng thân khai xuất phát từ việc truyền động không êm, biên dạng thân khai không chính xác và biến dạng đàn hồi của bề mặt bánh răng.

 NHỮNG VẤN ĐỀ CÒN TỒN TẠI

Giải quyết bài toán hai bề mặt bánh răng tiếp xúc xét cùng lúc lực ma sát, điều kiện bôi trơn và nhiệt độ

 VẤN ĐỀ TẬP TRUNG NGHIÊN CỨU

Xác định diện tích vết tiếp xúc trong quá trình ăn khớp

Xác định hướng của vết tiếp xúc thay đổi như thế nào trong quá trình ăn khớp

Sử dụng phần mềm ProE 5.0 để mô hình hóa bề mặt tác động, đường ăn khớp và bề mặt bánh răng trụ răng nghiêng dựa trên dữ liệu thu được từ các phương trình toán học.

- Áp dụng lý thuyết tính toán vết tiếp xúc giữa hai bề mặt bánh răng trong quá trình ăn khớp

Áp dụng công thức Hertz và phương pháp phần tử hữu hạn, bài viết này tính toán ứng suất tiếp xúc và vùng biến dạng tại điểm tiếp xúc của cặp bánh răng trụ răng thẳng và răng nghiêng, sử dụng phần mềm Ansys Workbench 12.0 để hỗ trợ quá trình phân tích.

- Sử dụng phần mềm Inventor.11 thiết kế mô hình thực nghiệm để đối chiếu vết tiếp xúc thực tế với lý thuyết.

CƠ SỞ LÝ THUYẾT 8

Thông số hình học bánh răng nghiêng 8

-  1 , 2 : Bán kính mặt trụ chia của bánh răng 1,2

-  ( 1 ) , ( 2 ) : Vận tốc góc của bánh răng 1, 2

- u 12 : Tỷ số truyền của cặp bánh răng

Bề mặt bánh răng trụ răng nghiêng là một bề mặt xoắn ốc được thể hiện bằng công thức vectơ:

- (u,)Tham số bề mặt ( tọa độ Gaussian )

- p: Tham số xoắn trong chuyển động xoắn ốc quanh trục z 1

Pháp tuyến của bề mặt là: u r

N là pháp tuyến bề mặt Điều kiện để (2.1.2) trở thành mặt xoắn được biểu diễn bằng công thức:

Tham số xoắn p trong công thức được xem như giá trị đại số

1 N n  N là pháp tuyến bề mặt đơn vị, p > 0 chỉ bánh răng bên phải

Hình 2.1.1a, b) Thể hiện mặt thân khai xoắn ốc được hình thành bằng chuyển động xoắn ốc của đường thân khai

- r b : Bán kính của hình trụ cơ sở

-  b :Góc nâng trên hình trụ bán kính r b

Hình 2.1.2 Thể hiện bán kính hình trụ r b và góc xoắn đã được phát triển trên mặt phẳng

2 là tham số xoắn, nó là sự di động theo trục trong chyển động xoắn ốc tương ứng với chuyển động quay qua một góc đơn vị  r b tan b  p

Hình 2.1.3 Biên dạng thân khai theo đường xoắn ốc Vectơ vị trí O 1 N  O 1 K  KM  MN (2.1.8)

- O 1 N: Bán kính từ tâm O 1 của bánh răng tới điểm N trên bề mặt răng

- O 1 K : Bán kính hình trụ cơ sở của bánh răng nghiêng

- KM :Đường sinh mặt trụ cơ sở, có chiều cao tính từ điểm K tới đường xoắn ốc

- MN :Đoạn thẳng trên mặt thân khai, hợp với mặt phẳng z 1  0 một góc  b

Từ công thức (2.1.8) tới công thức (2.1.12 ) ta suy ra vectơ O 1 N

 sin cos cos sin sin cos cos

 b b b  T n 1  sin sin sin cos cos

Phương trình bề mặt bánh răng trụ răng nghiêng 11

Công thức bề mặt răng được thể hiện riêng biệt theo hai trục 1 và 2 trong hệ tọa độ S 1 ,S 2 Bánh răng nghiêng phải 1 được thể hiện trong hình

Hình 2.2.2 Thể hiện mặt cắt ngang của bề mặt răng 1 nhận được khi giao nhau với mặt phẳng Z 1  0 Trục x 1 là trục đối xứng Trục x 1 và vecto vị trí

O k hợp với nhau một góc  1

Theo tính chất đường thân khai ta có AG  cungB 1 ( I) G

- w t 1 : Chiều rộng rãnh giữa hai răng trên đường kính vòng chia

Công thức bề mặt răng trong điều kiện tham số bề mặt (u 1 , 1 ) Tham số

Đo đạc góc  1 được thực hiện từ vector vị trí O 1 B 1 (k), với k tương ứng là I hoặc II, theo hướng như hình 2.2.2 Hướng đo của  1 và  1 là theo chiều kim đồng hồ đối với bề mặt I, trong khi đó ngược chiều kim đồng hồ đối với bề mặt II khi quan sát từ hướng ngược lại của trục z 1.

Bề mặt răng được thể hiện trong S i bởi hàm vectơ r i (u i , i ), (i=1,2) Pháp tuyến đợn vị bề mặt răng 1 được thể hiện bởi:

Ký hiệu “-” đại diện cho bề mặt bên phải và ký hiệu “+” cho bề mặt bên trái của bánh răng số 1 Việc chọn hướng bên dưới của bề mặt pháp tuyến đơn vị n2 có thể dẫn đến sự trùng khớp giữa n1 và n2 khi hai bề mặt bánh răng 1 và 2 tiếp xúc.

Tọa độ đường u i trên bề mặt răng là một đường thẳng cố định ( i) hình thành trong quá trình chuyển động xoắn ốc Đường  i đại diện cho đường xoắn trên bề mặt răng Các tham số xoắn p 1 và p 2 trong công thức dưới đây được coi là giá trị vị trí cho răng bên phải và bên trái Từ đó, có thể suy ra công thức bề mặt răng và pháp tuyến đơn vị của bề mặt.

1) Bánh răng 1 nghiêng phải, mặt bên I (Hình 2.2.2a)

 b b b  T n 1  sin 1 sin( 1   1 ) sin 1 cos( 1   1 ) cos 1

Góc  1 và  1 được đo cùng chiều kim đồng hồ

2) Bánh răng 1 nghiêng phải, mặt bên II (Hình 2.2.2b)

 b b b  T n 1  sin 1 sin( 1   1 ) sin 1 cos( 1   1 ) cos 1

Góc  1 và  1 được đo ngược chiều kim đồng hồ

3) Bánh răng 1 nghiêng trái, mặt bên II:

 b b b  T n 1  sin 1 sin( 1   1 ) sin 1 cos( 1   1 ) cos 1

Góc  1 và  1 được đo ngược chiều kim đồng hồ

4) Bánh răng 1 nghiêng trái, mặt bên I:

Góc  1 và  1 được đo cùng chiều kim đồng hồ.

Mối quan hệ vận tốc 15

Mối quan hệ vận tốc của điểm tiếp xúc giữa hai bề mặt là yếu tố quan trọng cần thỏa mãn trong điều kiện tiếp xúc.

- v tr ( i ) (i 1,2) :Thành phần truyền chuyển động với bề mặt răng

- v ( r i ) (i 1,2) :Thành phần chuyển động tương đối trên toàn bộ bề mặt răng

- v ( 12 ) : Vận tốc trượt tại điểm tiếp xúc

( i n r : Vận tốc của đầu mút pháp tuyến đơn vị bề mặt trong khi nó di chuyển qua bề mặt

- n: Pháp tuyến đơn vị bề mặt

-  ( 1 ) , ( 2 ) : Vecto vận tốc góc của trục bánh răng 1 và 2 Điểm M là điểm tiếp xúc chung của hai bề mặt Vận tốc tương đối của điểm

M ( thuộc bề mặt 1 đối với điểm M ( 2 ) thuộc bề mặt 2 được xác định bởi biểu thức

- r ( 1 ) ,r ( 2 ) : Vectơ vị trí vẽ từ một điểm thuộc đường tác dụng của vectơ

Ta thay thế vecto  ( 2 ) trên đường O 2 O 2 ' bằng một vecto đi qua O f và một moment m  R ( 2 )

- R : Vectơ vị trí được vẽ từ một điểm thuộc đường tác dụng của vecto  ( 1 ) đến đường tác dụng của vecto  ( 2 ) tương ứng từ O f đến O 2 ' Ta chọn O 2 ' O 2 suy ra R = a

Điều kiện ăn khớp của bề mặt bánh răng 17

Sự hình thành bề mặt bánh răng liên quan đến bề mặt dụng cụ và sự liên kết của bề mặt răng trong vùng tiếp xúc, dựa trên khái niệm đường bao họ bề mặt tương ứng với bề mặt tạo hình và bề mặt được sinh ra.

Hệ tọa độ S 1 , S 2 , S f tương ứng gắn với bề mặt  1 , 2 và khung máy

Hình 2.4.1 Bề mặt răng tiếp xúc

Bề mặt  1 được thể hiện bởi công thức

- (u,)là tham số bề mặt

Sử dụng phép biến đổi tọa độ từ S 1 tới S 2 Ta nhận được họ bề mặt  1 trong

Khi cố định tham số ta sẽ nhận được bề mặt  1 trong S 2 Đường bao

Bề mặt thuộc họ bề mặt S2 có thể được xác định thông qua hàm vector r2(u, θ, φ) và hàm f(u, θ, φ) = 0, đảm bảo tính ăn khớp Điều này cho phép biểu diễn bề mặt S2 một cách chính xác và rõ ràng.

2(  u   r và tiếp tuyến tới  2 có thể được biểu diễn

Pháp tuyến N 2 ( 1 ) của bề mặt  1 được thể hiện trong hệ tọa độ S 2 được xác định bằng biểu thức

Nếu đường bao \(\Sigma_2\) tồn tại, nó sẽ tiếp xúc với \(\Sigma_1\) Bề mặt \(\Sigma_1\) và \(\Sigma_2\) cần có mặt phẳng tiếp tuyến chung Mặt phẳng tiếp xúc \(\Pi(2,2)\) tới \(\Sigma_2\) được xác định bởi cặp vector \(T_2\) và \(T_2^*\) Mặt phẳng tiếp xúc \(\Pi(2,1)\) tới \(\Sigma_1\) được xác định bởi cặp vector tương ứng.

, r u r Vectơ T 2 nằm trên mặt phẳng  ( 2 1 ) Mặt phẳng  1 , 2 sẽ có mặt phẳng tiếp tuyến chung nếu vecto

r 2 cũng nằm trên  ( 2 1 ) Do đó các vecto

, r r u r nằm trên  ( 2 1 ) được thể hiện bởi công thức

r 2 cộng tuyến với vecto vận tốc tương đối v 2 ( 12 ) do đó ta viết lại

 Trong trường hợp bánh răng phẳng công thức ăn khớp được biểu diễn

- T i ( 1 ) : Tiếp tuyến đến đường sinh

- k i : Vecto đơn vị của trục z i

Trong trường hợp răng phẳng, sự ăn khớp diễn ra khi các trục giao nhau Pháp tuyến đường sinh tại điểm tiếp xúc tức thời của đường cong đi qua tâm quay tức thời đối với răng phẳng rất quan trọng trong quá trình này.

 Trục quay tức thời đối với bộ truyền bánh răng có trục quay cắt nhau

Công thức ăn khớp của bộ truyền bánh răng được xác định theo công thức

Hình 2.4.2 Hình 2.4.2 Biểu diễn mối quan hệ vận tốc và pháp tuyến tại điểm tiếp xúc

- (X i , ,Y i ,Z i ) là tọa độ của điểm hiện tại của trục quay tức thời

- (x i , , y i ,z i ) là tọa độ của điểm thuộc bề mặt phát động

- (N x ( 1 i ) ,N ( y 1 i ) ,N z ( 1 i ) ) là hình chiếu của pháp tuyến đến bề mặt  1

Độ cong chính và hướng chính bề mặt 20

Bề mặt răng được định nghĩa bởi vecto r  u,  a) b) Hình 2.5.1 Thể hiện tọa độ bề mặt trong không gian Pháp tuyến của  tại điểm M được định nghĩa là N  r u  r 

Mặt phẳng P tiếp xúc với  tại điểm M được xác định bằng công thức

- N x ,N y ,N z : Pháp tuyến của bề mặt tại điểm M(x 0 , y 0 ,z 0 )

- ( X * ,Y * ,Z * ) : Tọa độ của điểm M * thuộc mặt phẳng P

Tiếp tuyến của  tại điểm M được định nghĩa là T  r u du  r  d

( T phụ thuộc vào tỷ số du d

Độ cong pháp tuyến của bề mặt  tại điểm M được xác định thông qua độ cong của đường cong phẳng L n, được hình thành bởi giao điểm giữa bề mặt  và mặt phẳng pháp tuyến  Độ cong pháp tuyến này được ký hiệu là k n.

Độ cong chính của đường cong phẳng L n tại điểm M được xác định bởi giá trị lớn nhất của độ cong pháp tuyến k n Hướng của vecto đơn vị t, thuộc tiếp tuyến T, được gọi là hướng chính.

 Trình tự tính toán độ cong chính

Hình 2.5.3 Hình 2.5.3a) Thể hiện vecto r u ,r  là tiếp tuyến theo hướng đường tọa độ trên mặt phẳng, T là hướng của một chuyển vị nhỏ của điểm trên bề mặt

Hình 2.5.3b) Thể hiện mối quan hệ giữa độ lớn a và b của vecto đơn vị e u ,e  ,

, là tham số biến đổi nhưng v    là hằng số

Bước 1: (Biểu thức tiếp tuyến đơn vị t)

Tiếp tuyến T có thể được thể hiện bởi (2.5.3b ): T  ae u be 

Với: v    , Sử dụng công thức (2.5.5) và (2.5.7) ta suy ra v v e t e u sin

Bước 2: Biểu thức cho v và v t  v v dt r d dt r du t dt r d dt r du v u u

Bước 3: Biểu thức dt d dt du 

, , Từ công thức (2.5.8) và công thức (2.5.11)

Công thức (2.5.12) phải thõa mãn với bất kỳ giá trị r u ,r  do đó

 r v v v dt d r v v v dt d r v v dt du r v v dt du u u

Bước 4: Biểu thức gia tốc a r

( dt r d dt u r d dt r d dt d dt r du dt r du a r uu u   u 

 Bước 5: Công thức xác định độ cong pháp tuyến

Bước 6: Xác định giá trị lớn nhất của k n

Công thức (2.5.20) cho ta được 2 hai nghiệm :

 I II  I  ( Điều này có nghĩa hai hướng chính vuông góc với nhau)

Bước 7: Xác định độ cong chính

Sử dụng nghiệm  và công thức (2.5.17) ta sẽ tìm được độ cong chính

Bước 8: ( Biểu diễn hướng chính )

Hai nghiệm  và công thức (2.5.8) cho phép xác định hướng chính của vecto đơn vị Tại mỗi điểm trên bề mặt, tồn tại hai hướng chính vuông góc với nhau, tương ứng với các giá trị khác nhau của độ cong chính.

Mối quan hệ giữa độ cong chính của bề mặt liên hợp ăn khớp 23

Điểm M là điểm tiếp xúc của bề mặt  1 , 2

- e f ,e h : Vectơ đơn vị của hướng chính trên  1 tại điểm M

- e s ,e q : Vecto đơn vị của hướng chính trên  2 tại điểm M

-  : Góc đo giữa e f ,e s được đo ngược chiều kim đồng hồ từ e f tới e s

Trong không gian 2D, hệ tọa độ S a (e f , e h ) và S b (e s , e q ) được kết nối cứng với bánh răng số 1 và số 2 tương ứng với bề mặt  1 và  2 Việc chuyển đổi giữa các hệ tọa độ này được thực hiện thông qua việc áp dụng một ma trận cụ thể.

Hình 2.6.1 Vecto đơn vị trong mặt phẳng tiếp xúc Vecto v r ( 1 ) ,

) 1 ( n r được biểu diễn trong hệ tọa độ S a (e f ,e h ) được nối cứng với bề mặt 1

( i n r : Vận tốc của đầu mút vecto pháp tuyến đơn vị của bề mặt

) 1 ( n r trong hệ tọa độ S b (e s ,e q ) được nối cứng với bề mặt 2

Số mũ “1” dùng để chỉ sự dịch chuyển trên toàn bộ bề mặt  1

“f”, “h”, “s”, “q” dùng đề chỉ vecto được xem xét trong hệ tọa độS a (e f ,e h ),

Tương tự ta có vecto v r ( 2 ) ,

) 2 ( n r được biểu diễn trong hệ tọa độ S b (e s ,e q ) được nối cứng với bề mặt  2

Tương tự ta suy ra trong hệ tọa độ S b (e s ,e q )

( ) ( , i i r r n v liên hệ với nhau bởi công thức Rodrigues

- k I ( , i ) II là độ cong chính của bề mặt  i

K i (i=1,2) là ma trận độ cong của bề mặt  i

Xác định mối quan hệ giữa thành phần vecto ( 1 )

, r r v n được biểu diễn trong hệ tọa độ S b (e s ,e q )và ( 2 )

, r r v n được biểu diễn trong hệ tọa độ S a (e f ,e h )

Bước 1: Từ công thức (2.6.9) và (2.6.16)

Bước 2: Sử dụng công thức (2.6.8) và (2.6.13)

Bước 3: Sử dụng công thức (2.6.20) và công thức (2.6.21)

Từ đây ta suy ra cho ( v ( s 1 ) ,v q ( 1 ) )

Bước 1: Từ công thức (2.6.11) và (2.6.15)

Bước 2: Từ công thức (2.6.10) và (2.6.14)

Bước 3: Từ ông thức (2.6.23) và (2.6.24)

Ma trận A đối xứng thể hiện độ cong chính của bề mặt tiếp xúc  1 , 2 Góc hình thành giữa hướng chính trên  1 , 2

Bề mặt  1 và  2 tiếp xúc theo đường thẳng tại mọi thời điểm, điều này cho phép xác định độ cong chính và hướng chính của bề mặt.

Bước 1: Thể hiện tích vô hướng của hai vecto ( 12 )

Bước 2: Sử dụng công thức (2.6.13), chúng ta được

Bước 4: Thể hiện tích vecto trong hệ tọa độ S a (e f ,e h )

Bước 5: Từ công thức (2.6.42) và (2.6.8)

Bước 6: Dùng công thức (2.6.41) và (2.6.43), ta thể hiện công thức (2.6.38)

Ta dùng công thức (2.6.44) và hai công thức đầu tiên (2.6.17)

Ellipse tiếp xúc 30

Tính đàn hồi của bề mặt răng tạo ra một vùng tiếp xúc hình ellipse, với tâm đối xứng trùng với điểm tiếp xúc lý thuyết Áp lực tiếp xúc giữa các bề mặt răng được phân bố đều trong vùng ellipse này.

Hình 2.7.1 minh họa sự tiếp xúc giữa hai bề mặt 1 và 2 tại điểm M Vectơ pháp tuyến đơn vị và mặt phẳng tiếp xúc được ký hiệu lần lượt là n và  Diện tích của vùng bề mặt biến dạng được thể hiện bằng đường nét khuất, được xây dựng từ các điểm K 1, M 1 và L 1.

K cho bề mặt   1 , 2 Biến dạng đàn hồi của bề mặt tiếp xúc tại điểm M được ký hiệu là  1 ,  2 và đàn hồi tiệm cận của bề mặt tại M là   1  2

Ký hiệu N và N' đại diện cho bề mặt điểm tương ứng với bề mặt tiếp xúc sau khi biến dạng đàn hồi Khe hở giữa các bề mặt tại điểm N và N' được minh họa trong Hình 2.7.1 Vị trí của N và N' so với điểm M được xác định trong hệ tọa độ (ρ l(i)), với i = 1, 2 Độ lệch của điểm N(i) từ điểm M, ký hiệu là l(1) và l(2), phụ thuộc vào độ cong của đường cong K ML i (i = 1, 2).

Bề mặt  1 và  2 chịu biến dạng do lực tiếp xúc, và sự biến dạng này là độc lập giữa hai bề mặt Các điểm M và N trên bề mặt  1 sẽ có vị trí tương ứng là M N 1 , 1.

MM  , NN 1  f 1 Với  1 ,f 1 là biến dạng đàn hồi của bề mặt  1 tại M, N  1 ,f 1 được đo dọc theo vecto pháp tuyến n Tương tự, xem biến dạng đàn hồi của bề mặt

2, điểm M, N ' sẽ có vị trí M N 2 , 2 Độ lệch của điểm M 1 ,M 2 ,N 1 ,N 2 từ bề mặt tiếp xúc được xác định như sau:

Hình 2.7.2 Độ lệch cơ bản của biến dạng đàn hồi Khe hở giữa bề mặt tại điểm M M 1 , 2

Khi hai bánh răng chuyển động quay, bề mặt tiếp xúc giữa chúng sẽ không tạo ra khe hở tưởng tượng tại điểm M M 1 , 2 Bánh răng 2 sẽ quay một góc  2, đảm bảo điều kiện tiếp xúc giữa các bề mặt tại điểm M M 1 , 2.

Vecto vị trí r2 của điểm M2 được xác định từ một điểm trên trục quay của bánh răng 2 tới M2 Khi bánh răng 2 quay một góc Δφ2, điểm M2 sẽ dịch chuyển dọc theo vecto pháp tuyến n Sự dịch chuyển của N2 do chuyển động quay của bánh răng tương tự như M2 Bề mặt tiếp xúc giữa N1 và N2 sẽ xuất hiện đồng thời với sự tiếp xúc tại điểm M1 và M2.

Vế bên phải của công thức (2.7.9) luôn luôn dương từ đó  1  f 1 và  2  f 2

Công thức (2.7.9) đáp ứng đầy đủ các điểm tiếp xúc trên bề mặt bên trong của vùng biến dạng và tại các cạnh của vùng đó Tuy nhiên, tại cạnh của vùng, điều kiện f 1 0 được thỏa mãn.

2 0 f và công thức (2.7.9) trở thành:

Bên ngoài vùng biến dạng:

( l l Bên trong vùng biến dạng: l ( 1 )  l ( 2 )  

* Định nghĩa ellip tiếp xúc

Chúng ta có thể liên hệ l ( ) i ( i=1,2) với độ cong bề mặt Xem bề mặt  như:

(u C 2 r   r u r   0 (u,) E Ở đây ( , )u  thể hiện tọa độ bề mặt Đường cong MM ' trên bề mặt  có thể được thể hiện bằng công thức: rr u s[ ( ), ( )] s

Hình 2.7.3 Xác định độ lệch l

S: là chiều dài cung, s là độ dài cung

MM ' Độ lớn của véctơ vị trí r được xác định bởi r, rMM '

Khai triển r với công thức taylor

Do đó : dr r du r d ds u ds ds

2 2 ( ) 2 2 , d r r du r du d r d ds u ds u ds ds ds

Mặt phẳng  tiếp xúc với bề mặt tại điểm M, trong đó P là hình chiếu của M' lên mặt phẳng  Véctơ PM' = l n là đường vuông góc với mặt phẳng  tại điểm P, với l biểu thị độ lệch của điểm cong M' so với mặt phẳng tiếp xúc Độ lệch l được coi là dương khi PM' và n cùng hướng Công thức liên quan là MM' = Δr và l = MP.

Vecto MP và n vuông góc với nhau Nhân n vào hai vế của phương trình, giới hạn biểu thức l tới số hạng thứ 3

 Độ cong pháp tuyến của bề mặt được thể hiện bằng công thức

Hình 2.7.4 Nguồn gốc ellipse tiếp xúc Xem xét hệ tọa độ với các trục tọa độ n,  ,  và gốc tọa độ trùng với điểm

M và trục  , nằm trong mặt phẳng tiếp xúc  Nó dễ dàng được xác định :

   và  , là tọa độ của điểm P

 Độ cong pháp tuyến và độ cong chính của bề mặt có quan hệ với nhau bởi công thức Euler

(i k n : là độ cong pháp tuyến bề mặt  ( i ) theo hướng chính

1,q q : là góc được hình thành bởi vecto e f ,e s với MP

Điểm N và N' trên bề mặt tiếp xúc được ký hiệu là các điểm tiếp xúc sau khi xảy ra biến dạng đàn hồi Hình chiếu của các điểm này lên mặt phẳng tiếp xúc được gọi là điểm P Độ lệch của điểm N và N' so với mặt phẳng tiếp xúc trước khi biến dạng đàn hồi được xác định bằng công thức cụ thể.

Hướng của vecto MP trong mặt phẳng ( , )  được xác định bởi góc  Tại cạnh của vùng tiếp xúc, theo công thức (2.7.9), ta có l ( 1 )  l ( 2 )   Để xác định kích thước và hướng của ellip, chúng ta sử dụng các thông số e f và e s, với q 1   ( 1 )   và q 2  ( 2 )  .

   Sau khi biến đổi chúng ta có

Với q s h f k g k k k g 1   , 2   Góc  (1) thì xác định hướng của trục tọa độ  và  đối với e f có thể chọn tùy ý Chẳng hạn như  (1) có thể được chọn thỏa mãn công thức :

(2.7.32) Cung cấp hai cách giải quyết cho 2 ( 1 ) Ta sẽ chọn cách giải quyết bằng công thức :

Công thức (2.7.32), ( 2.7.33), (2.7.34) xác định hướng của trục  và  đối với hướng chính của bề mặt tiếp xúc Các phương trình sau:

Theo công thức (2.7.29) và (2.7.31) Hình chiếu của vùng biến dạng đàn hồi lên mặt phẳng tiếp xúc là hình ellipse có trục trùng với trục  , Trục của ellipse là :

Hướng của ellipse trong mặt phẳng tiếp xúc được xác định bởi công thức (2.7.33) và (2.7.34)

Hình 2.7.6 Hướng Ellipse tiếp xúc thay đổi trong quá trình ăn khớp

ÁP DỤNG LÝ THUYẾT TÍNH TOÁN CHO CẶP BÁNH RĂNG TRỤ RĂNG NGHIÊNG 40

Khảo sát quá trình ăn khớp của cặp bánh răng trụ răng nghiêng với hai trục song

- Xác định bề mặt 2 là bề mặt liên hợp từ bề mặt  1

- Xác định đường tiếp xúc giữa hai bề mặt 1 ,  2

- Xác định bề mặt tác động của hai bánh răng

Hình 3.1.1 Mô hình cặp bánh răng nghiêng ăn khớp

Khoảng cách ngắn nhất giữa hai trục bánh răng là a, với trục quay tức thời P-P song song với trục quay của bánh răng Trục quay này hoạt động trong hệ tọa độ S f đã được định nghĩa.

- (X f ,Y f ,l): Xác định điểm hiện tại của trục quay tức thời P – P

Trục quay tức thời được thể hiện trong hệ tọa độ S 1

Hình 3.1.4 Chuyển tọa độ từ S f sang S 1

 Áp dụng công thức (2.4.8) Pháp tuyến bề mặt  1 tại điểm tiếp xúc tức thời giữa  1 , 2 phải đi qua trục quay tức thời P-P do đó:

- x 1 (u 1 , 1 ),y 1 (u 1 , 1 ),z 1 (u 1 , 1 )là tọa độ của điểm nằm trên mặt phẳng  1

- n x 1 ( 1 ),n y 1 ( 1 ),n y 1 ( 1 )là pháp tuyến của bề mặt  1 tại điểm đó

Thế công thức (2.2.6), (2.2.7), (3.1.6) vào công thức (3.1.7) ta được biểu thức

-  0 : Góc áp lực của bánh răng nghiêng

Công thức ăn khớp là một hàm theo hai biến  1 , 1

Bề mặt  2 được định nghĩa với công thức

[M 21 thể hiện tọa độ dịch chuyển từ S 1 tới S 2

[M 2 f thể hiện tọa độ dịch chuyển từ tọa độ cố định S f sang tọa độ S 2

Hình 3.1.5 Chuyển tọa độ từ S f sang

0 0 sin 0 cos sin cos 0 sin cos

Từ công thức (3.1.10), (3.1.11), (3.1.16) và (2.2.6) suy ra

 Công thức bề mặt  2 theo hai biến (u 1 , 2 )

) cos( cos )) cos( sin sin cos (

) sin( cos )) sin( sin cos cos (

Bề mặt tác động trong hệ tọa độ S f được xác định bởi công thức

M r f  f , f( 1 , 1 )   1   1  1  0  0 (2.2.6) và (3.1.15) suy ra công thức bề mặt tác động

) ( sin cos cos sin sin cos cos

Bề mặt tác động tiếp xúc với hình trụ cơ sở bán kính r b 1 ,r b 2 và đi qua trục quay tức thời P-P

Mô hình hóa bề mặt bánh răng 46

Sử dụng phần mềm inventor 11 thiết kế mô hình cặp bánh răng nghiêng ăn khớp

Hình 3.2.1 Thiết kế cặp bánh răng nghiêng ăn khớp

Hình 3.2.2 Thông số hình học bánh răng 1

Hình 3.2.3 Thông số hình học bánh răng 2

 Tóm tắt thông số cặp bánh răng nghiêng

- Bề rộng bánh răng : b 1 = 30 ( mm ) , b 2 = 25 ( mm )

- Góc ăn khớp:  0  20 0 ,cos(20 0 )  0,9397, sin(20 0 )  0,342

- Răng bánh 1 nghiêng phải  1 10 0 ,cos(10 0 )  0,9848;sin(10 0 )  0,1736

- Răng bánh 2 nghiêng trái  2  10 0 , cos(10 0 )  0,9848;

- Bán kính vòng tròn cơ sở: r b 1  59,5285 ( mm ), r b 2  47,623 ( mm )

- Bán kính vòng chia: r  1  63,464( mm ) , r  2  50,7715( mm ) Áp dụng công thức (2.2.1) tính  A , (2.2.3) tính inv A

 Áp dụng công thức (2.2.4) tính  1

 Áp dụng công thức theo hình (2.1.2) tính  b 1

 b Áp dụng công thức (2.1.7) tính p 1

Áp dụng công thức (2.2.6) để mô hình hóa bề mặt bánh răng 1 nghiêng phải, ta sẽ tìm giá trị  1 tương ứng với mỗi giá trị  1 Khi z 1 chạy từ -15 đến 15, ta có thể xác định được u 1 Cuối cùng, thay vào phương trình bề mặt răng 1, ta sẽ xác định được tọa độ điểm tiếp xúc (x, y) tương ứng.

Theo hình (2.2.2 a) ta tính được góc sinh mặt răng

-  1  0 0 tương ứng với góc sinh mặt trên vòng tròn cơ sở

-  1  21,176 0 tương ứng với góc sinh mặt răng tại đường kính vòng chia

-  1  32,5 0 tương ứng với góc sinh mặt răng tại đường kính đỉnh răng

Bảng 3.2.1 Tọa độ bề mặt bánh răng nghiêng phải nhánh 1

Ta thay đổi giá trị  1 , tương ứng mỗi giá trị  1 ta được một đường cong bề mặt răng

- 15,2315 x 1 59,587 59,5455 59,5039 59,4624 59,4209 59,3794 59,3379 y 1 0,1629 1,0433 1,9238 2,8042 3,6846 4,565 5,4454 Điểm tiếp xúc T1 T2 T3 Đường tiếp xúc

Qua ba điểm tiếp xúc T1, T2, T3 ta vẽ được đường tiếp xúc L 1 12 trên bề mặt răng

1 x 1 64,4028 64,046 63,6893 63,3325 62,9758 62,619 62,2623 y 1 1,574 2,3799 3,1859 3,9919 4,7979 5,6038 6,4098 Điểm tiếp xúc T4 T5 T6 Đường tiếp xúc

Qua ba điểm tiếp xúc T4, T5, T6 ta vẽ được đường tiếp xúc L 2 12 trên bề mặt răng

8 x 1 69,6166 69,1085 68,6005 68,0924 67,5843 67,0763 66,5682 y 1 4,5828 5,303 6,0232 6,7435 7,4637 8,1839 8,9042 Điểm tiếp xúc T7 T8 T9 Đường tiếp xúc

Qua ba điểm tiếp xúc T7, T8, T9 ta vẽ được đường tiếp xúc L 3 12 trên bề mặt răng

Từ những đường tiếp xúc L 1 12 , 12

L 3 ta xây dựng được bề mặt bánh răng

Sử dụng phần mềm ProE 5.0 mô hình hóa bề mặt tiếp xúc

Hình 3.2.4 Bề mặt  1 trong hệ toạ độ S 1

Tương tự áp dụng công thức (2.2.8) ta xây dựng được mặt bên 2 Đường tiếp xúc

Hình 3.2.5 Bề mặt I, II bánh răng nghiêng phải

Sử dụng lệnh pattern trong phần mềm ProE 5.0 ta tạo được 24 bề mặt bánh răng còn lại

Sử dụng lệnh Merge ta nối các bề mặt lại với nhau

Sử dụng lệnh Solidify để tạo khối đặc từ những bề mặt Ta xây dựng được mô hình bánh răng 1

Hình 3.2.6 Bánh răng nghiêng phải Tương ứng với mỗi giá trị  1 thế vào công thức (3.1.1) ta sẽ tìm được một giá trị

 2 Thế vào công thức (3.1.18) ta vẽ được bề mặt  2 sinh ra từ bề mặt  1

Bảng 3.2.2 Tọa độ bề mặt  2 sinh ra từ bề mặt  1

Hình 3.2.7 Bề mặt  2 sinh ra từ bề mặt  1

Hình 3.2.8 Bề mặt  2 sinh ra từ bề mặt  1 Áp dụng công thức (2.2.10) và (2.2.12) mô hình hóa bánh răng 2 nghiêng trái và tiến hành lắp ráp hai bánh răng

Hình 3.2.9 Mô hình cặp bánh răng nghiêng ăn khớp

Bảng 3.2.3 Tọa độ đường tác động trong hệ tọa độ S f

Hình 3.2.10 Bề mặt tác động

Tính toán độ cong chính và ellipse tiếp xúc 57 CHƯƠNG 4: THIẾT KẾ MÔ HÌNH KIỂM NGHIỆM VẾT TIẾP XÚC 65

3.3.1 Trình tự tính toán độ cong chính và hướng chính của bề mặt bánh răng chủ động ( bánh răng 1)

Phương trình bề mặt bánh răng số 1nghiêng phải, bề mặt I (2.2.6)

 b b b  T n 1  sin 1 sin( 1   1 ) sin 1 cos( 1   1 ) cos 1

1 sin cos cos sin cos

1 cos cos sin cos cos sin

0 cos cos sin sin cos cos

 Áp dụng công thức (2.5.16) tính L 1 ,M 1 ,N 1

0 cos sin sin cos sin sin cos cos

 Áp dụng công thức (2.5.9) tính sinv 1 ,cosv 1

* Thời điểm bánh răng 1 và 2 ăn khớp với nhau tương ứng với

Thế số vào công thức ta được

Từ sinv 1 ,cosv 1 ta suy ra v 1 176,38 0

  v v v v v Áp dụng công thức (2.5.17) và (2.5.18)

Thế vào công thức ta tính được các giá trị A, B, C

Thế vào công thức (2.5.17) ta tìm được độ cong chính

3.3.2 Tính góc  và độ cong chính, hướng chính của bề mặt bánh răng bị động ( bánh răng số 2 ) và ellipse tiếp xúc trên bánh răng 2

Vị trí của điểm tiếp xúc trong hệ tọa độ cố định S f

 u u Độ lớn của v ( f 12 ) trong hệ tọa độ S a

0 cos ) cos( sin ) sin( sin 1 1 1 1 1 1 1

) cos( sin cos ) sin( sin sin

) cos( sin sin ) sin( sin cos cos

 Xác định hướng của ellipse Áp dụng công thức (2.7.33) ta tính được góc hợp bởi trục  và vecto e f

- Bề mặt  1 , 2 tiếp xúc tức thời với nhau theo đường L 12 Đường tiếp xúc này quét từ chân răng tới đỉnh răng

- Điểm M tiếp xúc tức thời chạy trên đường tiếp xúc L 12

CHƯƠNG 4: THIẾT KẾ MÔ HÌNH KIỂM NGHIỆM

Sử dụng phần mềm inventor 11 thiết kế, lắp ráp mô hình kiểm nghiệm vết tiếp xúc 65

Hình 4.1.1 Mô hình lắp ráp hoàn chỉnh trong môi trường lắp ráp inventor 11

 Vai trò của từng chi tiết

Tay quay (1): Dùng để tạo moment quay

Trục (3): Dùng để truyền chuyển động quay cho bánh răng thép (10)

Bulong (4): Dùng để lắp ổ đỡ

Khung trượt (5), Visme (6), Gối đỡ (7), Sóng trượt bi (8): Phối hợp với nhau để làm cho trục (3) chuyển động tịnh tiến theo phương sóng trượt bi (8)

Khung chân (9): Dùng để đỡ kết cấu bên trên

Bánh răng thép (10): Dùng làm bề mặt tác động lên bánh răng nhôm (14)

Tấm kẹp (11): Dùng để cố định trục bánh răng nhôm (13) không quay

Gối đỡ + ổ đỡ (12): Nhờ đó trục (13) mới quay được

Trục (13): Dùng để truyền chuyển động quay cho bánh răng nhôm (14)

Bánh răng nhôm (14): Dùng để đo vết tiếp xúc

Hình 4.1.2 Hướng nhìn từ bên hông của mô hình

Quá trình chế tạo mô hình 67

Hình 4.2.1 Bộ khung B1: Ta đặt bề mặt 1, 2, 3 sau khi đã được phay tinh lên mặt phẳng chuẩn, rồi tiến hành hàn khung chân

Trong quá trình hàn, nhiệt độ cao có thể gây cong vênh cho bộ khung Để đảm bảo hai trục lắp bánh răng song song, cần ốp bề mặt 4 xuống bàn từ và tiến hành mài các bề mặt 1, 2, 3 Sau khi hoàn thành, tiếp tục ốp bề mặt 1, 2, 3 xuống bàn từ và mài bề mặt 4 Cuối cùng, tiến hành lắp ráp mô hình.

Hình 4.2.2 Mô hình chế tạo thực tế ( Mô hình được gia công tại xí nghiệp Z751)

CHƯƠNG 5: SỬ DỤNG PHẦN TỬ HỮU HẠN TÍNH TOÁN

Quá trình truyền lực giữa hai răng diễn ra tại điểm tiếp xúc của bề mặt răng Ứng suất tại điểm tiếp xúc được xác định theo lý thuyết Hertz Tài liệu [19] cung cấp công thức toán học cho ứng suất và sự biến dạng của thân cong, trong đó độ biến dạng a được tính toán dựa trên lý thuyết này.

- F: Lực tác dụng lên bề mặt tiếp xúc

- E 1 ,E 2 : Mođun đàn hồi của vật 1 và 2

- v 1 ,v 2 : Hệ số poison của vật 1 và 2

- R 1 ,R 2 : Bán kính cong của vật 1 và 2 tại điểm tiếp xúc

Lý thuyết Hertz giả sử ứng suất phân bố theo vùng ellipse Giá trị ứng suất lớn nhất tại vị trí giữa bằng:

Hình 5.1.1 Sự phân bố ứng suất tiếp xúc tại vị trí tiếp xúc

Bài toán tiếp xúc có hai dạng chính: đầu tiên là dạng cứng và đàn hồi, trong đó một bề mặt cố định trong khi bề mặt còn lại biến dạng; thứ hai là dạng đàn hồi và đàn hồi, nơi cả hai bề mặt đều biến dạng trong quá trình tiếp xúc.

 Điểm tiếp xúc điểm: vị trí của điểm tiếp xúc đã được biết trước, độ trượt nhỏ được chấp nhận

 Điểm tới bề mặt: Diện tích tiếp xúc chính xác không được biết trước Cho phép độ trượt nhỏ và lớn

Bề mặt tiếp xúc là các điểm rời rạc (Điểm GAUSS) tiếp xúc với bề mặt mục tiêu Các phần tử tiếp xúc không được phép xuyên qua bề mặt mục tiêu, trong khi bề mặt mục tiêu có thể đi qua bề mặt tiếp xúc.

Hình 5.1.2 Mô hình bề mặt tiếp xúc

Tính toán vết tiếp xúc cho cặp bánh răng trụ răng thẳng 71

Hướng giải quyết: Để tính ứng suất tiếp xúc tại điểm tiếp xúc ta có hai vấn đề cần giải quyết

Để xác định số cặp bánh răng tiếp xúc khi chia sẻ tải trọng, trước tiên cần tính hệ số trùng khớp (Hệ số trùng khớp ε), là số đôi răng trung bình đồng thời ăn khớp trên đoạn ăn khớp thực.

- Sau đó tính ứng suất tiếp xúc

* Tính hệ số trùng khớp ( Theo [2])

AB: Đoạn ăn khớp thực n : t Bước trên phương pháp tuyến a : r Bán kính vòng đỉnh

Do đó, ta giả s ử ch ỉ có m ộ t c ặp bánh răng tiế p xúc

A Áp dụng lý thuyết Hertz

Giả sử R 1 và R 2 tương ứng là bán kính của đường thân khai tại điểm tiếp xúc Gọi M là điểm tiếp xúc, ta có R 1   1 sin , R 2   2 sin

Do đó, công thức Hertz tính ứng suất tiếp xúc trong răng trở thành

Hình 5.2.1 Cặp bánh răng ăn khớp Cặp bánh răng trụ răng thẳng, Môđun m = 3.175, Góc áp lực   20 0

Bán kính vòng chia 1   2  63.5 (mm)

Cánh tay đòn 110 (mm) , gây ra moment T = 5929 (Nmm)

Môđun đàn hồi thép: E 1  200000 (Mpa), Hệ số Poison: v 1  0,3

Mô đun đàn hồi của nhôm: E 2  71000 (Mpa), Hệ số Poison: v 2  0,33

Thế vào công thức (5.2.2) ta tính ứng suất tiếp xúc

Thế vào công thức (5.1.1) ta tính độ biến dạng a

Chiều dài độ biến dạng a tại điểm tiếp xúc là 0,06 (mm)

B Kiểm nghiệm bằng phần mềm

Sử dụng phần mềm Ansys Workbench 12.0 để phân tích ứng suất cho cặp bánh răng trụ răng thẳng trong quá trình ăn khớp, với các giả thuyết cụ thể đã được thiết lập Phân tích này giúp đánh giá hiệu suất và độ bền của bánh răng khi tiếp xúc với nhau, từ đó cung cấp những thông tin quan trọng cho thiết kế và cải tiến sản phẩm.

Trong quá trình phân tích, các phần tử trên bề mặt bị động không thể di chuyển qua bề mặt chủ động, trong khi đó, các phần tử trên bề mặt chủ động lại có khả năng di chuyển xuyên qua bề mặt bị động Đồng thời, các phần tử tiếp xúc được hình thành tự động trong suốt quá trình này.

 Ta cố định bánh răng nhôm

 Đặt một môment vào bánh răng thép

 Ràng buộc điều kiện tiếp xúc giữa hai bề mặt

 Bánh răng được bôi trơn tốt, hệ số ma sát bằng không

 Ứng suất nằm trong miền đàn hồi của vật liệu

 Vật liệu được xem là đẳng hướng

 Nhiệt độ hình thành và ứng suất nhiệt được bỏ qua

Hình 5.2.2 Ứng suất tại điểm tiếp xúc

Hình 5.2.3 Độ biến dạng tại điểm tiếp xúc

Bảng 5.2.1 so sánh kết quả tính toán

Lý thuyết Hertz Ansys WorkBend 12.0 Sai lệch Ứng suất tiếp xúc 18,88 Mpa 19,67 0,04 % Độ biến dạng tại điểm tiếp xúc

- Tính toán ứng suất bằng mô hình 2D cho ta kết quả đúng với lý thuyết Hertz

- Từ đó ta áp dụng để tính toán vết tiếp xúc cho cặp bánh răng trụ răng nghiêng.

Tính toán vết tiếp xúc cho cặp bánh răng trụ răng nghiêng 76

A Áp dụng lý thuyết Hertz

Cặp bánh răng trụ răng nghiêng, Môđun m = 5, Góc áp lực   20 0

Bán kính vòng chia 1  63.464, 2  50,7715 (mm)

Cánh tay đòn 110 (mm) , gây ra moment T = 5929 (Nmm)

Môđun đàn hồi thép: E 1  200000 (Mpa), Hệ số Poison: v 1  0,3

Mô đun đàn hồi của nhôm: E 2  71000 (Mpa), Hệ số Poison: v 2  0,33

Thế vào công thức (5.2.2) ta tính ứng suất tiếp xúc

Thế vào công thức (5.1.1) ta tính độ biến dạng a

Chiều dài độ biến dạng a tại điểm tiếp xúc là 0,059 (mm)

B ) Sử dụng phần mềm inventor mô phỏng vết tiếp xúc (3D)

Hình 5.3.1 Vết tiếp xúc cặp bánh răng nghiêng

Hình 5.3.2 Vết tiếp xúc cặp bánh răng nghiêng

Hình 5.3.3 Vết tiếp xúc cặp bánh răng nghiêng

C) Kiểm nghiệm vết tiếp xúc bằng phần mềm Wolfram

- Cho hai mặt cầu tiếp xúc với nhau

- Áp dụng lý thuyết Hertz để tính vết tiếp xúc giữa hai mặt cầu

Hình 5.3.4 Vết tiếp xúc giữa hai mặt cầu

D) Kiểm nghiệm kết quả bằng mô hình thực nghiệm

Cách đo vết tiếp xúc bằng mô hình

- Cố định bánh răng nhôm

- Treo vật nặng vào trục bánh răng thép, để tạo ra lực tác dụng vào bề mặt bánh răng nhôm

- Dán miếng giấy mỏng vào bề mặt bánh răng nhôm

- Bôi mực đỏ vào bề mặt bánh răng thép

- Cho cặp bánh răng ăn khớp với nhau

- Vết mực đỏ in trên miếng giấy gián trên bề mặt bánh răng nhôm thể hiện đường tiếp xúc của cặp bánh răng

Hình 5.3.5 Cách tiến hành thí nghiệm đo vết tiếp xúc

Hình 5.3.6 Hướng nhìn từ trên xuống

Hình 5.3.7 Đường tiếp xúc đo bằng mô hình thực nghiệm

- Độ cứng ăn khớp là tỷ số giữa lực tác động dọc theo đường tác động và sự dịch chuyển của bánh răng dọc theo đường tác động đó

- Độ cứng ăn khớp của bánh răng được chia làm hai loại chính:

Thành phần biến dạng do tiếp xúc

Thành phần biến do lực uốn ( Do làm thay đổi bán kính cong )

Biến dạng tại vị trí tiếp xúc sẽ nhỏ hơn biến dạng do uốn

- Diện tích vết tiếp xúc tỷ lệ với lực tác dụng

- Khi bánh răng quay, số lượng răng tiếp xúc thay đổi , chiều dài đường tiếp xúc thay đổi gây ra sự biến đổi độ cứng ăn khớp

- Đối với bánh răng thẳng tỷ số tiếp xúc thấp ( hệ số trùng khớp ), những biến

Bánh răng nghiêng có tổng chiều dài tiếp xúc nhỏ, dẫn đến tỷ số tiếp xúc lớn Vì vậy, độ cứng ăn khớp của bánh răng nghiêng thấp hơn so với bánh răng thẳng.

Ngày đăng: 29/08/2021, 17:30

HÌNH ẢNH LIÊN QUAN

CHƯƠNG 1: TỔNG QUAN VỀ TÌNH HÌNH NGHIÊN CỨU - Khảo sát vết tiếp xúc cặp bánh răng trụ răng nghiêng (helical gears)
1 TỔNG QUAN VỀ TÌNH HÌNH NGHIÊN CỨU (Trang 10)
Hình 2.1.1a, b) Thể hiện mặt thân khai xoắn ốc được hình thành bằng chuyển - Khảo sát vết tiếp xúc cặp bánh răng trụ răng nghiêng (helical gears)
Hình 2.1.1a b) Thể hiện mặt thân khai xoắn ốc được hình thành bằng chuyển (Trang 18)
Hình 2.1.3 Biên dạng thân khai theo đường xoắn ốc - Khảo sát vết tiếp xúc cặp bánh răng trụ răng nghiêng (helical gears)
Hình 2.1.3 Biên dạng thân khai theo đường xoắn ốc (Trang 19)
Hình 2.2.1 Răng nghiêng phải - Khảo sát vết tiếp xúc cặp bánh răng trụ răng nghiêng (helical gears)
Hình 2.2.1 Răng nghiêng phải (Trang 20)
Hình 2.3.1 Mối quan hệ vận tốc của điểm tiếp xúc - Khảo sát vết tiếp xúc cặp bánh răng trụ răng nghiêng (helical gears)
Hình 2.3.1 Mối quan hệ vận tốc của điểm tiếp xúc (Trang 24)
Sự hình thành bề mặt bánh răng bởi bề mặt dụng cụ và sự liên hợp của bề - Khảo sát vết tiếp xúc cặp bánh răng trụ răng nghiêng (helical gears)
h ình thành bề mặt bánh răng bởi bề mặt dụng cụ và sự liên hợp của bề (Trang 26)
Hình 2.5.3 - Khảo sát vết tiếp xúc cặp bánh răng trụ răng nghiêng (helical gears)
Hình 2.5.3 (Trang 30)
Hình 2.5.2 Đường cong phẳng Ln tại điể mM - Khảo sát vết tiếp xúc cặp bánh răng trụ răng nghiêng (helical gears)
Hình 2.5.2 Đường cong phẳng Ln tại điể mM (Trang 30)
Hình 2.6.1 Vecto đơn vị trong mặt phẳng tiếp xúc Vecto v r(1), - Khảo sát vết tiếp xúc cặp bánh răng trụ răng nghiêng (helical gears)
Hình 2.6.1 Vecto đơn vị trong mặt phẳng tiếp xúc Vecto v r(1), (Trang 33)
Ma trậ nA đối xứng thể hiện độ cong chính của bề mặt tiếp xúc  1,  2. Góc  hình thành giữa hướng chính trên  1,2 - Khảo sát vết tiếp xúc cặp bánh răng trụ răng nghiêng (helical gears)
a trậ nA đối xứng thể hiện độ cong chính của bề mặt tiếp xúc  1,  2. Góc  hình thành giữa hướng chính trên  1,2 (Trang 36)
Hình 2.7.4 Nguồn gốc ellipse tiếp xúc - Khảo sát vết tiếp xúc cặp bánh răng trụ răng nghiêng (helical gears)
Hình 2.7.4 Nguồn gốc ellipse tiếp xúc (Trang 44)
Hình 2.7.5 Ellipse tiếp xúc 2/12 22 - Khảo sát vết tiếp xúc cặp bánh răng trụ răng nghiêng (helical gears)
Hình 2.7.5 Ellipse tiếp xúc 2/12 22 (Trang 47)
Hình 3.1.1 Mô hình cặp bánh răng nghiêng ăn khớp - Khảo sát vết tiếp xúc cặp bánh răng trụ răng nghiêng (helical gears)
Hình 3.1.1 Mô hình cặp bánh răng nghiêng ăn khớp (Trang 49)
Hình 3.1.4 Chuyển tọa độ từ Sf sang S1 - Khảo sát vết tiếp xúc cặp bánh răng trụ răng nghiêng (helical gears)
Hình 3.1.4 Chuyển tọa độ từ Sf sang S1 (Trang 51)
Bề mặt tác động tiếp xúc với hình trụ cơ sở bán kính rb 1, rb2 và đi qua trục quay tức thời P-P  - Khảo sát vết tiếp xúc cặp bánh răng trụ răng nghiêng (helical gears)
m ặt tác động tiếp xúc với hình trụ cơ sở bán kính rb 1, rb2 và đi qua trục quay tức thời P-P (Trang 54)
Hình 3.2.2 Thông số hình học bánh răn g1 - Khảo sát vết tiếp xúc cặp bánh răng trụ răng nghiêng (helical gears)
Hình 3.2.2 Thông số hình học bánh răn g1 (Trang 56)
Hình 3.2.3 Thông số hình học bánh răng 2 - Khảo sát vết tiếp xúc cặp bánh răng trụ răng nghiêng (helical gears)
Hình 3.2.3 Thông số hình học bánh răng 2 (Trang 56)
Hình 3.2.5 Bề mặt I, II bánh răng nghiêng phải - Khảo sát vết tiếp xúc cặp bánh răng trụ răng nghiêng (helical gears)
Hình 3.2.5 Bề mặt I, II bánh răng nghiêng phải (Trang 61)
Bảng 3.2.2 Tọa độ bề mặt 2 sinh ra từ bề mặt 1 - Khảo sát vết tiếp xúc cặp bánh răng trụ răng nghiêng (helical gears)
Bảng 3.2.2 Tọa độ bề mặt 2 sinh ra từ bề mặt 1 (Trang 62)
Hình 3.2.7 Bề mặt 2 sinh ra từ bề mặt 1 - Khảo sát vết tiếp xúc cặp bánh răng trụ răng nghiêng (helical gears)
Hình 3.2.7 Bề mặt 2 sinh ra từ bề mặt 1 (Trang 64)
Bảng 3.2.3 Tọa độ đường tác động trong hệ tọa độ f - Khảo sát vết tiếp xúc cặp bánh răng trụ răng nghiêng (helical gears)
Bảng 3.2.3 Tọa độ đường tác động trong hệ tọa độ f (Trang 65)
Hình 4.2.2 Mô hình chế tạo thực tế - Khảo sát vết tiếp xúc cặp bánh răng trụ răng nghiêng (helical gears)
Hình 4.2.2 Mô hình chế tạo thực tế (Trang 78)
Hình 5.2.2 Ứng suất tại điểm tiếp xúc - Khảo sát vết tiếp xúc cặp bánh răng trụ răng nghiêng (helical gears)
Hình 5.2.2 Ứng suất tại điểm tiếp xúc (Trang 84)
Hình 5.3.2 Vết tiếp xúc cặp bánh răng nghiêng - Khảo sát vết tiếp xúc cặp bánh răng trụ răng nghiêng (helical gears)
Hình 5.3.2 Vết tiếp xúc cặp bánh răng nghiêng (Trang 86)
Hình 5.3.1 Vết tiếp xúc cặp bánh răng nghiêng - Khảo sát vết tiếp xúc cặp bánh răng trụ răng nghiêng (helical gears)
Hình 5.3.1 Vết tiếp xúc cặp bánh răng nghiêng (Trang 86)
Hình 5.3.4 Vết tiếp xúc giữa hai mặt cầu - Khảo sát vết tiếp xúc cặp bánh răng trụ răng nghiêng (helical gears)
Hình 5.3.4 Vết tiếp xúc giữa hai mặt cầu (Trang 88)
Hình 5.3.5 Cách tiến hành thí nghiệm đo vết tiếp xúc - Khảo sát vết tiếp xúc cặp bánh răng trụ răng nghiêng (helical gears)
Hình 5.3.5 Cách tiến hành thí nghiệm đo vết tiếp xúc (Trang 89)
Hình 5.3.6 Hướng nhìn từ trên xuống - Khảo sát vết tiếp xúc cặp bánh răng trụ răng nghiêng (helical gears)
Hình 5.3.6 Hướng nhìn từ trên xuống (Trang 90)
Hình 5.3.7 Đường tiếp xúc đo bằng mô hình thực nghiệm - Khảo sát vết tiếp xúc cặp bánh răng trụ răng nghiêng (helical gears)
Hình 5.3.7 Đường tiếp xúc đo bằng mô hình thực nghiệm (Trang 91)
Bước 1: Tạo mô hình - Khảo sát vết tiếp xúc cặp bánh răng trụ răng nghiêng (helical gears)
c 1: Tạo mô hình (Trang 98)

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w