Application of geographic information system remote sensing on assessing soil erosionin some protection plantation models at hong linh town ha tinh province
Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 84 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
84
Dung lượng
1,27 MB
Nội dung
MINISTRY OF AGRICULTURE AND RURAL DEVELOPMENT VIETNAM NATIONAL UNIVERSITY OF FORESTRY STUDENT THESIS Title APPLICATION OF GEOGRAPHIC INFORMATION SYSTEM & REMOTE SENSING ON ASSESSING SOIL EROSION IN SOME PROTECTION PLANTATION MODELS AT HONG LINH TOWN, HA TINH PROVINCE Major: Natural Resources Management Code: D850101 Faculty: Forest Resource and Environmental Management Student: Phan Thi Thuy Linh Student ID: 1453090571 Class: K59A Natural Resources Management Course: 2014 – 2018 Advanced Education Program Developed in collaboration with Colorado State University, USA Supervisors: Dr Bui Manh Hung Assoc Prof Bui Xuan Dung Ha Noi, 2018 ACKNOWLEDGEMENT The research has been supported by many individuals as well as organizations First of all, I would like to thank to Dr Bui Manh Hung and Assoc Prof Bui Xuan Dung who are my advisers for supporting me during conducting my thesis for their motivation, enthusiasm and immense knowledge Second of all, I also thank Board of Hong Linh protection forest management, People‘s Committee of Hong Linh town.` Especially, I would like to thank to Mr Nguyen Hai Van and Mr Ho Phuc Trung in Board of Hong Linh protection forest management for their useful, enthusiasm and providing helpful data on this study I am so thankful for the supporting of Nguyen Thuy Duong, Nguyen Dieu Huyen, Le Sy Hoa in conducting map and sample plot establishment To complete my thesis, I also received a lots of helps from Mr Le, Mr Thanh, Ms Phuc who work in the Laboratory of Vietnam National University of Forestry, therefore I would like to say thank you to all of them for lending some equipments to measure the parameters Lastly, my family and my friends are a large motivation for me to complete my thesis I really thankful for all of you I sincerely thank you! CONTENTS LIST OF ABBREVIATIONS i LIST OF TABLES ii LIST OF FIGURES iii ABSTRACT INTRODUCTION CHAPTER I LITERATURE REVIEW 1.1 Geographic information system and remote sensing 1.2 Studies on soil erosion 1.2.1 General of soil erosion 1.2.2 Impact factors to soil erosion 1.2.3 Effect of soil erosion 1.2.4 Research on erosion CHAPTER II 12 GOALS, OBJECTIVES AND STUDY SITE 12 2.1 Goals 12 2.2 Objectives 12 2.3 Study site 12 2.3.1 Natural conditions 12 2.3.2 Economics 15 CHAPTER III 17 METHODS 17 3.1 Assessing the status of some protection plantation in Hong Linh town 17 3.1.1 Factor investigation 17 3.1.2 Plot investigation and collection data 17 3.1.3 Strip transect 22 3.1.4 Data analysis 24 DBH 25 3.2 Creating potential erosion map and erosion map of protected plantation forest in HL town 29 3.2.1 Method approach 29 3.2.2 Data investigation 32 3.2.3 Creating maps 34 3.3 Assessing the ability of soil protection against soil erosion of protection plantation in HL town 38 3.3.1 Standard TCVN5299:2009 about ―Soil quality‖ 39 3.3.2 Two standard soil to protect forest based on Hundson 1971 40 3.4 Proposing some solutions to raise the effective of erosion control of some protection plantation forest in Hong Linh town 41 CHAPTER IV 42 RESULTS AND DISCUSSIONS 42 4.1 The characteristics of protection plantation in Hong Linh town 42 4.1.1 Information about protection plantation in Hong Linh town 42 4.1.2 Stand information 44 4.1.3 Descriptive statistics results 46 4.1.4 Quality of tree statistics 48 4.1.5 Frequency distributions 49 4.2 Creating potential erosion map and vegetation cover map 50 4.2.1 Potential erosion map (C2) 50 4.2.2 Vegetation Cover Map (C1) 54 4.3 Assessing the ability of soil protection against soil erosion of protected plantation forest in Hong Linh Town 55 4.4 Proposing some solutions to raise the effective of erosion control of some protected plantation forest in Hong Linh commune 60 4.4.1 Silviculture approach 60 4.4.2 For within threshold erosion 60 4.4.3 For over threshold erosion 61 CHAPTER V 62 CONCLUSION AND RECOMMENDATION 62 5.1 Conclusion 62 5.2 Limitation 63 5.3 Recommendation 63 REFERENCES 64 APPENDIX 66 1.1 Stand information for plots 66 1.2 Value of frequency distribution of DBH and Height in all forest types 67 1.3 Descriptive information 67 1.4 Frequency distribution in five representative plots for each forest type 68 1.5 Information about DEM 30*30 72 1.6 Non-spatial data uses to create map 73 LIST OF ABBREVIATIONS C Circumference CC Canopy cover C1 Vegetation cover C2 Potential erosion DBH Diameter breast height DEM Digital elevation model GIS Geographic information system H Height Hc Commercial height LC Litter cover GC Ground cover K Rainfall erosion index RS Remote sensing S USLE P Slope Universal soil loss equation Porosity i LIST OF TABLES Table 3.1 Assessing the quality of the tree 21 Table 3.2 Tree position inventory 22 Table 3.3 Survey of Canopy closure (CC), ground cover (GC), liter cover (LC) 24 Table 3.4 Calculation for stand information 25 Table 3.5 Methods of descriptive statistics 26 Table 3.6 A measure of dispersion and variability [20] 26 Table 3.7 The ways to statistic frequency distribution 29 Table 3.8 Data collection of porosity 33 Table 3.9 Classifying current erosion 40 Table 4.1 Descriptive statistics for diameter variable 47 Table 4.2 Statistics of tree quality in each status 49 Table 4.3 Slope analysis in Protection plantation at Hong Linh 51 Table 4.4 Value of vegetation structure in each forest type in protection plantation 55 Table 4.5 Classification of current erosion in protection plantation at HL 56 ii LIST OF FIGURES Figure 2.1 Location of protection plantation in Hong Linh town, Ha Tinh 13 Figure 2.2 Land use and distribution area in Hong Linh town 14 Figure 3.1 Shape, location of investigation plots and measuring distance in plot 18 Figure 3.2 Definition of breast height [18] 19 Figure 3.3 Using Fiberglass tape to measure DBH (a) and Blume-leiss to measure H (b ) 20 Figure 3.4 Measuring tree height 21 Figure 3.5 The processing of using gap light analysis 23 Figure 3.6 Types of Skewness [18] 27 Figure 3.7 Interpolation method [11] 31 Figure 3.8 Processing of creating map C1 and C2 32 Figure 3.9 Flowchart of building C1 and C2 map 34 Figure 3.10 Flowchart of S factor in ArcGIS 10.3 36 Figure 3.11 Flowchart of P factor in Arc-gis 10.3 36 Figure3.12 Flowchart of C2 map 37 Figure 3.13 Flowchart of C1 map 38 Figure 3.14 Processing of creating current erosion map 39 Figure 4.1 Types of forest in Hong Linh town 42 Figure 4.2 Classification of forest status in protection plantation at Hong Linh town 43 Figure 4.3 Distribution of stand density in protection plantation area at Hong Linh 45 Figure 4.4 Distribution of DBH, height, commercial height of the tree in each plot 45 Figure 4.5 Total BA for stand and stand volume per hectare 46 Figure 4.6 Frequency distribution of DBH and height in all forest types 50 Figure 4.7 Slope distribution in protection plantation at Hong Linh town 51 Figure 4.8 Soil porosity distribution of protection plantation in Hong Linh (P factor) 52 iii Figure 4.9 Map of potential erosion in protection plantation area at Hong Linh 53 Figure 4.10 Vegetation cover of protection plantation area at Hong Linh 54 Figure 4.11 Distribution of current erosion in protection plantation at Hong Linh 56 Figure 4.12 Distribution of erosion area 57 Figure 4.13 Amount of over soil erosion in protection plantation in Hong Linh 58 Figure 4.14 Current erosion in each forest types at protection plantation Hong Linh 59 iv ABSTRACT Soil erosion is one of serious environment problem in the world so protecting forest plays an important role in reducing erosion in which each forest type has the different ability of protecting soil With aim of improving the effect of erosion, in this study we conducted field observation in 20 plots & 80 random areas and assessed soil erosion in some protection plantation models at Hong Linh town, Ha Tinh province by using soil loss prediction equation of Quynh et al (1996) and applying of GIS & RS Soil loss is predicted from rainfall erosivity index (564 mm/year), slope, porosity and vegetation structures A map of potential erosion was generated from slope map, and soil porosity map by using spatial interpolation and calculate to rainfall index by map algebra techniques in ArcGIS Vegetation index, a function of CC, H, GC and LC are classified into five groups After we conduct slope factor, porosity factor and vegetation factor map, we built current erosion map by using equation of Quynh et al (1996) The results show that (1) There are five main forest types (Pinus merkusii, mixed Pinus merkusii & Acacia auriculiformis, Acacia auriculiormis, Eucalyptus, mixed Eucalyptus & Acacia) in which pinus merkusii is a native species and dominant in protection plantation with 47.65% (665.96 ha); (2) Potential erosion in this study is not high, from 0- 3.75 and the erosion rate is highest in other forest and somewhere of pinus merkusii from 1.57 to 3.75, vegetation cover is from 0.9 to 1.53 that means C1 coefficient map of each forest type isn‘t much different; (3) Current erosion based on TCVN 2009 are classified into levels in which almost area is eroded slightly and be medium; Assessing amount of current erosion based on standard of Hundson (1971), there are 364.74 hectares in protection plantation are exceed eroded threshold (>0.8mm/year) occupied 26.22% in which erosion area of other forest is highest Almost area of each forest type belongs within eroded threshold and Pinus merkusii dominant with 51.9 %; (4) Keep ground cover and planting replaced species is one of solution to reduce erosion in protection plantation at Hong Linh or clearing occurs, water table levels rise, and soils remain saturated for longer periods, reducing soil cohesion and increasing the rate of land slides 4.4.3 For over threshold erosion For these erosion level, erosion area mainly is bare land, grass or regeneration forest in other forest types So we need plant more tree on areas, replaced by pinus merkuii or mixed pinus & acacia to protect the soil In somewhere of pinus merkusii forest, we should use technology and apply silviculture to keep and develop the ground cover well A common method to prevent soil erosion is to use barriers made of common materials such as wood, branches or bamboo arranged horizontally along the slope and pile-to-anchor contour line Besides building the gutter is also a good technology The purpose of these tasks is to divide the slopes into smaller sections to reduce the flow of pressure down the foothills The distance between the shields depends on the location of the different slopes If the slope is large, between the shields separated from to 4m, moderate slope, the distance between them from to 6m Slope steepness is by far the most important factor determining the inherent erodability of a paddock Slope is basically the energy supply for runoff, determining its velocity and thus erosive power Cover reduces erosion by increasing the roughness and flow pathway, thus reducing velocity of overland flow It is clear that slope is more important than slope length, although it is generally easier to manage slope length Slope can be modified in row crop situations where each row carries its own water For such a theory to work, cross slopes would need to be small, or row integrity good to ensure there is no overtopping, and subsequent domino failure The purpose of trenching is to keep the soil from washing away, which also reduces the flow of water, which increases the amount of rainwater that is absorbed into the soil 61 CHAPTER V CONCLUSION AND RECOMMENDATION 5.1 Conclusion In this study, we assessed characteristic of some protection plantation and determine amount of erosion based on soil loss prediction equation of Quynh et.al and applying GIS & RS We had given some conclusions as follow (1) There are five main types of protection plantation in Hong Linh (Pinus merkusii, mixed Pinus & Acacia, Acacia auriculiformis, Euacalyptus and mixed Eucalyptus & Acacia) Pinus merkusii is a native species and dominant in this area that occupies 47.65% with 665.96 Mixed Eucalyptus & Acacia is smallest area with 2.24 (only 0.16%) Stand density of protection plantation in Hong Linh is quite high from 580 to 760 trees/ha Moreover, standard deviation and standard error in Pinus merkusii forest are highest (2) Potential erosion in this area is from to 3.75 in which amount of highest erosion is in other forest type and somewhere of pinus merhusii forest (1.57 to 3.75), the lowest erosion of area is scattered distribution in mixed pinus and acacia forest Vegetation structure in protection plantation at Hong Linh is good from 0.09 to 1.53 and the best vegetation structure is Pinus merkusii forest (3) Current erosion is divided into five levels of current erosion based on TCVN2009 and almost area is slight erosion in pinus merkusii forest Based on the standard of Hundson (1971), protection plantation area is eroded over threshold erosion occupied 26.22% and concentrate mainly in another forest type, somewhere of pinus merkusii and eucalyptus forest (4) We should keep the ground cover in the area of within threshold erosion With an area of over threshold erosion, we should need plant more tree on areas replaced by Pinus merkuii or mixed pinus & acacia to protect the soil 62 5.2 Limitation Although we obtained some results, the research also has some limitations - The study was from June to September 2018 Because of the time limitation as well as bad weather, the research could not measure all area to assess detail soil erosion in all of the factors The sample soil and value of CC, GC, LC is not taken in all communes - The thesis also gets some mistakes in procedure conducted sample taking or measuring 5.3 Recommendation - Soil erosion is a long-term process It occurs in a long time and with different intensities, in which rain factor play a decisive role So that, it‘s necessary to have enough data and actual survey on a large scale - From the results of the research, we can realize the importance of canopy cover So it‘s significant to have a suitable schedule for crop so that there will be high canopy cover in the rainy season - Promoting the studying about soil erosion to improve methods of protecting soil, it is necessary to have move research about soil erosion with the application of GIS in large scale to synchronize in the process of analyzing, assessing and selecting the best solution - Images were collected with a low resolution, so it is necessary to further enhance the image quality and time taken to be able to update quickly to facilitate better research - For later researches, it is needed to combine using GIS with determiningg erosion is real for enhancing the practical value of the research - To overcome the shortcomings and achieve better results further study should increase the number of sampling points to raise the authentication and verification for the interpretation 63 REFERENCES Bao, T.Q and Laituri, M.J 2011, Defining required forest area for protection soil from erosion in Vietnam: a GIS-based application Earth of Science No 27: p 63-76 Pimentel, D and Kounang, 1998, Ecology of Soil Erosion in Ecosystems Ecosystems Walling, D.E and Webb, B.W Soil Erosion and Conservation Blackwell Publishing, 1983(Patterns of Sediment Yield In Morgan, R.P.C (3rd ed.)), p 1-10 Vinh, T and Minh, H 2009, Application of GIS to form LS factor map in soil erosion research at Tam Nong district, Phu Tho province Scientific journal and development No.4.page 667-674 Quang, D.V., Application of Universal soil lossequation model on assessing soil erosion at bui river watershed in Lam Son Commune- Luong Son-Hoa Binh 2016, Vietnam National University of Forestry Xuan Mai, Chuong My, Ha Noi Xiem, N and T Phien,1999, Vietnam mountainous soil, degradation and restoration Ha Noi Agriculture publishing company p 74-126 Quynh, V.V and Lan N N, 1996, Capability to protect soil of different vegetation covers in Ham Yen, Tuyen Quang Report for Vietnam - Swedish Cooperation Program Report about Hong Linh town 2018, Ha Tinh Forest Protection Department Van, N.H., To investigate and evaluate the growth and development of plant species in Hong Linh mountain area 2015: Board of Hong Linh protection management p 13-23 10 Inforamation about Hong Linh town 2018, Ha Tinh People Commitee 11 ESRI, ArcGIS Spatial Analysis 2008, www.esri.com/spatialanalyst 12 Dungz, B.X., Soil erosion and Control of Erosion 2014: Vietnam National University of Forestry 13 Li, G.-l., et al., 2017, Soil detachment and transport under the combined action of rainfall and runoff energy on shallow overland flow Journal of Mountain Science 14: p pp 1373–1383 14 Yen, C.T., 2014, Evaluating effects vegetation cover types on overland flow generation and soil erosion in Luot Mountain Vietnam National University of Forestry, Xuan Mai, Chuong My, Ha Noi 15 Lung, N.N and Hai V.D, Research on scientific foundation of technical economic solutions for planning and designing watershed, upstream protective forests, and coastal mitigating storm forests 1995, Report for National Project: Ha Noi 16 Ha, N.T., Determination of soil erosion factors and soil erosion prediction on sloping lands 1996: Hanoi University of Hydrology, Hanoi, Vietnam p 187 17 Hoa, N.H., Doi.B.T, and Anh H.Q , TECHNIQUE MANUAL FOR FIELD TRIPNR220 - Natural Resources Ecology and Measurement 2017: Vietanm National UNiversity of Forestry 18 Hung, B.M., Structure analysis and restoration of secondary forest in Vietnam Lab LAMBERT Academic Publishing 2018 19 Brack, C., Tools for measuring tree diameter 1999: Fennerschool- associated.anu.edu.au 20 Tuat, N Hai, and Hinh V.T, Statistic analysis The Agrriculture publisher 2009, Ha Noi, Vietnam 21 Renard, K.G., et al., Prediction soil erosion by water: A guide to conservation planning with the revised universal soil loss equation (RUSLE) Agriculture HandBook, 1997 No 703 22 Convert the WGS84 coordinate system to VN2000 on ArcMap and vice versa Gisact, 2017 23 Hoa, N.H., Introduction to Raster Analysis 2017, Vietnam National University of Forestry 24 McNeese, D.B and L BPI Consulting, Skewness and Kurtosis SPC for Excel Software, 2016 APPENDIX 1.1 Stand information for plots Types of forest Pinus merkusii Acacia&pi nus Acacia auriculifo rmis Eucalyptu s& acacia Eucalyptu s 0.39 0.16 0.51 0.39 0.63 0.85 0.83 0.74 1.04 1.22 Total BA/plot (m2) 1.26 0.67 2.01 1.57 2.13 2.38 2.06 2.46 2.74 3.41 0.07 0.68 2.07 21.17 41.38 414.60 640 700 640 660 700 720 0.06 0.07 0.01 0.07 0.07 0.02 0.53 0.71 0.07 0.60 0.56 0.12 1.89 2.48 0.30 2.15 2.39 0.65 17.05 24.93 2.20 19.79 19.72 4.45 37.71 49.54 6.02 43.10 47.76 12.91 341.06 498.52 43.98 395.83 394.48 88.91 34 677 0.05 0.43 1.64 14.69 32.84 293.80 34 680 1.51 11.16 1.47 10.84 29.42 216.75 13 34 680 0.04 0.33 1.24 11.26 24.84 225.25 Av r 34 680 0.78 5.74 1.36 11.05 27.13 221.00 15 36 720 0.02 0.14 0.67 5.15 13.44 102.91 38 760 0.01 0.04 0.19 1.53 3.86 30.68 Plo t 10 12 16 Av r 14 17 18 19 20 Av r 11 N tree/ plot 31 35 38 36 33 30 28 31 29 31 N tree/h a 620 700 760 720 660 600 560 620 580 620 Mean BA (m2) 0.04 0.02 0.05 0.04 0.06 0.08 0.07 0.08 0.09 0.11 32 644 32 35 32 33 35 36 Vi (m3) 12.09 5.63 19.39 14.00 20.83 25.59 23.31 22.96 30.10 37.84 Total BA/ha(m 2/ha) 25.20 13.39 40.23 31.34 42.58 47.69 41.11 49.11 54.87 68.23 Vi/ha (m3/ha ) 241.86 112.54 387.76 279.99 416.51 465.36 423.88 459.28 601.93 756.83 Vi/plot( m3) 1.2.Value of frequency distribution of DBH and Height in all forest types Frequency Percent 17 25 7 15 13 30 15 4 1 173 1 14 12 16 40 45 25 4.0 9.8 14.5 4.0 2.9 3.5 4.0 3.5 8.7 7.5 17.3 8.7 5.2 2.3 2.3 6 100.0 6 1.2 1.7 1.2 3.5 8.1 6.9 9.2 23.1 26.0 14.5 1.7 11 13 15 17 19 21 DBH 23 25 27 29 31 33 37 39 Valid 39+ Total 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 Height 13.5 14.5 15.5 16.5 17.5 18.5 19.5 19.5+ Valid Percent 4.0 9.8 14.5 4.0 2.9 3.5 4.0 3.5 8.7 7.5 17.3 8.7 5.2 2.3 2.3 6 100.0 6 1.2 1.7 1.2 3.5 8.1 6.9 9.2 23.1 26.0 14.5 1.7 Cumulative Percent 4.6 14.5 28.9 32.9 35.8 39.3 43.4 46.8 55.5 63.0 80.3 89.0 94.2 96.5 98.8 99.4 100.0 1.2 2.3 2.9 4.6 5.2 6.4 9.8 17.9 24.9 34.1 57.2 83.2 97.7 98.3 100.0 1.3 Descriptive information Plot DBH(cm) 21.71 15.01 Height (m) 16.50 14.38 Hc(m) 6.18 5.39 10 12 16 14 17 18 19 20 11 13 15 24.70 23.28 28.39 31.51 30.13 31.47 34.55 37.25 27.28 29.95 10.48 28.75 29.38 14.92 22.71 21.15 7.89 14.17 15.93 15.91 17.64 19.28 20.25 16.80 19.74 19.92 16.38 18.07 12.95 16.50 14.87 12.26 13.26 16.20 14.30 12.72 7.27 6.05 8.43 10.95 12.36 9.78 10.54 10.39 7.89 8.44 6.57 8.27 7.17 5.70 5.87 6.65 9.50 6.57 1.4 Frequency distribution in five representative plots for each forest type Status Pinus merkusii Name of tree Pinus merkusii Pinus merkusii Pinus merkusii Pinus merkusii Pinus merkusii Pinus merkusii Pinus merkusii Pinus merkusii Pinus merkusii Pinus merkusii Pinus merkusii Pinus merkusii Pinus merkusii Pinus merkusii Pinus merkusii Pinus merkusii Pinus merkusii Pinus merkusii Pinus merkusii Pinus merkusii Pinus merkusii Pinus merkusii Pinus merkusii Pinus merkusii DBH 27.1 38.2 36.1 25.4 23.6 24.5 28.5 26.4 30.5 27.6 25.8 26.7 26.5 29.0 26.7 26.5 25.4 28.0 36.2 39.6 29.3 29.2 26.5 25.4 H 18.1 20.5 20.3 18.2 17.5 17.0 18.2 18.1 18.0 18.5 18.0 17.5 17.2 17.2 17.1 18.5 18.2 18.0 14.0 20.1 17.3 18.2 18.1 18.3 DBH_Class H_class 13 14 18 16 17 16 12 14 11 13 11 13 13 14 12 14 14 14 13 14 12 14 12 13 12 13 14 13 12 13 12 14 12 14 13 14 17 10 19 16 14 13 14 14 12 14 12 14 Pinus merkusii Pinus merkusii Pinus merkusii Pinus merkusii Pinus merkusii Pinus merkusii Pinus merkusii Pinus merkusii Pinus merkusii Acacia auriculiformis Pinus Merkusii Acacia auriculiformis Pinus Merkusii Pinus Merkusii Pinus Merkusii Acacia auriculiformis Pinus Merkusii Acacia auriculiformis Pinus Merkusii Acacia auriculiformis Pinus Merkusii Pinus Merkusii Pinus Merkusii Acacia auriculiformis Acacia auriculiformis Mixed Pinus & Acacia Acacia auriculiformis Acacia auriculiformis Acacia auriculiformis Pinus Merkusii Acacia auriculiformis Acacia auriculiformis Pinus Merkusii Acacia auriculiformis Acacia auriculiformis Acacia auriculiformis Acacia auriculiformis Pinus Merkusii Pinus Merkusii Pinus Merkusii Acacia auriculiformis Acacia auriculiformis Acacia auriculiformis Eulycapus Mixed Eucalyptus & Acacia Acacia auriculiformis Acacia auriculiformis Acacia auriculiformis 26.0 26.0 27.3 26.5 25.0 36.2 28.3 32.0 28.0 27.0 26.4 26.2 28.5 26.0 27.0 26.2 26.5 27.0 29.3 26.4 29.0 32.0 35.0 29.2 23.0 24.0 25.5 28.0 25.0 22.0 23.0 28.0 26.0 25.0 26.4 26.4 31.3 29.0 28.6 26.5 27.2 8.2 10.4 25.9 20.0 5.6 18.0 17.5 17.0 17.5 18.2 19.2 18.5 18.3 18.0 16.0 16.8 15.5 17.0 17.0 15.5 15.5 17.2 15.5 17.0 16.6 17.0 17.5 17.5 16.0 15.7 16.0 16.0 16.5 16.5 16.0 16.3 16.7 16.6 15.0 16.5 16.5 17.0 16.6 16.0 16.5 16.0 9.5 9.0 12.0 15.0 7.0 12 12 13 12 12 17 13 15 13 13 12 12 13 12 13 12 12 13 14 12 14 15 17 14 11 11 12 13 12 10 11 13 12 12 12 12 15 14 13 12 13 4 12 14 13 13 13 14 15 14 14 14 12 13 12 13 13 12 12 14 12 13 13 13 14 14 12 12 12 12 13 13 12 13 13 13 11 13 13 13 13 12 13 12 11 Acacia Auriculiformis Acacia auriculiformis Acacia auriculiformis Eulycapus Acacia auriculiformis Acacia auriculiformis Acacia auriculiformis Acacia auriculiformis Acacia auriculiformis Acacia auriculiformis Acacia auriculiformis Acacia auriculiformis Eulycapus Eulycapus Acacia auriculiformis Acacia auriculiformis Eulycapus Acacia auriculiformis Acacia auriculiformis Eulycapus Eulycapus Acacia auriculiformis Eulycapus Eulycapus Eulycapus Acacia auriculiformis Acacia auriculiformis Eulycapus Eulycapus Acacia auriculiformis Acacia auriculiformis Eulycapus Acacia auriculiformis Acacia auriculiformis Acacia auriculiformis Acacia auriculiformis Acacia auriculiformis Acacia auriculiformis Acacia auriculiformis Acacia auriculiformis Acacia auriculiformis Acacia auriculiformis Acacia auriculiformis Acacia auriculiformis Acacia auriculiformis Acacia auriculiformis Acacia auriculiformis 15.2 21.7 12.0 18.0 22.0 8.0 10.0 15.0 9.0 11.0 8.0 16.3 17.7 23.4 9.5 23.5 5.7 11.4 18.5 13.2 6.5 25.5 12.3 18.2 10.5 10.0 17.3 13.2 4.5 11.4 18.6 16.5 30.2 22.5 12.5 14.2 13.7 20.5 21.5 23.3 22.5 23.5 15.0 14.0 22.3 22.5 15.0 15.7 16.5 5.0 16.5 11.0 12.0 13.0 12.0 13.5 12.5 14.0 15.7 16.0 11.0 17.5 7.0 13.0 14.0 12.0 9.0 16.0 14.5 14.0 14.0 13.0 13.0 17.0 13.0 6.0 13.0 15.5 16.0 16.0 13.0 14.5 14.5 16.0 16.0 16.5 16.5 17.0 15.5 15.5 17.0 17.0 10 10 7 11 11 12 4 8 14 10 6 10 11 10 11 10 10 11 12 13 13 10 10 12 12 14 10 12 11 10 10 9 13 9 12 12 12 11 11 12 12 13 13 13 12 12 13 13 Eucalyptus Acacia auriculiformis Acacia auriculiformis Acacia auriculiformis Acacia auriculiformis Acacia auriculiformis Acacia auriculiformis Acacia auriculiformis Acacia auriculiformis Acacia auriculiformis Acacia auriculiformis Acacia auriculiformis Acacia auriculiformis Acacia auriculiformis Acacia auriculiformis Acacia auriculiformis Acacia auriculiformis Acacia auriculiformis Acacia auriculiformis Acacia auriculiformis Eucalyptus Eucalyptus Eucalyptus Eucalyptus Eucalyptus Eucalyptus Eucalyptus Eucalyptus Eucalyptus Eucalyptus Eucalyptus Eucalyptus Eucalyptus Eucalyptus Eucalyptus Eucalyptus Eucalyptus Eucalyptus Eucalyptus Eucalyptus Eucalyptus Eucalyptus Eucalyptus Eucalyptus Eucalyptus Eucalyptus Eucalyptus 24.2 21.5 20.4 22.5 23.5 23.0 25.7 20.5 23.0 17.5 32.5 16.2 21.5 21.0 21.5 20.5 21.0 20.0 21.0 8.0 7.0 5.0 6.5 6.2 7.5 10.5 7.8 10.3 6.7 5.5 8.3 8.0 9.3 8.5 9.0 10.0 9.0 8.0 11.0 8.0 9.5 8.6 8.5 10.0 10.0 9.3 17.5 17.0 16.5 17.0 17.0 17.0 17.0 17.0 17.5 15.8 18.0 14.5 15.7 15.8 15.5 16.0 16.4 16.5 16.5 14.0 14.0 15.0 15.0 15.5 15.0 13.7 13.0 14.0 13.0 13.7 15.0 15.5 15.0 15.0 15.0 16.0 16.0 15.5 15.5 9.0 12.0 13.0 13.0 13.0 16.3 16.5 11 10 10 11 11 12 11 15 10 10 10 10 10 3 3 4 2 4 4 4 4 3 4 14 13 13 13 13 13 13 13 14 12 14 11 12 12 12 12 13 13 13 10 10 11 11 12 11 10 10 10 11 12 11 11 11 12 12 12 12 9 12 12 Eucalyptus Eucalyptus Eucalyptus Eucalyptus Eucalyptus Eucalyptus Eucalyptus Eucalyptus Eucalyptus Eucalyptus Eucalyptus 8.5 7.5 9.8 9.2 9.5 8.4 6.5 6.8 7.5 6.5 8.2 15.5 16.0 16.0 16.2 17.0 8.0 13.5 12.0 14.5 14.0 15.0 3 4 3 1.5 Information about DEM 30*30 Date set Attrbute Entity ID Acquisition Date Publication Date Resolution Date Updated NW Corner Lat NW Corner Long NE Corner Lat NE Corner Long SE Corner Lat SE Corner Long SW Corner Lat SW Corner Long NW Corner Lat dec NW Corner Long dec NE Corner Lat dec NE Corner Long dec SE Corner Lat dec SE Corner Long dec SW Corner Lat dec SW Corner Long dec Attribute Value SRTM1N18E105V3 11-Feb-00 23-Sep-14 1-ARC 2-Jan-15 19°00'00.00"N 105°00'00.00"E 19°00'00.00"N 106°00'00.00"E 18°00'00.00"N 106°00'00.00"E 18°00'00.00"N 105°00'00.00"E 19 105 19 106 18 106 18 105 12 12 12 12 13 11 10 11 1.6 Non-spatial data uses to create map Pinus merkusii ID X Y Dried soil Bulk density P K TC TM CP H 574945.4 2049586.7 94.37 0.94 0.64 564 0.83 0.73 0.64 16.71 575414.2 2049830.4 114.83 1.15 0.57 564 0.82 0.72 0.58 16.57 575753.1 2049937.1 101.87 1.02 0.62 564 0.83 0.61 0.78 15.92 575799.6 2049816.2 140.75 1.41 0.47 564 0.82 0.53 0.71 16.32 575587.8 2049728.7 104.25 1.04 0.61 564 0.84 0.62 0.68 15.45 575434.4 2049587.3 125.26 1.25 0.53 564 0.76 0.58 0.68 18.32 575247.2 2049439.1 108.25 1.08 0.59 564 0.68 0.53 0.66 18.61 575269.6 2049216.6 129.57 1.30 0.51 564 0.71 0.63 0.56 17.65 13 575774.2 2048963.5 114.43 1.14 0.57 564 0.78 0.59 0.63 16.39 14 575758.4 2049196.8 183.53 1.84 0.31 564 0.85 0.62 0.64 14.45 15 575831.6 2049507.3 113.06 1.13 0.57 564 0.82 0.55 0.58 13.98 16 576097.9 2049653.9 108.1 1.08 0.59 564 0.67 0.68 0.53 15.06 19 576326 2049561.6 144.51 1.45 0.45 564 0.81 0.71 0.67 15.53 20 576310.5 2049239.6 98.41 0.98 0.63 564 0.53 0.65 0.64 16.78 22 576044.6 2049101.5 94.03 0.94 0.65 564 0.82 0.76 0.58 16.02 23 576053.5 2048844.5 103.59 1.04 0.61 564 0.85 0.69 0.68 16.23 24 576104.5 2048583.8 87.67 0.88 0.67 564 0.84 0.71 0.61 13.23 27 575514.8 2048274.3 104.89 1.05 0.60 564 0.62 0.47 0.52 16.35 31 574768.4 2049996.3 85.82 0.86 0.68 564 0.77 0.68 0.65 17.12 32 575228.1 2050188.7 88.19 0.88 0.67 564 0.78 0.58 0.61 20.12 33 575436.2 2050837.2 118.99 1.19 0.55 564 0.67 0.66 0.78 19.72 34 575373.8 2051626.2 121.93 1.22 0.54 564 0.84 0.68 0.56 17.53 35 575690.6 2052702.1 121.27 1.21 0.54 564 0.81 0.66 0.52 14.38 36 575238.1 2052311.7 108.385 1.08 0.59 564 0.74 0.53 0.61 15.33 44 578878.8 2046900.6 123.55 1.24 0.53 564 0.86 0.71 0.73 16.91 46 578257.2 2046981.4 123.93 1.24 0.53 564 0.48 0.71 0.67 16.38 47 578087.7 2047360.4 100.435 1.00 0.62 564 0.81 0.55 0.69 17.04 48 578431.1 2047369.4 122.43 1.22 0.54 564 0.58 0.73 0.68 18.28 49 578824.3 2047243.4 89.57 0.90 0.66 564 0.77 0.72 0.78 21.25 53 578975.5 2048416.7 101.23 1.01 0.62 564 0.82 0.64 0.62 15.38 54 578505.8 2048385.3 106.795 1.07 0.60 564 0.79 0.65 0.58 16.18 55 578156.6 2048397.5 86.655 0.87 0.67 564 0.76 0.52 0.61 17.29 63 578758.4 2049567.5 111.035 1.11 0.58 564 0.83 0.58 0.69 17.31 67 578106.2 2050220.3 134.355 1.34 0.49 564 0.78 0.71 0.51 16.32 68 578294 2050661.5 117.17 1.17 0.56 564 0.82 0.54 0.68 19.71 81 575224.2 2049688.8 113.09 1.13 0.57 564 0.84 0.68 0.71 16.5 82 575430.9 2049390.6 132.23 1.32 0.50 564 0.71 0.51 0.62 14.38 83 574831.5 2050233.9 87.82 0.88 0.67 564 0.59 0.61 0.68 15.93 84 574952.4 2050998.1 113.97 1.14 0.57 564 0.84 0.62 0.56 15.91 85 575128.3 2051949.1 122.01 1.22 0.54 564 0.82 0.65 0.75 16.38 86 575960.8 2053039.5 118.17 1.18 0.55 564 0.54 0.56 0.73 17.64 87 576152.3 2050416.4 123.45 1.23 0.53 564 0.81 0.72 0.63 19.28 Pinus & Acacia Acacia auriculiformis Eucalyptus Eucalyptus & acacia ID X Y Dried soil Bulk density P K TC TM CP H 88 578228.9 2047108.5 104.64 1.05 0.61 564 0.88 0.61 0.57 20.25 89 578585.9 2048238.0 133.18 1.33 0.50 564 0.78 0.59 0.71 14.31 90 578132.5 2050532.5 117.95 1.18 0.55 564 0.75 0.67 0.72 16.8 10 575492 2049153.2 130.22 1.30 0.51 564 0.79 0.63 0.78 13.23 11 575356.6 2048996.3 104.64 1.05 0.61 564 0.62 0.57 0.73 12.31 12 575571.7 2048916.1 128.01 1.28 0.52 564 0.61 0.54 0.74 13.78 17 576041.6 2049940.9 118.42 1.18 0.55 564 0.76 0.61 0.67 12.09 18 576331.6 2050018.8 135.79 1.36 0.49 564 0.74 0.55 0.63 13.26 25 575832.9 2048782.0 127.39 1.27 0.52 564 0.83 0.63 0.51 16.74 26 575541.5 2048713.8 120.4 1.20 0.55 564 0.77 0.51 0.68 16.2 38 574673.4 2051576.2 113.87 1.14 0.57 564 0.79 0.52 0.78 18.07 39 574267.3 2051708.8 103.35 1.03 0.61 564 0.81 0.54 0.73 12.72 40 574625.9 2050870.8 101.87 1.02 0.62 564 0.74 0.57 0.77 18.22 41 578246 2046554.0 123.81 1.24 0.53 564 0.81 0.55 0.68 16.21 42 578521.1 2046655.9 126.57 1.27 0.52 564 0.79 0.52 0.68 13.01 43 578767.7 2046517.9 109.56 1.10 0.59 564 0.76 0.61 0.57 12.34 50 578913.3 2047574.4 157.41 1.57 0.41 564 0.65 0.63 0.78 13.52 56 578335.6 2048641.6 99.905 1.00 0.62 564 0.73 0.51 0.63 13.21 57 578659.6 2048859.5 138.86 1.39 0.48 564 0.53 0.59 0.74 11.23 58 578822 2049163.3 95.135 0.95 0.64 564 0.61 0.55 0.75 14.21 59 578484.4 2049283.9 246.98 2.47 0.07 564 0.81 0.58 0.53 11.07 61 578123.8 2049456.4 97.52 0.98 0.63 564 0.71 0.51 0.69 13.25 65 578862.1 2049950.9 43.99 0.44 0.83 564 0.73 0.62 0.58 12.06 66 578609.5 2050216.3 115.7785 1.16 0.56 564 0.74 0.61 0.69 14.21 69 578610.1 2050626.3 90.895 0.91 0.66 564 0.66 0.51 0.74 9.84 72 579492.3 2050093.3 119.886 1.20 0.55 564 0.64 0.58 0.69 10.21 73 579703.8 2050491.4 97.785 0.98 0.63 564 0.62 0.61 0.78 11.05 77 579914.8 2050945.1 95.135 0.95 0.64 564 0.81 0.52 0.68 16.35 79 580177.3 2051420.3 87.47 0.87 0.67 564 0.73 0.61 0.56 14.16 91 574614.8 2050833.9 136.63 1.37 0.48 564 0.86 0.73 0.57 13.26 92 574520.8 2051658.9 128.78 1.29 0.51 564 0.82 0.72 0.58 19.74 93 575542.2 2048511.6 104.66 1.05 0.61 564 0.81 0.54 0.78 16.2 94 578710.3 2050923.7 127.71 1.28 0.52 564 0.58 0.52 0.69 18.07 95 579144.7 2049953.3 124.74 1.25 0.53 564 0.64 0.63 0.73 12.72 96 578271 2049217.7 111.89 1.12 0.58 564 0.66 0.66 0.58 18.92 75 579496.5 2051035.3 124.285 1.24 0.53 564 0.68 0.66 0.47 13.67 76 579377.5 2051142.9 98.41 0.98 0.63 564 0.74 0.62 0.59 14.72 78 579768.2 579768.2 97.785 0.98 0.63 564 0.52 0.51 0.68 15.23 98 575067.4 2049239.0 130.4 1.30 0.51 564 0.73 0.53 0.72 16.57 99 578382.1 2049441.6 141.9 1.42 0.46 564 0.56 0.71 0.81 14.87 28 575907.8 2048137.9 111.91 1.12 0.58 564 0.43 0.58 0.65 11.31 29 576247.3 2048190.4 95.135 0.95 0.64 564 0.53 0.57 0.63 10.23 30 575626.1 2048002.9 198.75 1.99 0.25 564 0.51 0.45 0.65 11.49 100 575601.1 2050101.6 127.1 1.27 0.52 564 0.58 0.52 0.71 12.26 575617.8 2050042.9 114.21 1.14 0.57 564 0.61 0.41 0.61 11.52 Other forest ID X Y Dried soil Bulk density P K TC TM CP H 21 576160.9 2049301.4 90.67 0.91 0.66 564 0.38 0.35 0.59 10.15 51 578403.9 2047737.7 124.02 1.24 0.53 564 0.25 0.47 0.55 5.21 60 578300.8 2049022.4 127.5435 1.28 0.52 564 0.38 0.47 0.62 4.23 62 578466.9 2049714.6 114.215 1.14 0.57 564 0.31 0.43 0.64 3.19 64 579116.6 2049627.4 112.89 1.13 0.57 564 0.32 0.53 0.65 5.37 70 579010 2050506.7 114.17 1.14 0.57 564 0.44 0.32 0.51 6.12 71 579310.4 2050206.1 125.345 1.25 0.53 564 0.31 0.33 0.52 4.58 74 579470.3 50786.9 138.33 1.38 0.48 564 0.32 0.48 0.62 5.29 80 580545.1 2051062.3 95.665 0.96 0.64 564 0.24 0.51 0.58 6.23 37 574846.4 2051902.6 109.97 1.10 0.59 564 0.23 0.45 0.37 10.34 45 578578.7 2047042.9 100.93 1.01 0.62 564 0.34 0.32 0.43 9.25 51 578403.9 2047737.7 124.02 1.24 0.53 564 0.45 0.37 0.35 6.17 52 578816.6 2048076.2 108.915 1.09 0.59 564 0.374 0.38 0.48 8.12 ... soil erosion 41 CHAPTER IV RESULTS AND DISCUSSIONS 4.1 The characteristics of protection plantation in Hong Linh town 4.1.1 Information about protection plantation in Hong Linh town In Hong Linh. .. ability of soil protection against soil erosion of protection plantations in Hong Linh - To propose some solutions to raise the erosion control efficiency of some protection plantations in Hong Linh. .. Geography Information System and Remote Sensing on assessing soil erosion in some protection plantation models at Hong Linh town, Ha Tinh province? ?? Hopefully, it will make some contributions and