1. Trang chủ
  2. » Luận Văn - Báo Cáo

TÍNH LIÊN tục HOLDER và sự ổn ĐỊNH của NGHIỆM PHƯƠNG TRÌNH MONGE AMPERE

77 10 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 77
Dung lượng 493,42 KB

Nội dung

dziej and A Zeriahi (2011), "Maximal subextensions of plurisubharmonic functions", Ann Fac Sci Toulouse Math., 20(6), Fascicule Spcial, 101-122 [19] U Cegrell and A Zeriahi (2003), "Subextension of plurisubharmonic functions with bounded Monge-Ampère operator mass", C R Acad Sci Paris, 336, 305-308 [20] U Cegrell, S Kolodziej and A Zeriahi (2005), "Subextension of plurisubharmonic functions with weak singularities", Math Z., 250(1), 7-22 [21] M Charabati (2015), "Hăolder regularity for solutions to complex Monge-Ampère equations", Ann Pol Math., 113(2), 109-127 [22] R Czy˙z and L Hed (2008), "Subextension of plurisubharmonic functions without increasing the total Monge-Ampère mass", Ann Polon Math., 94, 275-281 [23] J.P Demailly, S Dinew, V Guedj, P.H Hiep (2014), "S Kolodziej and A Zeriahi, Hăolder contin-uous solutions to Monge-Ampère equations", J Eur Math Soc (JEMS), 16 (4), 619-647 [24] S Dinew and S Kolodziej (2014), "A priori estimates for the complex Hessian equations", Analysis & PDE., 7(1), 227–244 [25] V Guedj and A Zeriahi (2012), "Stability of solutions to complex Monge-Ampère equations in big cohomology classes", Mathematical Research Letters, 19(5), 1025–1042 [26] V Guedj, S Kolodziej and A Zeriahi (2008), "Hăolder continuous solutions to the complex Monge-Ampốre equations", Bull Lond Math Soc 40(6), 1070-1080 74 [27] L.M Hai and N.X Hong (2014), "Subextension of plurisubharmonic functions without changing the Monge-Ampère measures and applications", Ann Polon Math., 112, 55-66 [28] L.M Hai, N.X Hong and T.V Dung (2015), "Subextension of plurisubharmonic functions with boundary values in weighted pluricomplex energy classes", Complex Var Elliptic Equ., 60, Issue 11, 1580-1593 [29] L.M Hai, N.V Trao and N.X Hong (2014), "The complex MongeAmpère equation in unbounded hyperconvex domains in Cn ", Complex Var Elliptic Equ., 59(12), 1758-1774 [30] P.H Hiep (2008), "Pluripolar sets and the subextension in Cegrell’s classes", Complex Variables and Elliptic Equations, 53(7), 675684 [31] P.H Hiep (2010), "Hăolder continuity of solutions to the MongeAmpốre equations on compact Kăahler manifolds", Ann Inst Fourier, 60(5), 1857-1869 [32] P.H Hiep (2010), "Convergence in capacity and applications", Math Scand., 107, 90–102 [33] N.X Hong (2015), "Monge-Ampère measures of maximal subextensions of plurisubharmonic functions with given boundary values", Complex Var Elliptic Equ., 60(3), 429-435 [34] N.V Khue and P.H Hiep (2009), "A comparison principle for the complex Monge-Ampère operator in Cegrell’s classes and applications", Trans Am Math Soc., 361(10), 5539-5554 [35] S Kolodziej (1995), "The range of the complex Monge-Ampère operator, II", Indiana Univ Math J., 44, 765-782 [36] S Kolodziej (1996), "Some sufficient conditions for solvability of the Dirichlet problem for the complex Monge-Ampère operator", Ann Pol Math., 65(1), 11-21 [37] S Kolodziej (1998), "The complex Monge-Ampère equation", Acta Math., 180(1), 69-117 [38] S.Y Li (2004), "On the existence and regularity of Dirichlet problem for complex Monge-Ampère equations on weakly pseudoconvex domains", Calc Var PDE, 20, 119-132 [39] H El Mir (1980), "Fonctions plurisousharmoniques et ensembles pluripolaires", Seminaire Lelong-Skoda, Lecture Notes in Math., 822, Springer-Verlarg, 61-76 75 [40] A Simioniuc and G Tomassini (2008), "The Bremermann Dirichlet problem for unbounded domains of Cn ", Manuscr Math., 126(1), 7397 [41] Y Xing (1996), "Continuity of the complex Monge - Ampère operator", Proc Amer Math Soc., 124(2), 457–467 [42] Y Xing (2008), "Convergence in capacity", Ann Inst Fourier (Grenoble), 58(5), 1839-1861 ... principle for the complex Monge- Ampère operator in Cegrell’s classes and applications", Trans Am Math Soc., 361(10), 5539-5554 [35] S Kolodziej (1995), "The range of the complex Monge- Ampère operator,... solvability of the Dirichlet problem for the complex Monge- Ampère operator", Ann Pol Math., 65(1), 11-21 [37] S Kolodziej (1998), "The complex Monge- Ampère equation", Acta Math., 180(1), 69-117... Elliptic Equations, 53(7), 675–684 [31] P.H Hiep (2010), "Hăolder continuity of solutions to the MongeAmpốre equations on compact Kăahler manifolds", Ann Inst Fourier, 60(5), 1857-1869 [32] P.H

Ngày đăng: 29/05/2021, 10:42

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
[13] U. Cegrell (2008), "A general Dirichlet problem for the complex Monge-Ampère operator", Ann. Polon. Math., 94, 131-147 Sách, tạp chí
Tiêu đề: A general Dirichlet problem for the complexMonge-Ampère operator
Tác giả: U. Cegrell
Năm: 2008
[14] U. Cegrell (2012), "Convergence in Capacity", Canad. Math. Bull., 55, 242–248 Sách, tạp chí
Tiêu đề: Convergence in Capacity
Tác giả: U. Cegrell
Nhà XB: Canad. Math. Bull.
Năm: 2012
[15] U. Cegrell and L. Hed (2008), "Subextension and approximation of negative plurisubharmonic functions", Michigan Math. J., 56, 593-601 Sách, tạp chí
Tiêu đề: Subextension and approximation of negative plurisubharmonic functions
Tác giả: U. Cegrell, L. Hed
Nhà XB: Michigan Math. J.
Năm: 2008
[16] U. Cegrell and S. Ko l odziej (2006), "The equation of complex Monge-Ampère type and stability of solutions", Math. Ann., 334, 713- 729 Sách, tạp chí
Tiêu đề: The equation of complexMonge-Ampère type and stability of solutions
Tác giả: U. Cegrell and S. Ko l odziej
Năm: 2006
[17] U. Cegrell, S. Ko l odziej and A. Zeriahi (2005), "Subextension of plurisubharmonic functions with weak singularities", Math. Z., 250, 7-22 Sách, tạp chí
Tiêu đề: Subextension of plurisubharmonic functions with weak singularities
Tác giả: U. Cegrell, S. Kołodziej, A. Zeriahi
Nhà XB: Math. Z.
Năm: 2005
[18] U. Cegrell, S. Ko l odziej and A. Zeriahi (2011), "Maximal subexten- sions of plurisubharmonic functions", Ann. Fac. Sci. Toulouse Math., 20(6), Fascicule Spcial, 101-122 Sách, tạp chí
Tiêu đề: Maximal subextensions of plurisubharmonic functions
Tác giả: U. Cegrell, S. Kołodziej, A. Zeriahi
Nhà XB: Ann. Fac. Sci. Toulouse Math.
Năm: 2011
[19] U. Cegrell and A. Zeriahi (2003), "Subextension of plurisubharmonic functions with bounded Monge-Ampère operator mass", C. R. Acad.Sci. Paris, 336, 305-308 Sách, tạp chí
Tiêu đề: Subextension of plurisubharmonic functions with bounded Monge-Ampère operator mass
Tác giả: U. Cegrell, A. Zeriahi
Nhà XB: C. R. Acad.Sci. Paris
Năm: 2003
[20] U. Cegrell, S. Kolodziej and A. Zeriahi (2005), "Subextension of plurisubharmonic functions with weak singularities", Math. Z., 250(1), 7-22 Sách, tạp chí
Tiêu đề: Subextensionof plurisubharmonic functions with weak singularities
Tác giả: U. Cegrell, S. Kolodziej and A. Zeriahi
Năm: 2005
[21] M. Charabati (2015), "H¨ older regularity for solutions to complex Monge-Ampère equations", Ann. Pol. Math., 113(2), 109-127 Sách, tạp chí
Tiêu đề: Hölder regularity for solutions to complex Monge-Ampère equations
Tác giả: M. Charabati
Nhà XB: Ann. Pol. Math.
Năm: 2015
[22] R. Czy˙z and L. Hed (2008), "Subextension of plurisubharmonic func- tions without increasing the total Monge-Ampère mass", Ann. Polon.Math., 94, 275-281 Sách, tạp chí
Tiêu đề: Subextension of plurisubharmonic func- tions without increasing the total Monge-Ampère mass
Tác giả: R. Czy˙z, L. Hed
Nhà XB: Ann. Polon.Math.
Năm: 2008
[23] J.P. Demailly, S. Dinew, V. Guedj, P.H. Hiep (2014), "S. Ko l odziej and A. Zeriahi, H¨ older contin-uous solutions to Monge-Ampère equa- tions", J. Eur. Math. Soc. (JEMS), 16 (4), 619-647 Sách, tạp chí
Tiêu đề: Hölder continuous solutions to Monge-Ampère equations
Tác giả: J.P. Demailly, S. Dinew, V. Guedj, P.H. Hiep, S. Kołodziej, A. Zeriahi
Nhà XB: J. Eur. Math. Soc. (JEMS)
Năm: 2014
[24] S. Dinew and S. Kolodziej (2014), "A priori estimates for the com- plex Hessian equations", Analysis & PDE., 7(1), 227–244 Sách, tạp chí
Tiêu đề: A priori estimates for the complex Hessian equations
Tác giả: S. Dinew, S. Kolodziej
Nhà XB: Analysis & PDE
Năm: 2014
[25] V. Guedj and A. Zeriahi (2012), "Stability of solutions to complex Monge-Ampère equations in big cohomology classes", Mathematical Research Letters, 19(5), 1025–1042 Sách, tạp chí
Tiêu đề: Stability of solutions to complex Monge-Ampère equations in big cohomology classes
Tác giả: V. Guedj, A. Zeriahi
Nhà XB: Mathematical Research Letters
Năm: 2012
[26] V. Guedj, S. Ko l odziej and A. Zeriahi (2008), "H¨ older continuous solutions to the complex Monge-Ampère equations", Bull. Lond. Math.Soc. 40(6), 1070-1080 Sách, tạp chí
Tiêu đề: H¨older continuoussolutions to the complex Monge-Ampère equations
Tác giả: V. Guedj, S. Ko l odziej and A. Zeriahi
Năm: 2008
[27] L.M. Hai and N.X. Hong (2014), "Subextension of plurisubharmonic functions without changing the Monge-Ampère measures and applica- tions", Ann. Polon. Math., 112, 55-66 Sách, tạp chí
Tiêu đề: Subextension of plurisubharmonicfunctions without changing the Monge-Ampère measures and applica-tions
Tác giả: L.M. Hai and N.X. Hong
Năm: 2014
[28] L.M. Hai, N.X. Hong and T.V. Dung (2015), "Subextension of plurisubharmonic functions with boundary values in weighted pluri- complex energy classes", Complex Var. Elliptic Equ., 60, Issue 11, 1580-1593 Sách, tạp chí
Tiêu đề: Subextension of plurisubharmonic functions with boundary values in weighted pluri- complex energy classes
Tác giả: L.M. Hai, N.X. Hong, T.V. Dung
Nhà XB: Complex Var. Elliptic Equ.
Năm: 2015
[29] L.M. Hai, N.V. Trao and N.X. Hong (2014), "The complex Monge- Ampère equation in unbounded hyperconvex domains in C n ", Complex Var. Elliptic Equ., 59(12), 1758-1774 Sách, tạp chí
Tiêu đề: The complex Monge- Ampère equation in unbounded hyperconvex domains in C n
Tác giả: L.M. Hai, N.V. Trao, N.X. Hong
Nhà XB: Complex Var. Elliptic Equ.
Năm: 2014
[30] P.H. Hiep (2008), "Pluripolar sets and the subextension in Cegrell’s classes", Complex Variables and Elliptic Equations, 53(7), 675–684 [31] P.H. Hiep (2010), "H¨ older continuity of solutions to the Monge-Ampère equations on compact K¨ ahler manifolds", Ann. Inst. Fourier, 60(5), 1857-1869 Sách, tạp chí
Tiêu đề: Pluripolar sets and the subextension in Cegrell’s classes
Tác giả: P.H. Hiep
Nhà XB: Complex Variables and Elliptic Equations
Năm: 2008
[32] P.H. Hiep (2010), "Convergence in capacity and applications", Math.Scand., 107, 90–102 Sách, tạp chí
Tiêu đề: Convergence in capacity and applications
Tác giả: P.H. Hiep
Năm: 2010
[33] N.X. Hong (2015), "Monge-Ampère measures of maximal subex- tensions of plurisubharmonic functions with given boundary values", Complex Var. Elliptic Equ., 60(3), 429-435 Sách, tạp chí
Tiêu đề: Monge-Ampère measures of maximal subex- tensions of plurisubharmonic functions with given boundary values
Tác giả: N.X. Hong
Nhà XB: Complex Var. Elliptic Equ.
Năm: 2015

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN