Tài liệu tham khảo |
Loại |
Chi tiết |
[5] M. Kardar, G. Parisi, Y.-C. Zhang, Dynamic scaling of growing interfaces, Phys. Rev. Lett. 56 (1986), 889-892 |
Sách, tạp chí |
Tiêu đề: |
Dynamic scaling of growing interfaces |
Tác giả: |
M. Kardar, G. Parisi, Y.-C. Zhang |
Nhà XB: |
Phys. Rev. Lett. |
Năm: |
1986 |
|
[6] A. Lemenant, E. Milakis and L.-V.Spinolo, On the extension property of Reifenberg-flat domains (2012), https://arxiv.org/abs/1209.3602 |
Sách, tạp chí |
Tiêu đề: |
On the extension property of Reifenberg-flat domains |
Tác giả: |
A. Lemenant, E. Milakis, L.-V. Spinolo |
Năm: |
2012 |
|
[14] N. C. Phuc, Nonlinear Muckenhoupt-Wheeden type bounds on Reifenberg flat domains, with applications to quasilinear Riccati type equations, Adv.Math. 250 (2014), 387–419 |
Sách, tạp chí |
Tiêu đề: |
Nonlinear Muckenhoupt-Wheeden type bounds on Reifenberg flat domains, with applications to quasilinear Riccati type equations |
Tác giả: |
N. C. Phuc |
Nhà XB: |
Advances in Mathematics |
Năm: |
2014 |
|
[18] M.-P. Tran, T.-N. Nguyen, Existence of a renormalized solution to the quasi- linear Riccati type equation in Lorentz spaces, C. R. Acad. Sci. Paris, Ser. I 357 (2019), 59-65 |
Sách, tạp chí |
Tiêu đề: |
Existence of a renormalized solution to the quasi-linear Riccati type equation in Lorentz spaces |
Tác giả: |
M.-P. Tran, T.-N. Nguyen |
Nhà XB: |
C. R. Acad. Sci. Paris |
Năm: |
2019 |
|
[19] M.-P. Tran, T.-N, Nguyen, Lorentz-Morrey global bounds for singular quasi- linear elliptic equations with measure data, Commun. Contemp. Math. 22(5) (2020), 1950033, 30 pp |
Sách, tạp chí |
Tiêu đề: |
Lorentz-Morrey global bounds for singular quasi-linear elliptic equations with measure data |
Tác giả: |
M.-P. Tran, T.-N. Nguyen |
Nhà XB: |
Commun. Contemp. Math. |
Năm: |
2020 |
|
[21] M.-P. Tran, T.-N, Nguyen, Weighted Lorentz gradient and point-wise esti- mates for solutions to quasilenear divergence form elliptic equations with an application (2019), https://arxiv.org/abs/1907.01434 |
Sách, tạp chí |
Tiêu đề: |
Weighted Lorentz gradient and point-wise estimates for solutions to quasilinear divergence form elliptic equations with an application |
Tác giả: |
M.-P. Tran, T.-N. Nguyen |
Năm: |
2019 |
|
[22] M.-P. Tran, T.-N, Nguyen, Global gradient estimates for very singular nonlinear elliptic equations with measure data (2019), https://arxiv.org/abs/1909.06991 |
Sách, tạp chí |
Tiêu đề: |
Global gradient estimates for very singular nonlinear elliptic equations with measure data |
Tác giả: |
M.-P. Tran, T.-N. Nguyen |
Năm: |
2019 |
|
[1] M.-F. Betta, A. Mercaldo, F. Murat, M.-M. Porzio, Existence of renormalized solutions to nonlinear elliptic equations with a lower-order term and right- hand side a measure, J. Math. Pures Appl. 80 (2003), 90-124 |
Khác |
|
[4] L. Grafakos, Classical and Modern Fourier Analysis, Pearson/Prentice Hall, 2004 |
Khác |
|
[7] G. D. Maso, F. Murat, L. Orsina and A. Prignet, Renormalized solutions of elliptic equations with general measure data, Ann. Scuola Norm. Super. Pisa (IV) 28 (1999), 741-808 |
Khác |
|
[8] G. Mingione, The Calderón-Zygmund theory for elliptic problems with mea- sure data, Ann. Scu. Norm. Sup. Pisa Cl. Sci. (5) 6 (2007), 195-261 |
Khác |
|
[9] G. Mingione, Gradient estimates below the duality exponent, Math. Ann. 346 (2010), 571–627 |
Khác |
|
[10] G. Mingione, Gradient potential estimates, J. Eur. Math. Soc. (JEMS) 13 (2011), 459-486 |
Khác |
|
[11] Q.-H. Nguyen, N. C. Phuc, Good- λ and Muckenhoupt-Wheeden type bounds, with applications to quasilinear elliptic equations with gradient power source terms and measure data, Math. Ann. 374 (2019), 67-98 |
Khác |
|
[12] Q.-H. Nguyen, Gradient estimates for singular quasilinear elliptic equations with measure data, arXiv:1705.07440v2 |
Khác |
|
[13] L. H. Phuc, A Lorentz gradient estimate for a class of measure data p - Laplace equation with p closed to 1, submitted, 2020 |
Khác |
|
[15] N. C. Phuc, Morrey global bounds and quasilinear Riccati type equations below the natural exponent, J. Math. Pures Appl. (9) 102 (2014), 99–123 |
Khác |
|
[16] M.-P. Tran, Good- λ type bounds of quasilinear elliptic equations for the singular case, Nonlinear Analysis 178 (2019), 266–281 |
Khác |
|
[17] M.-P. Tran, T.-N, Nguyen, An application of global gradient estimates in Lorentz-Morrey spaces: The existence of stationary solution to degenerate dif- fusive Hamilton-Jacobi equations, Electron. J. Differential Equations (2019), no. 118, 1-12 |
Khác |
|
[20] M.-P. Tran, T.-N. Nguyen, New gradient estimates for solutions to quasilin- ear divergence form elliptic equations with general Dirichlet boundary data, J. Differential Equations 268(4) (2020), 1427-1462 |
Khác |
|